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Abstract. We consider the problem of verifying the identity of a distribution: Given the4
description of a distribution over a discrete finite or countably infinite support, p = (p1, p2, . . .), how5
many samples (independent draws) must one obtain from an unknown distribution, q, to distinguish,6
with high probability, the case that p = q from the case that the total variation distance (L1 distance)7
‖p−q‖1 ≥ ε? We resolve this question, up to constant factors, on an instance by instance basis: there8
exist universal constants c, c′ and a function f(p, ε) on the known distribution p and error parameter9
ε, such that our tester distinguishes p = q from ‖p − q‖1 ≥ ε using f(p, ε) samples with success10
probability > 2/3, but no tester can distinguish p = q from ‖p − q‖1 ≥ c · ε when given c′ · f(p, ε)11

samples. The function f(p, ε) is upper-bounded by a multiple of
‖p‖2/3
ε2

, but is more complicated.12
This result generalizes and tightens previous results: since distributions of support at most n have13
L2/3 norm bounded by

√
n, this result immediately shows that for such distributions, O(

√
n/ε2)14

samples suffice, tightening the previous bound of O(
√
n polylogn

ε4
) and matching the (tight) results15

for the case that p is the uniform distribution of support n.16
The analysis of our very simple testing algorithm involves several hairy inequalities. To facilitate

this analysis, we give a complete characterization of a general class of inequalities—generalizing
Cauchy-Schwarz, Hölder’s inequality, and the monotonicity of Lp norms. Specifically, we characterize
the set of sequences of triples (a, b, c)i = (a1, b1, c1), . . . , (ar, br, cr) for which it holds that for all
finite sequences of positive numbers (x)j = x1, . . . and (y)j = y1, . . . ,

r∏
i=1

∑
j

x
ai
j y

bi
j

ci ≥ 1.

For example, the standard Cauchy-Schwarz inequality corresponds to the triples (a, b, c)i = (1, 0, 1
2

),17

(0, 1, 1
2

), ( 1
2
, 1
2
,−1). Our characterization is constructive and algorithmic, leveraging linear program-18

ming to prove or refute an inequality, which would otherwise have to be investigated, through trial19
and error, by hand. We hope the computational nature of our characterization will be useful to20
others, and facilitate analyses like the one here.21
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1. Introduction. Suppose you have a detailed record of the distribution of IP24

addresses that visit your website. You recently proved an amazing theorem, and are25

keen to determine whether this result has changed the distribution of visitors to your26

website (or is it simply that the usual crowd is visiting your website more often?). How27

many visitors must you observe to decide this, and, algorithmically, how do you decide28

this? Formally, given some known distribution p over a discrete (though possibly29

infinite) domain, a parameter ε > 0, and an unknown distribution q from which we30

may draw independent samples, we would like an algorithm that will distinguish the31

case that q = p from the case that the total variation distance, dtv(p, q) > ε. We32

consider this basic question of verifying the identity of a distribution, also known as33
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2 GREGORY VALIANT AND PAUL VALIANT

the problem of “identity testing against a known distribution”. This problem has34

been well studied, and yielded the punchline that it is sometimes possible to perform35

this task using far fewer samples than would be necessary to accurately learn the36

distribution from which the samples were drawn. Nevertheless, previous work on this37

problem either considered only the problem of verifying a uniform distribution (the38

case that p = Unif[n]), or was from the perspective of worst-case analysis—aiming to39

bound the number of samples required to verify a worst-case distribution of a given40

support size.41

Here, we seek a deeper understanding of this problem. We resolve, up to con-42

stant factors, the sample complexity of this task on an instance-by-instance basis—43

determining the optimal number of samples required to verify the identity of a distri-44

bution, as a function of the distribution in question.45

Throughout much of theoretical computer science, the main challenge and goal46

is to characterize problems from a worst-case standpoint, and the efforts to describe47

algorithms that perform well “in practice” are often relegated to the sphere of heuris-48

tics. Still, there is a developing understanding of domains and approaches for which49

one may provide analysis beyond the worst-case (e.g., random instances, smoothed50

analysis, competitive analysis, analysis with respect to various parameterizations of51

the problems, etc.). Against this backdrop, it seems especially exciting when a rich52

setting seems amenable to the development and analysis of instance optimal algo-53

rithms, not to mention that instance optimality gives a strong recommendation for54

the practical viability of the proposed algorithms.55

In the setting of this paper, having the distribution p explicitly provided to the56

tester enables our approach; nevertheless, it is tantalizing to ask whether this style57

of “instance-by-instance optimal” property testing/estimation or learning is possible58

in more general distributional settings. The authors are optimistic that such strong59

theoretical results are both within our reach, and that pursuing this line may yield60

practical algorithms suited to making the best use of available data. We refer the61

reader to [22] for an example of subsequent work in this direction.62

To more cleanly present our results, we introduce the following notation.63

Definition 1. For a probability distribution p over a discrete support, let p−max64

denote the vector of probabilities obtained from p by removing the entry corresponding65

to the element of largest probability (with ties broken arbitrarily if there are multiple66

such elements). For ε > 0, define p−ε to be the vector obtained from p by removing67

the domain elements of smallest probability mass under p, and stopping just before68

more than ε probability mass is removed.69

Hence p−max
−ε is the vector of probabilities corresponding to distribution p, af-70

ter the largest probability element and the smallest probability elements have been71

removed.72

Throughout, we use the standard notation for the Lp norm of a vector: given a73

vector x, and a real number α we define the α norm of x as74

‖x‖α =

(∑
i

xαi

)1/α

75

Our main result is the following:76

Theorem 2. There exist constants c1, c2 such that for any ε > 0 and any known77

distribution p, for any unknown distribution q, our tester will distinguish q = p from78
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‖p−q‖1 ≥ ε with probability 2/3 when run on a set of at least c1 ·max

{
1
ε ,
‖p−max
−ε/16‖2/3
ε2

}
79

samples drawn from q, and no tester can do this task with probability at least 2/3 with80

a set of fewer than c2 ·max

{
1
ε ,
‖p−max
−2ε ‖2/3
ε2

}
samples.81

In short, over the entire range of potential distributions p, our tester is optimal,82

up to constant factors in ε and the number of samples. The distinction of “con-83

stant factors in ε” is needed, as ‖p−ε/16‖2/3 might not be within a constant factor84

of ‖p−2ε‖2/3 if, for example, the vast majority of the 2/3-norm of p comes from tiny85

domain elements that only comprise an ε fraction of the 1-norm (and hence would be86

absent from p−2ε, though not from p−ε/16).187

Because our tester is constant-factor tight, the subscript and superscript on p88

and the max with 1
ε in the sample complexity max

{
1
ε ,
‖p−max
−O(ε)

‖2/3
ε2

}
all mark real89

phenomena, and are not just artifacts of the analysis. However, except for rather90

pathological distributions, the theorem says that Θ(
‖p‖2/3
ε2 ) is the optimal number of91

samples. Additionally, note that the subscript and superscript only reduce the value of92

the norm: ‖p−max
−2ε ‖2/3 < ‖p−2ε‖2/3 ≤ ‖p−ε/16‖2/3 ≤ ‖p‖2/3, and hence O(‖p‖2/3/ε2)93

is always an upper bound on the number of samples required. Since x2/3 is concave, for94

distributions p of support size at most n the L2/3 norm is maximized on the uniform95

distribution, yielding that ‖p‖2/3 ≤
√
n, with equality if and only if p is the uniform96

distribution. This immediately yields a worst-case bound of O(
√
n/ε2) on the number97

of samples required to test distributions supported on at most n elements, tightening98

the previous bound of O(
√
n polylogn

ε4 ) from [6], and matching the tight bound on the99

number of samples required for testing the uniform distribution given in [17].100

The core of our testing algorithm is an extremely simple statistic that is similar to101

Pearson’s chi-squared statistic. Given a set of k samples, with Xi denoting the number102

of occurrences of the ith domain element, and pi denoting the probability of drawing103

the ith domain element from distribution p, the Pearson chi-squared statistic is given104

as
∑
i

(Xi−kpi)2−kpi
pi

. Our testing algorithm is, essentially, obtained by modifying this105

statistic in two crucial ways: replacing the second occurrence of kpi with Xi (which106

has expectation kpi when drawing samples from p), and changing the scaling factor107

from 1/pi to 1/p
2/3
i :108 ∑

i

(Xi − kpi)2 −Xi

p
2/3
i

.109

Our simple testing algorithm is stated below:110

1In the language of the abstract, Theorem 2 defines a function f(p, ε) characterizing the sample
complexity of testing the identity of p, tight up to a factor of 32 in the error ε and some constant
c1/c2 in the number of samples. Interestingly, since the function f(p, ε) grows at least inversely in
ε as ε goes to 0, we can merge the two constants into a single multiplicative constant in the error ε
and say that the right number of samples for testing the identity of p to within ε must lie between
f(p, 32 c1

c2
·ε) and f(p, ε). This is a cleaner result, in some sense; however, of the two parameters—the

accuracy ε and the sample size k—it is often perhaps more important to have precise control of the
accuracy, so we wanted to emphasize that while our results are constant-factor-tight, the constant,
32, in front of ε is explicit, and can be made small.
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4 GREGORY VALIANT AND PAUL VALIANT

An Instance-Optimal Tester
Given a parameter ε > 0 and a set of k samples drawn from q, letXi represent the
number of times the ith domain element occurs in the samples. Assume wlog that
the domain elements of p are sorted in non-increasing order of probability. Define
s = min{i :

∑
j>i pj ≤ ε/8}, and let M = {2, . . . , s}, and S = {s+ 1, s+ 2, . . .}.

(Note that pM = p−max
−ε/8 .)

1. If
∑
i∈M

(Xi−kpi)2−Xi
p
2/3
i

> 4k‖pM‖1/32/3, or

2. If
∑
i∈S Xi >

3
16εk, then output “‖p− q‖1 ≥ ε”, else output “p = q”.

111

While the algorithm we propose is extremely simple, the analysis involves sorting112

through several messy inequalities. To facilitate this analysis, we give a complete113

characterization of a general class of inequalities. We characterize the set of sequences114

of triples (a, b, c)i = (a1, b1, c1), . . . , (ar, br, cr) for which it holds that for all finite115

sequences of positive numbers (x)j = x1, . . . and (y)j = y1, . . . ,116

(1)

r∏
i=1

∑
j

xaij y
bi
j

ci

≥ 1.117

This is an extremely frequently encountered class of inequalities, and contains the118

Cauchy-Schwarz inequality and its generalization, the Hölder inequality, in addition119

to inequalities representing the monotonicity of the Lp norm, and also clearly contains120

any finite product of such inequalities. Additionally, we note that the constant 1 on121

the right hand side cannot be made larger, for all such inequalities are false when the122

sequences x and y consist of a single 1; also, as we show, the class of valid inequalities123

is unchanged if 1 is replaced by any other constant in the interval (0, 1].124

Example 1. The classic Cauchy-Schwarz inequality can be expressed in the form125

of Equation 1 as
(∑

j Xj

)1/2 (∑
j Yj

)1/2 (∑
j

√
XjYj

)−1

≥ 1, corresponding to the126

triples (a, b, c)i = (1, 0, 1
2 ), (0, 1, 1

2 ), ( 1
2 ,

1
2 ,−1). This inequality is tight when the127

sequences X and Y are proportional to each other. The Hölder inequality generalizes128

Cauchy-Schwarz by replacing 1
2 by λ ∈ [0, 1], yielding the inequality defined by the129

triples (a, b, c)i = (1, 0, λ), (0, 1, 1− λ), (λ, 1− λ,−1).130

Example 2. A fundamentally different inequality that can also be expressed in131

the form of Equation 1 is the fact that the Lp norm is a non-increasing function of132

p. For p ∈ [0, 1] we have the inequality
(∑

j X
p
j

)(∑
j Xj

)−p
≥ 1, corresponding to133

the two triples (a, b, c)i = (p, 0, 1), (1, 0,−p). This inequality is tight only when the134

sequence (X)j consists of a single nonzero term.135

We show that the cases where Equation 1 holds are exactly those cases expressible136

as a product of inequalities of the above two forms, where two arbitrary combinations137

of x and y are substituted for the sequence X and the sequence Y in the above138

examples:139

Theorem 3. For a fixed sequence of triples (a, b, c)i = (a1, b1, c1), . . . (ar, br, cr),

the inequality
∏r
i=1

(∑
j x

ai
j y

bi
j

)ci
≥ 1 holds for all finite sequences of positive numbers

(x)j , (y)j if and only if it can be expressed as a finite product of positive powers of
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Hölder inequalities of the form∑
j

xa
′

j y
b′

j

λ

·

∑
j

xa
′′

j yb
′′

j

1−λ

≥
∑
j

x
λa′+(1−λ)a′′

j y
λb′+(1−λ)b′′

j ,

and Lp monotonicity inequalities of the form
(∑

j x
a
j y
b
j

)λ
≤
∑
j x

λa
j yλbj , where λ ∈140

[0, 1].141

We state this theorem for pairs of sequences (x)j , (y)j , of positive numbers, al-142

though an analogous statement (Theorem 4 stated in Section 2) holds for any number143

of positive sequences and is yielded by a trivial extension of the proof of the above144

theorem. Most commonly encountered instances of inequalities of the above form,145

including those involved in our identity testing result, involve only pairs of sequences.146

Further, the result is nontrivial even for inequalities of the above form that only in-147

volve a single sequence—see Example 3 for a discussion of a single sequence inequality148

with surprising properties.149

Our proof of Theorem 3 is algorithmic in nature; in fact, we describe an algorithm150

which, when given the sequence of triples (a, b, c)i as input, will run in polynomial151

time, and either output a derivation of the desired inequality as a product of a polyno-152

mial number of Hölder and Lp monotonicity inequalities, or the algorithm will output153

a witness from which a pair of sequences (x)j , (y)j that violate the inequality can be154

constructed. It is worth stressing that the algorithm is efficient despite the fact that155

the shortest counter-example sequences (x)j , (y)j might require a doubly-exponential156

number of terms (doubly-exponential in the number of bits required to represent the157

sequence of triples (a, b, c)i—see Example 3).158

The characterization of Theorem 3 seems to be a useful and general tool, and159

seems absent from the literature, perhaps because linear programming duality is an160

unexpected tool with which to analyze such inequalities. The ability to efficiently161

verify inequalities of the above form greatly simplified the tasks of proving our instance162

optimality results; we believe this tool will prove useful to others and have made a163

Matlab implementation of our inequality prover/refuter publicly available at http:164

//theory.stanford.edu/∼valiant/code.html.165

1.1. Related work. The general area of hypothesis testing was launched by166

Pearson in 1900, with the description of Pearson’s chi-squared test. In this cur-167

rent setting of determining whether a set of k samples was drawn from distribution168

p = p1, p2, . . ., that test would correspond to evaluating
∑
i

1
pi

(Xi − kpi)2, where Xi169

denotes the number of occurrences of the ith domain element in the samples, and170

then outputting “yes” if the value of this statistic is sufficiently small. Traditionally,171

such tests are evaluated in the asymptotic regime, for a fixed distribution p as the172

number of samples tends to infinity. In the current setting of trying to verify the173

identity of a distribution, using this chi-squared statistic might require using many174

more samples than would be necessary even to accurately learn the distribution from175

which the samples were drawn (see, e.g., Example 6).176

Over the past fifteen years, there has been a body of work exploring the general177

question of how to estimate or test properties of distributions using fewer samples178

than would be necessary to learn the distribution in question. Such properties include179

“symmetric” properties (properties whose value is invariant to relabeling domain ele-180

ments) such as entropy, support size, and distance metrics between distributions (such181

as L1 distance), with work on both the algorithmic side (e.g., [7, 5, 12, 15, 16, 4, 9]),182
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6 GREGORY VALIANT AND PAUL VALIANT

and on establishing lower bounds [18, 23]. Such problems have been almost exclu-183

sively considered from a worst-case standpoint, with bounds on the sample complexity184

parameterized by an upper bound on the support size of the distribution. The recent185

work [20, 21] resolved the worst-case sample complexities of estimating many of these186

symmetric properties. Also see [19] for a recent survey.187

The specific question of verifying the identity of a distribution was one of the188

first questions considered in this line of work. Motived by a connection to testing189

the expansion of graphs, Goldreich and Ron [11] first considered the problem of dis-190

tinguishing whether a set of samples was drawn from the uniform distribution of191

support n versus from a distribution that is least ε far from the uniform distribu-192

tion, with the tight bound of Θ(
√
n
ε2 ) on the number of samples subsequently given by193

Paninski [17]. For the more general problem of verifying the identity of an arbitrary194

distribution, Batu et al. [6], showed that for worst-case distributions of support size195

n, O(
√
n polylogn

ε4 ) samples are sufficient. Since the publication of this current paper,196

Diakonikolis et al. [10], considered the problem of identity testing under various as-197

sumptions about the shape of the distribution, including, for example, assuming the198

distribution is monotone, unimodal, multimodal, or piecewise constant, etc., relative199

to an ordering of the domain elements; for distributions assumed to be piecewise con-200

stant with t pieces, they show a tester with O(
√
t

ε2 ) samples, which, letting t = n yields201

a O(
√
n
ε2 )-sample tester in our setting, which has worst-case optimal dependence on n202

and ε (but is not instance-optimal).203

In a similar spirit to this current paper, motivated by a desire to go beyond worst-204

case analysis, Acharya et al. [1, 2] recently considered the question of identity testing205

with two unknown distributions (i.e., both distributions p and q are unknown, and one206

wishes to deduce if p = q from samples) from the standpoint of competitive analysis.207

They asked how many samples are required as a function of the number of samples208

that would be required for the task of distinguishing whether samples were drawn209

from p versus q in the case where p and q were known to the algorithm. Their main210

results are an algorithm that performs the desired task using m3/2 polylogm samples,211

and a lower bound of Ω(m7/6), where m represents the number of samples required to212

determine whether a set of samples were drawn from p versus q in the setting where213

p and q are explicitly known. One of the main conceptual messages from Acharya et214

al.’s results is that knowledge of the underlying distributions is extremely helpful—215

without such knowledge one loses a polynomial factor in sample complexity. Our216

results build on this moral, in some sense describing the “right” way that knowledge217

of a distribution can be used to test identity.218

The form of our tester may be seen as rather similar to those in [1, 2, 8], which219

considered testing whether two distributions were close or not when both distributions220

are unknown. The testers in those papers and the tester proposed here consist es-221

sentially of summing up carefully chosen expressions independently evaluated at the222

different domain elements and comparing this sum to a threshold. These testers are223

considerable simpler than many of the proposed testers in other works (including [10]224

and the initial pioneering work [6]), which proceed by subdividing the domain into a225

super-constant number of partitions, and applying tests to each partition separately.226

From a technical perspective, our lower bounds leverage Hellinger distance to intro-227

duce a flexible class of lower bound instances, which yield the tight results of this228

work, and were also employed to give the lower bounds in [8].229
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1.2. Organization. We begin with our characterization of the class of inequal-230

ities, as we feel that this tool may be useful to the broader community; this first231

section is entirely self-contained. Section 3.1 contains the definitions and terminology232

relevant to the distribution testing portion of the paper, and Section 3.2 describes233

our very simple instance-optimal distribution identity testing algorithm, and provides234

some context and motivation for the algorithm. Section 4 discusses the lower bounds,235

establishing the optimality of our tester.236

2. A class of inequalities generalizing Hölder’s inequality and the mono-237

tonicity of Lp norms. In this section we characterize under what conditions a large238

class of inequalities holds, showing both how to derive these inequalities when they239

are true and how to refute them when they are false. We encounter such inequalities240

repeatedly in the analysis of our tester in Section 3.241

The basic question we resolve is: for what sequences of triples (a, b, c)i is it true242

that for all sequences of positive numbers (x)j , (y)j we have243

(2)
∏
i

∑
j

xaij y
bi
j

ci

≥ 1244

We note that the constant 1 on the right hand side cannot be made larger, for all245

such inequalities are false when the sequences x and y consist of a single 1; also, as we246

will show later, if this inequality can be violated, it can be violated by an arbitrary247

amount, so if any right hand side constant works, for a given (a, b, c)i, then 1 works,248

as stated above.249

Such inequalities are typically proven by hand, via trial and error. One basic tool250

for this is the Cauchy-Schwarz inequality,
(∑

j Xj

)1/2 (∑
j Yj

)1/2

≥
∑
j

√
XjYj , or251

the slightly more general Hölder inequality, a weighted version of Cauchy-Schwarz,252

where for λ ∈ [0, 1] we have
(∑

j Xj

)λ (∑
j Yj

)1−λ
≥
∑
j X

λ
j Y

1−λ
j . Writing this in253

the form of Equation 2, and substituting arbitrary combinations of x and y for X and254

Y yields families of inequalities of the form:255 (∑
j

xa1j y
b1
j

)λ(∑
j

xa2j y
b2
j

)1−λ(∑
j

x
λa1+(1−λ)a2
j y

λb1+(1−λ)b2
j

)−1

≥ 1,256

and we can multiply (positive powers of) inequalities of this form together to get257

further cases of the inequality in Equation 2. This inequality is tight when the two258

sequences X and Y are proportional to each other.259

A second and different basic inequality of our general form, for λ ∈ [0, 1], is:260 (∑
j Xj

)λ
≤
∑
j X

λ
j , which is the fact that the Lp norm is a decreasing function of p.261

(Intuitively, this is a slight generalization of the trivial fact that x2+y2 ≤ (x+y)2, and262

follows from the fact that the derivative of xλ is a decreasing function of x, for positive263

x). As above, products of powers of x and y may be substituted for X to yield a more264

general class of inequalities:
∑
j x

λa
j yλbj

(∑
j x

a
j y
b
j

)−λ
≥ 1, for λ ∈ [0, 1]. Unlike the265

previous case, these inequalities are tight when there is only a single nonzero value of266

X, and the inequality may seem weak for nontrivial cases.267

The main result of this section is that the cases where Equation 2 holds are268

exactly those cases expressible as a product of inequalities of the above two forms,269
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and that such a representation can be efficiently found. While we have been discussing270

inequalities involving two sequences, these results apply to inequalities on d sequences,271

for any positive integer d. For completeness, we restate Theorem 3 in this more general272

form. The proof of this more general theorem is similar to that of its two-sequence273

analog, Theorem 3.274

Theorem 4. For d + 1 fixed sequences (a)1,i = a1,1 . . . , a1,r, . . . , (a)d,i =275

ad,1, . . . , ad,r, and (c)i = c1, . . . , cr, the inequality
∏r
i=1

(∑
j

(∏d
k=1 x

ak,i
k,j

))ci
≥ 1276

holds for all sets of d finite sequences of positive numbers (x)k,j if and only if it277

can be expressed as a finite product of positive powers of Hölder inequalities of the278

form
(∑

j

(∏d
k=1 x

a′k
k,j

))λ (∑
j

(∏d
k=1 x

a′′k
k,j

))1−λ
≥
∑
j

(∏d
k=1 x

λa′k+(1−λ)a′′k
k,j

)
, and279

Lp monotonicity inequalities of the form
(∑

j

(∏d
k=1 x

a′k
k,j

))λ
≤
∑
j

(∏d
k=1 x

λa′k
k,j

)
,280

where λ ∈ [0, 1], and where a′k, a
′′
k can be any real numbers.281

282

Further, there exists an algorithm which, given d+ 1 sequences (a)1,i = a1,1 . . . , a1,r,283

. . . , (a)d,i = ad,1, . . . , ad,r, and (c)i = c1, . . . , cr describing the inequality, runs in time284

polynomial in the input description, and either outputs a representation of the desired285

inequality as a product of a polynomial number of positive powers of Hölder and Lp286

monotonicity inequalities, or yields a witness describing d finite sequences of positive287

numbers (x)k,j that violate the inequality.288

The second portion of the theorem—the existence of an efficient algorithm that289

provides a derivation or refutation of the inequality—is surprising. As the following290

example demonstrates, it is possible that the shortest sequences x, y that violate the291

inequality have a number of terms that is doubly exponential in the description length292

of the sequence of triples (a, b, c)i (and exponential in the inverse of the accuracy of the293

sequences). Hence, in the case that the inequality does not hold, our algorithm cannot294

be expected to return a pair of counter-example sequences. Nevertheless, we show that295

it efficiently returns a witness describing such a construction. We observe that the296

existence of this example precludes any efficient algorithm that tries to approach this297

problem by solving some linear or convex program in which the variables correspond298

to the elements of the sequences x, y.299

Example 3. Consider for some ε ≥ 0 the single-sequence inequality300 (∑
j

x−2
j

)−1(∑
j

x−1
j

)3(∑
j

x0
j

)−2−ε(∑
j

x1
j

)3(∑
j

x2
j

)−1

≥ 1,301

which can be expressed in the form of Equation 1 via the triples (a, b, c)i = (−2, 0,−1),302

(−1, 0, 3), (0, 0,−2− ε), (1, 0, 3), (2, 0,−1). This inequality is true for ε = 0 but false303

for any positive ε. However, the shortest counterexample sequences have length that304

grows as exp( 1
ε ) as ε approaches 0. Counterexamples are thus hard to write down,305

though possibly easy to express—for example, letting n = 641/ε, the sequence x of306

length 2 + n consisting of n, 1
n , followed by n ones violates the inequality.2307

In the following section we give an overview of the linear programming based308

proof of Theorem 3, and then give the formal proof in Section 2.2. In Section 2.3 we309

2Showing that counterexample sequences must be essentially this long requires technical machin-
ery from the proof of Theorem 3, however one can glean intuition by evaluating the inequality on
the given sequence—n, 1

n
, followed by n ones.
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AN AUTOMATIC INEQUALITY PROVER AND INSTANCE OPTIMAL IDENTITY TESTING9

provide an intuitive interpretation of the computation being performed by the linear310

program.311

2.1. Proof overview of Theorem 3. Our proof is based on constructing and312

analyzing a certain linear program, whose variables, which we denote by `i, represent313

log
∑
j x

ai
j y

bi
j for each i in the index set of triples (a, b, c)i. Letting r denote the size314

of this index set, the linear program will have r variables, and poly(r) constraints.315

We will show that if the linear program does not have objective value zero then we316

can construct a counterexample pair of sequences (x)j , (y)j for which the inequality is317

contradicted. Otherwise, if the objective value is zero, then we will consider a solution318

to the dual of this linear program, and interpret this solution as an explicit (finite)319

combination of Hölder and Lp monotonicity inequalities whose product yields the320

desired inequality in question. Combined, these results imply that we can efficiently321

either derive or refute the inequality in all cases.322

Given (finite) sequences (x)j , (y)j , consider the function ` : R2 → R defined as323

`(a, b) = log
∑
j x

a
j y
b
j . We will call this 2-dimensional function `(a, b) the norm graph324

of the sequences (x)j , (y)j , and will analyze this function for the remainder of this325

proof and show how to capture many of its properties via linear programming. The326

inequality in question,
∏
i

(∑
j x

ai
j y

bi
j

)ci
≥ 1, is equivalent (taking logarithms) to327

the claim that
∑
i ci · `(ai, bi) ≥ 0 for every norm graph ` that can be realized via328

sequences (x)j , (y)j .329

The Hölder inequalities explicitly represent the fact that norm graphs ` must be330

convex, namely for each λ ∈ (0, 1) and each pair (a′, b′), (a′′, b′′) we have λ`(a′, b′) +331

(1−λ)`(a′′, b′′) ≥ `(λa′+(1−λ)a′′, λb′+(1−λ)b′′). The Lp monotonicity inequalities332

can correspondingly be expressed in terms of norm graphs `, intuitively as “any secant333

of the graph of ` (interpreted as a line in 3 dimensions) that intersects the z-axis must334

intersect it at a nonnegative z-coordinate,” explicitly, for all (a′, b′) and all λ ∈ (0, 1)335

we have λ`(a′, b′) ≤ `(λa′, λb′).336

Instead of modeling the class of norm graphs directly, we instead model the class337

of functions that are convex and satisfy the secant property, which we call “linearized338

norm graphs”: let L represent this family of functions from R2 to R, namely, those339

functions that are convex and whose secants through the z-axis pass through-or-above340

the origin. As we will show, this class L essentially captures the class of functions341

` : R2 → R that can be realised as `(a, b) = log
∑
j x

a
j y
b
j for some sequences (x)j , (y)j ,342

provided we only care about the values of ` at a finite number of points (ai, bi), and343

provided we only care about the r-tuple `(ai, bi) up to scaling by positive numbers.344

In other words, the inequality
∑
i ci ·`(ai, bi) ≥ 0 holds for all norm graphs if and only345

if it holds for all linearized norm graphs, showing that products of positive powers of346

Hölder and Lp monotonicity inequalities (used to define the class of linearized norm347

graphs) exactly capture all norm graph inequalities. In this manner we can reduce348

the very complicated combinatorial phenomena surrounding Equation 2 to a linear349

program.350

The proof can be decomposed into four steps:351

1) We construct a homogeneous linear program (“homogeneous” means the con-352

straints have no additive constants) which we will analyze in the rest of the proof. The353

linear program has r variables (`)i, where feasible points will represent valid r-tuples354

`(ai, bi) for linearized norm graphs ` ∈ L. As will become important later, we set355

the objective function to minimize the expression corresponding to the logarithm of356

the desired inequality: min
∑
i ci · `i. Also, as will become important later, we will357
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10 GREGORY VALIANT AND PAUL VALIANT

construct each of the constraints of the linear program so that they are positive linear358

combinations of logarithms of Hölder and Lp monotonicity inequalities when the (`)i359

are interpreted as the values of a norm graph at the points (ai, bi).360

2) We show that for each feasible point, an r-tuple (`)i, there is a linearized norm361

graph ` : R2 → R that extends `i = `(ai, bi) to the whole plane, where, further, the362

function ` is the maximum of a finite number of affine functions (functions of the form363

αa+ βb+ γ).364

3) For any desired accuracy ε > 0, we show that for sufficiently small δ > 0 there is a365

(regular, not linearized) norm graph `′ such that for any (a, b) ∈ R2 the scaled version366

δ · `′(a, b) approximates the linearized norm graph constructed in the previous part,367

`(a, b), to within error ε.368

Namely, any feasible point of our linear program corresponds to a (possibly scaled)369

norm graph. Thus, if there exists a feasible point for which the objective function is370

negative,
∑
i ci ·`i < 0, then we can construct sequences (x)j , (y)j and a corresponding371

norm graph `′(a, b) = log
∑
j x

a
j y
b
j for which (because `′ can be made to approximate372

` arbitrarily well at the points (ai, bi), up to scaling) we have
∑
i ci · `′(ai, bi) < 0,373

meaning that the sequences (x)j , (y)j violate the desired inequality. Thus we have374

constructed the desired counterexample375

4) In the other case, where the minimum objective function of the linear program376

is nonnegative, we note that because by construction we have a homogeneous linear377

program (each constraint has a right hand side of 0), the optimal objective value must378

be 0. The solution to the dual of our linear program gives a proof of optimality, in379

a particularly convenient form: the dual solution describes a nonnegative linear com-380

bination of the constraints that shows the objective function is always nonnegative,381 ∑
i ci · `i ≥ 0. Recall that, by construction, if each `i is interpreted as the value of a382

norm graph at point (ai, bi) then each of the linear program constraints is a positive383

linear combination of the logarithms of certain Hölder and Lp monotonicity inequal-384

ities expressed via values of the norm graph. Combining these two facts yields that385

the inequality
∑
i ci · `(ai, bi) ≥ 0 can be derived as a positive linear combination of386

the logarithms of certain Hölder and Lp monotonicity inequalities. Exponentiating387

yields that the desired inequality can be derived as the product of positive powers of388

certain Hölder and Lp monotonicity inequalities, as desired.389

The following section provides the proof details for the above overview.390

2.2. Proof of Theorem 3. Given r triples, (a1, b1, c1), . . . , (ar, br, cr), consider391

the linear program with r variables denoted by `1, . . . , `r with objective function392

min
∑
i ci · `i. For each index k ∈ [r] we add linear constraints to enforce that the393

point (ak, bk, `k) in R3 lies on the lower convex hull of the points (ai, bi, `i) and the394

extra point (2ak, 2bk, 2`k). Recall that the parameters (ai, bi) are constants, so we395

may use them arbitrarily to set up the linear program. Explicitly, for each triple,396

pair, or singleton from the set {(ai, bi) : i 6= k} ∪ {(2ak, 2bk)} that have a unique397

convex combination that equals (ak, bk), we add a constraint that the corresponding398

combination of their associated z-values (i.e. the corresponding `i or 2`k) must be399

greater than or equal to `k. The total number of constraints is thus O(r4). We note400

that these are homogeneous constraints—there are no additive constants. Intuitively,401

we are expressing all our constraints on the linearized norm graph in this convex hull402

form: the Hölder inequalities are naturally convexity constraints, and by adding these403

“fictitious” points (2ak, 2bk, 2`k), the Lp monotonicity inequalities can now also be404

treated as convexity constraints.405
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We now begin our proof of one direction of Theorem 3—that if the above linear406

program has objective function value 0, then the desired inequality can be expressed407

as the product of a finite number of Hölder and Lp monotonicity inequalities. As408

a first step, we establish that each of the above constraints can be expressed as a409

positive linear combination of these two types of inequalities:410

Lemma 5. Each of the above-described constraints can be expressed as a positive411

linear combination of the logarithms of Hölder and Lp monotonicity inequalities.412

Proof. Consider, first, the case when the convex combination does not involve the413

special point (2ak, 2bk). Thus there are indices i1, i2, i3 and nonnegative constants414

λ1, λ2, λ3 with λ1 + λ2 + λ3 = 1 for which λ1(ai1, bi1) + λ2(ai2, bi2) + λ3(ai3, bi3) =415

(ak, bk) and we want to conclude a kind of “three-way Hölder inequality”, that416

λ1`(ai1, bi1) + λ2`(ai2, bi2) + λ3`(ai3, bi3) ≥ `(ak, bk), for any norm graph `. If two417

of the three λ’s are 0 (without loss of generality λ2 = λ3 = 0) then λ1 = 1 and418

(ai1, bi1) = (ak, bk) making the inequality trivially `(ak, bk) ≥ `(ak, bk). If only one of419

the λ’s is 0, without loss of generality λ3 = 0 and λ1 + λ2 = 1, making the desired420

inequality a standard Hölder inequality,421

(3) λ1`(ai1, bi1) + (1− λ1)`(ai2, bi2) ≥ `
(
λ1ai1 + (1− λ1)ai2, λ1bi1 + (1− λ1)bi2

)
.422

In the case that all three λ’s are nonzero, we derive the result by replacing λ1 with423

λ̄1 = λ1

λ1+λ2
in Equation 3 and multiplying both sides of the inequality by λ1 + λ2,424

and then adding the following Hölder inequality:425

(4) (λ1 + λ2)`
(
λ̄1ai1 + (1− λ̄1)ai2, λ̄1bi1 + (1− λ̄1)bi2

)
+ λ3`(ai3, bi3) ≥ `(ak, bk).426

Finally, we consider the case where (2ak, 2bk, 2`(ak, bk)) is used; we only con-427

sider the triple case as the other cases are easily dealt with. Thus we have that428

a convex combination with coefficients λ1 + λ2 + λ3 = 1 of the points (ai1, bi1),429

(ai2, bi2), (2ak, 2bk) equals (ak, bk). We thus must derive the somewhat odd inequality430

λ1`(ai1, bi1)+λ2`(ai2, bi2)+2λ3`(ak, bk) ≥ λ(ak, bk). As above, substitute λ̄1 = λ1

λ1+λ2
431

for λ1 in Equation 3 and multiply by λ1 + λ2; this time, add to it λ1 + λ2 times the432

Lp monotonicity inequality433

(5)
1− 2λ3

λ1 + λ2
`(ak, bk) ≤ `

(1− 2λ3

λ1 + λ2
ak,

1− 2λ3

λ1 + λ2
bk

)
.434

Everything is seen to match up since the points at which the ` functions on the435

right hand sides of Equations 3 and 5 are evaluated are equal (since (1 − 2λ3)ak =436

λ1a1i + λ2a2i from the original interpolation).437

Given the above lemma, the proof of one direction of Theorem 3 now follows438

easily—essentially following from step 4 of the proof overview given in the previous439

section.440

Lemma 6. If the objective value of the linear program is non-negative, then it441

must be zero, and the inequality
∏
i

(∑
j x

ai
j y

bi
j

)ci
can be expressed as a product of at442

most O(r4) Hölder and Lp monotonicity inequalities.443

Proof. Recall that since the linear program is homogeneous (each constraint has444

a right hand side of 0), the optimal objective value cannot be larger than 0, and445

hence if the objective value is not negative, it must be 0. The solution to the dual446
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12 GREGORY VALIANT AND PAUL VALIANT

of our linear program gives a proof of optimality, in a particularly convenient form:447

the dual solution describes nonnegative coefficients for each of the primal inequality448

constraints, such that when we add up these constraints scaled by these coefficients,449

we find
∑
i ci · `i ≥ 0—a lower bound on our primal objective function. Recall that,450

by construction, if each `i is interpreted as the value of a norm graph at point (ai, bi),451

then Lemma 5 shows that each of the linear program constraints is a positive linear452

combination of the logarithms of certain Hölder and Lp monotonicity inequalities453

expressed via values of the norm graph. Combining these two facts yields that the454

inequality
∑
i ci · `(ai, bi) ≥ 0 can be derived as a positive linear combination of the455

logarithms of certain Hölder and Lp monotonicity inequalities. Exponentiating yields456

that the desired inequality can be derived as the product of positive powers of Hölder457

and Lp monotonicity inequalities, as claimed.458

We now flesh out steps 2 and 3 of the proof overview of the previous section to459

establish the second direction of the theorem—namely that if the solution to the linear460

program is negative, we can construct a pair of sequences (x)j , (y)j that violates the461

inequality. We accomplish this in two steps. The first step is to show that for any462

feasible point, (`)i, of the linear program, one can construct a function `(a, b) : R2 → R463

defined on the entire plane with the property that the function is convex and has the464

secants through-or-above the origin property, and satisfies `(ai, bi) = `i, where `i is465

the assignment of the linear program variable corresponding to ai, bi.466

Lemma 7. For any feasible point (`)i of the linear program, we can construct467

a linearized norm graph `(a, b) : R2 → R, which will be the maximum of r affine468

functions zi(a, b) = αia+ βib+ γi with γi ≥ 0, such that the function is convex, and469

for any i ∈ [r], `(ai, bi) = `i.470

Proof. We explicitly construct ` as the maximum of r linear functions. Recall471

that for each index k we constrained (ak, bk, `k) to lie on the lower convex hull of all472

the points (ai, bi, `i) and the special point (2ak, 2bk, 2`k). Thus through each point473

(ak, bk, `k) construct a plane that passes through or below all these other points; define474

`(a, b) to be the maximum of these r functions. For each k ∈ [r] we have `(ak, bk) = `k475

since the kth plane passes through this value, and every other plane passes through or476

below this value. The maximum of these planes is clearly a convex function. Finally,477

we note that each plane passes through-or-above the origin since a plane that passes478

through (ak, bk, `k) and through-or-below (2ak, 2bk, 2`k) must pass through or above479

the origin; hence for all i ∈ [r], γi ≥ 0.480

The second step of the proof consists of showing that we can use the function481

`(a, b) of the above lemma to construct sequences (x)j , (y)j that instantiate solutions482

of the linear program arbitrarily well, up to a scaling factor:483

Lemma 8. For a feasible point of the linear program, expressed as an r-tuple of
values (`)i, and any ε > 0, for sufficiently small δ > 0 there exist finite sequences
(x)j , (y)j such that for all i ∈ [r],

|`i − δ log
∑
j

xaij y
bi
j | < ε.

Proof. Consider the linearized norm graph `(a, b) of Lemma 7 that extends `(ai, bi)484

to the whole plane, constructed as the maximum of r planes zi(a, b) = αia+ βib+ γi,485

with γi ≥ 0.486

Consider, for parameter ti to be defined shortly, the sequences (x)j , (y)j consisting
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of ti copies respectively of eαi/δ and eβi/δ. Hence, for all a, b we have that

δ log
∑
j

xaj y
b
j = αia+ βib+ δ log ti.

Since γi ≥ 0, if we let ti = round(eγi/δ) we can approximate γi arbitrarily well487

for small enough δ. Finally, we concatenate this construction for all i. Namely, let488

(x)j , (y)j consist of the concatenation, for all i, of ti = round(eγi/δ) copies respectively489

of eαi/δ and eβi/δ. The values of
∑
j x

a
j y
b
j will be the sum of the values of these r490

components, thus at least the maximum of these r components, and at most r times491

the maximum. Thus the values of δ log
∑
j x

a
j y
b
j will be within δ log r of δ times492

the logarithm of the max of these components. Since each of the r components493

approximates the corresponding affine function zi arbitrarily well, for small enough δ,494

the function δ log
∑
j x

a
j y
b
j is thus an ε-good approximation to the function `, and in495

particular is an ε–good approximation to `(ai, bi) when evaluated at (ai, bi), for each496

i.497

The following lemma completes the proof of Theorem 3:498

Lemma 9. Given a feasible point of the linear program that has a negative objec-499

tive function value, there exist finite sequences (x)j , (y)j which falsify the inequality500 ∏
i

(∑
j x

ai
j y

bi
j

)ci
≥ 1.501

Proof. Letting v > 0 denote the negative of the objective function value corre-
sponding to feasible point (`)i of the linear program, define ε = v∑

i |ci|
, and let δε and

sequences (x)j , (y)j be those guaranteed by Lemma 8 to satisfy |`i−δε log
∑
j x

ai
j y

bi
j | <

ε, for all i ∈ r. Multiplying this expression by ci for each i, summing, and using the
triangle inequality yields∣∣∣∣∣∣

∑
i

ci`i − δε

∑
i

ci log
∑
j

xaij y
bi
j

∣∣∣∣∣∣ < v,

and hence
∑
i ci log

∑
j x

ai
j y

bi
j < 0, and the lemma is obtained by exponentiating both502

sides.503

2.3. A geometric interpretation of inequality derivations. We provide a504

pleasing and intuitive interpretation of the problem being solved by the linear pro-505

gram in the proof of Theorem 3. This interpretation is most easily illustrated via an506

example, and we use one of the inequalities that we encounter in Section 3 in the the507

analysis of our instance-optimal tester.508

Example 4. The 4th component of Lemma 10 (in Section 3.3) consists of show-509

ing the inequality510

(6)

∑
j

x2
jy
−2/3
j

2∑
j

x2
jy
−1/3
j

−1∑
j

xj

−2∑
j

y
2/3
j

3/2

≥ 1,511

where in the notation of the lemma, the sequence x corresponds to ∆ and the se-512

quence y corresponds to p. In the notation of Theorem 3, this inequality corresponds513

to the sequence of four triples (ai, bi, ci) = (2,− 2
3 , 2), (2,− 1

3 ,−1), (1, 0,−2), (0, 2
3 ,

3
2 ).514

How does Theorem 3 help us, even without going through the algorithmic machinery515

presented in the proof?516
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Consider the task of proving this inequality via a combination of Hölder and Lp517

monotonicity inequalities as trying to win the following game. At any moment, the518

game board consists of some numbers written on the plane (with the convention that519

every point without a number is interpreted as having a 0), and you win if you can520

remove all the numbers from the board via a combination of moves of the following521

two types:522

1. Any two positive numbers can be moved to their weighted mean. (Namely,523

we can subtract 1 from one location in the plane, subtract 3 from a second524

location in the plane, and add 4 to a point 3
4 of the way from the first location525

to the second location.)526

2. Any negative number can be moved towards the origin by a factor λ ∈ (0, 1)527

and scaled by 1
λ . (Namely, we can add 1 to one location in the plane, and528

subtract 2 from a location halfway to the origin.)529

Thus our desired inequality corresponds to the “game board” having a “2” at location530

(2,− 2
3 ), a “−1” at location (2,− 1

3 ), a “−2” at location (1, 0), and a “ 3
2” at location531

(0, 2
3 ). And the rules of the game allow us to push positive numbers together, and push532

negative numbers towards the origin (scaling them). Our visual intuition is quite good533

at solving these types of puzzles. (Try it!)534

2/3	
  

2	
  1	
  

0	
  

-­‐2/3	
  

0	
  

3/2	
  

	
  -­‐2	
  

	
  	
  2	
  

	
  -­‐1	
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2	
  1	
  

0	
  

-­‐2/3	
  

0	
  

1/2	
  

	
  	
  1	
  

	
  -­‐1	
  

2/3	
  

2	
  1	
  

0	
  

-­‐2/3	
  

0	
  

	
  -­‐3/2	
  

1/2	
  

	
  	
  1	
  

2/3	
  

2	
  1	
  

0	
  

-­‐2/3	
  

0	
  

Success!	
  

Fig. 1. Depiction of a successful sequence of “moves” in the game corresponding to the inequal-

ity
(∑

j x
2
jy
−2/3
j

)2 (∑
j x

2
jy
−1/3
j

)−1 (∑
j xj

)−2 (∑
j y

2/3
j

)3/2
≥ 1, showing that the inequality is

true. The first diagram illustrates the initial configuration of positive and negative weights, together
with the “Hölder-type move” that takes one unit of weight from each of the points at (0, 2/3) and
(2,−2/3) and moves it to the point (1, 0), canceling out the weight of −2 that was initially at (1, 0).
The second diagram illustrates the resulting configuration, together with the “Lp monotonicity move”
that moves the −1 weight at location (2,−1/3) towards the origin by a factor of 2/3 while scaling it
by a factor of 3/2, resulting in a point at (4/3,−2/9) with weight −3/2, which is now collinear with
the remaining two points. The third diagram illustrates the final “Hölder-type move” that moves the
two points with positive weight to their weighted average, zeroing out all weights.

The answer, as illustrated in Figure 1 is to first realize that 3 of the points lie on535

a line, with the “−2” halfway between the “ 3
2” and the “2”. Thus we take 1 unit from536

each of the endpoints and cancel out the “−2”. No three points are collinear now, so537

we need to move one point onto the line formed by the other two: “−1”, being negative,538

can be moved towards the origin, so we move it until it crosses the line formed by the539

two remaining numbers. This moves it 1
3 of the way to the origin, thus increasing540

it from “−1” to “− 3
2”; amazingly, this number, at position 2

3 (2,− 1
3 ) = ( 4

3 ,−
2
9 ) is541

now 2
3 of the way from the remaining “ 1

2” at (0, 2
3 ) to the number “1” at (2,− 2

3 ),542

meaning that we can remove the final three numbers from the board in a single move,543

winning the game. We thus made three moves total, two of the Hölder type, one of544

the Lp monotonicity type. Reexpressing these moves as inequalities yields the desired545

derivation of our inequality (Equation 6) as a product of powers of Hölder and Lp546

monotonicity inequalities, explicitly, as the product of the following three inequalities,547
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which are respectively 1) the square of a Cauchy-Schwarz inequality, 2) the 3/2 power548

of an Lp monotonicity inequality for λ = 2/3, and 3) the 3/2 power of a Hölder549

inequalty for λ = 2/3:550

∑
j

x2
jy
−2/3
j

∑
j

x0
jy

2/3
j

∑
j

x1
jy

0
j

−2

≥1551

∑
j

x
4/3
j y

−2/9
j

3/2∑
j

x2
jy
−1/3
j

−1

≥1552

∑
j

x2
jy
−2/3
j

∑
j

x0
jy

2/3
j

1/2∑
j

x
4/3
j y

−2/9
j

−3/2

≥1553

554

The above example demonstrates how transformative it is to know that the only possi-555

ble ways of making progress proving a given inequality are by two simple possibilities,556

thus transforming inequality proving into winning a 2d game with two types of moves.557

As we have shown in Theorem 3, this process can be completed automatically in poly-558

nomial time via linear programming; but in practice looking at the “2d game board”559

is often all that is necessary, even for intricate counterintuitive inequalities like the560

one above.561

3. An instance-optimal testing algorithm. In this section we describe our562

instance-by-instance optimal algorithm for verifying the identity of a distribution,563

based on independent draws from the distribution. We begin by providing the defi-564

nitions and terminology that will be used throughout the remainder of the paper. In565

Section 3.2 we describe our very simple tester, and give some intuitions and motiva-566

tions behind its form.567

3.1. Definitions. We use [n] to denote the set {1, . . . , n}, and denote a distribu-568

tion of support size n by p = p1, . . . , pn, where pi is the probability of the ith domain569

element. Throughout, we assume that all samples are drawn independently from the570

distribution in question.571

We denote the Poisson distribution with expectation λ by Poi(λ), which has572

probability density function poi(λ, i) = e−λλi

i! . We make heavy use of the standard573

“Poissonization” trick (this goes back to at least Kolmogorov’s 1933 paper [13]; see574

Chapter 5.4 of [14]). That is, rather than drawing k samples from a fixed distribution575

p, we first select k′ ← Poi(k), and then draw k′ samples from p. Given such a576

process, the number of times each domain element occurs is independent, with the577

distribution of the number of occurrences of the ith domain element distributed as578

Poi(k ·pi). The independence yielded from Poissonization significantly simplifies many579

kinds of analysis. Additionally, since Poi(k) is closely concentrated around k: from580

both the perspective of upper bounds as well as lower bounds, at the cost of only581

a subconstant factor, one may assume without loss of generality that one is given582

Poi(k) samples rather than exactly k.583

Much of the analysis in this paper centers on Lp norms, where for a vector q, we584

use the standard notation ‖q‖c to denote (
∑
i q
c
i )

1/c
. The notation ‖q‖bc is just the585

bth power of ‖q‖c. For example, ‖q‖2/32/3 =
∑
i q

2/3
i .586
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3.2. An optimal tester. Our testing algorithm is extremely simple, and takes587

the form of a simple statistic that is similar to Pearson’s chi-squared statistic, though588

differs in two crucial ways. Given a set of k samples, with Xi denoting the number589

of occurrences of the ith domain element, and pi denoting the probability of drawing590

the ith domain element from distribution p, the Pearson chi-squared statistic is given591

as
∑
i

1
pi

(Xi− kpi)2. Adding a constant does not change the behavior of the statistic,592

and it will prove easier to compare with our statistic if we subtract k from each term,593

yielding the following:594

(7)
∑
i

(Xi − kpi)2 − kpi
pi

.595

In the Poissonized setting (where the number of samples is drawn from a Poisson596

distribution of expectation k), if the samples are drawn from distribution p, then the597

expectation of this chi-squared statistic is 0 because in that case Xi is distributed598

according to a Poisson distribution of expectation kpi, and hence has variance kpi.599

Our testing algorithm is, essentially, obtained by modifying this statistic in two ways:600

replacing the second occurrence of kpi with Xi (which has expectation kpi when601

drawing samples from p and thus does not change the statistic in expectation), and602

changing the scaling factor from 1/pi to 1/p
2/3
i :603

(8)
∑
i

(Xi − kpi)2 −Xi

p
2/3
i

.604

Note that this statistic still has the property that its expectation is 0 if the samples are605

drawn from distribution p. The following examples motivate these two modifications.606

Example 5. Let p be the distribution with p1 = p2 = 1/4, and where the re-607

maining half of its probability mass composed of n/2 domain elements, each oc-608

curring with probability 1/n. If we draw k = n2/3 samples from p, the contribu-609

tion of the n/2 small elements to the variance of Pearson’s statistic (Equation 7)610

is ≈ n
2 (n−1/3n2) = Ω(n8/3), and the standard deviation would be Ω(n4/3). If the k611

samples were not drawn from p, and instead were drawn from distribution q that is612

identical to p, except with p1 = 1/8 and p2 = 3/8, then the expectation of Pearson’s613

statistic would be O(n4/3), though this signal might be buried by the Ω(n4/3) standard614

deviation due to the small domain elements.615

The above example illustrates that the scaling factor 1/pi in Pearson’s chi-squared616

statistic places too much weight on the small elements, burying a drastic change in617

the distribution (that could be detected with O(1) samples). Thus we are motivated618

to consider a smoother scaling factor. There does not seem to be a simple intuition for619

the 2/3 exponent in our statistic—it comes out of optimizing the interplay between620

various inequalities in the analysis, and is cleanly revealed by our inequality prover621

of Section 2. Intuitive reasoning from the perspective of the tester seems to lead622

to a scaling factor of p
1/2
i , whereas intuitive reasoning from the perspective of the623

lower bounds seems to lead to a scaling factor of p
3/4
i . Both intuitions turn out to be624

misleading, and the correct scaling of p
2/3
i —resulting from balancing the upper and625

lower bound desiderata—was unexpected.626

The following example illustrates a second benefit of our statistic of Equation 8627

over the chi-squared statistic, resulting from changing kpi to Xi:628
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Example 6. Let p be the distribution with p1 = 1− 1/n, and where the remain-629

ing 1/n probability mass is evenly split among n domain elements each with prob-630

ability 1/n2. If we draw 100 · n samples, we are likely to see roughly 100 ± 10 of631

the “rare” domain elements, each exactly once. Such domain elements will have a632

huge contribution to the variance of Pearson’s chi-squared statistic—a contribution633

of Ω(n2). On the other hand, these domain elements contribute almost nothing to634

the variance of our statistic, because the contribution of such domain elements is635

((Xi − kpi)
2 − Xi)p

−2/3
i ≈ (X2

i − Xi)p
−2/3
i , which is 0 if Xi is 0 or 1 and with636

overwhelming probability, none of these “rare” domain elements will occur more than637

once. Hence our statistic is extremely robust to seeing rare things either 0 or 1 times,638

and this significantly reduces the variance of our statistic.639

We now formally define our tester and prove Theorem 2. The tester essentially640

just computes the statistic of Equation 8, though one also needs to shave off a small641

O(ε) portion of the distribution p before computing it, and also verify that not too642

much probability mass lies on this supposedly small portion that was removed.643

An Instance-Optimal Tester
Given a parameter ε > 0 and a set of k samples drawn from q, letXi represent the
number of times the ith domain element occurs in the samples. Assume wlog that
the domain elements of p are sorted in non-increasing order of probability. Define
s = min{i :

∑
j>i pj ≤ ε/8}, and let M = {2, . . . , s}, and S = {s+ 1, s+ 2, . . .}.

(Note that pM = p−max
−ε/8 .)

1. If
∑
i∈M

(Xi−kpi)2−Xi
p
2/3
i

> 4k‖pM‖1/32/3, or

2. If
∑
i∈S Xi >

3
16εk, then output “‖p− q‖1 ≥ ε”, else output “p = q”.

644

For convenience, we restate Theorem 2, characterizing the performance of the645

above tester.646

Theorem 2. There exist constants c1, c2 such that for any ε > 0 and any known647

distribution p, for any unknown distribution q, our tester will distinguish q = p from648

‖p−q‖1 ≥ ε with probability 2/3 when run on a set of at least c1 ·max

{
1
ε ,
‖p−max
−ε/16‖2/3
ε2

}
649

samples drawn from q, and no tester can do this task with probability at least 2/3 with650

a set of fewer than c2 ·max

{
1
ε ,
‖p−max
−2ε ‖2/3
ε2

}
samples.651

Before proving the theorem, we provide some intuition behind the form of the652

sample complexity, max

{
1
ε ,
‖p−max
−cε ‖2/3
ε2

}
. The maximum with 1

ε only very rarely653

comes into play: the 2
3 norm of a vector is always at least its 1 norm, so the max with654

1
ε only takes over from ‖p−max

−cε ‖2/3/ε2 if p is of the very special form where removing655

its max element and its smallest cε mass leaves less than ε probability mass remaining;656

the max expression thus prevents the sample size in the theorem from going to 0 in657

extreme versions of this case.658

The subscript and superscript in ‖p−max
−cε ‖2/3 each reduce the final value, and659

mark two ways in which the problem might be “unexpectedly easy”. To see the660

intuition behind these two modifications in the vector of probabilities, note that if the661

distribution p contains a single domain element pm that comprises the majority of the662

probability mass, then in some sense it is hard to hide changes in p: at least half of663

the discrepancy between p and q must lie in other domain elements, and if these other664
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domain elements comprise just a tiny fraction of the total probability mass, then the665

fact that half the discrepancy is concentrated on a tiny fraction of the distribution666

makes recognizing such discrepancy easier.667

On the other hand, having many small domain elements makes the identity testing668

problem harder, as indicated by the L2/3 norm, however only “harder up to a point”.669

If most of the L2/3 norm of p comes from a portion of the distribution with tiny L1670

norm, then it is also hard to “hide” much discrepancy in this region: if a portion671

of the domain consisting of ε/3 total mass in p has discrepancy ε between p and q,672

then the probability mass of these elements in q must total at least 2
3ε by the triangle673

inequality, namely at least twice what we would expect if q = p; this discrepancy is674

thus easy to detect in O( 1
ε ) samples. Thus discrepancy cannot hide in the very small675

portion of the distribution, and we may effectively ignore the small portion of the676

distribution when figuring out how hard it is to test discrepancy.677

In these two ways—represented by the subscript and superscript of p−max
−cε in our678

results—the identity testing problem may be “easier” than the simplified O(
‖p‖2/3
ε2 )679

bound. But our corresponding lower bound shows that these are the only ways.680

Remark on “tolerant testing”. We note that the “yes” case of the theorem, where681

q = p, can always be relaxed to a “tolerant testing” condition ‖p− q‖1 ≤ O( 1
k ) where682

k = c1 · max

{
1
ε ,
‖p−max
−ε/16‖2/3
ε2

}
is the number of samples used. This kind of tolerant683

testing result is true for any tester, because statistical distance is subadditive on684

product distributions, so a change of c
k in the distribution p can induce a change of at685

most c on the distribution of the output of any testing algorithm that uses k samples.686

A more refined analysis of our tester (or a tester tailored to the tolerant regime) yields687

better bounds in some cases. However, the problem of distinguishing ‖p − q‖1 ≤ ε1688

from ‖p−q‖1 ≥ ε2 enters a very different regime when ε1 is not much smaller than ε2,689

and many more samples are required. (These problems are very related to the task690

of estimating the distance from q to the known distribution p.) For any constants691

ε1 < ε2, it requires Θ( n
logn ) samples to distinguish ‖p − q‖1 ≤ ε1 from ‖p − q‖1 ≥ ε2692

when p is the uniform distribution on n elements, many more than the
√
n needed693

here [20, 21].694

3.3. Analysis of the tester. The core of the proof of the algorithmic direction695

of Theorem 2 is an application of Chebyshev’s inequality: first arguing that if the696

samples were drawn from a distribution q with ‖p− q‖1 ≥ ε, then the expectation of697

the statistic in question is large in comparison to its standard deviation, whereas if the698

samples were drawn from q = p, then the expectation is 0 and the standard deviation699

is sufficiently small so that the distribution of the statistic will not overlap significantly700

with the previous case (where ‖p− q‖1 ≥ ε). In order to prove the desired inequalities701

relating the expectation and the variance, we reexpress these inequalities in terms702

of the two sequences of positive numbers p = p1, p2, . . . , and ∆ = ∆1,∆2, . . . , with703

∆i := |pi−qi|, leading to an expression that is the sum of five inequalities essentially of704

the canonical form
∏
i

(∑
j p

ai
j ∆bi

j

)ci
≥ 1. The machinery of Section 2 thus yields an705

easily verifiable derivation of the desired inequalities as a product of positive powers of706

Hölder type inequalities, and Lp monotonicity inequalities. For the sake of presenting707

a self-contained complete proof of Theorem 2, we write out these derivations explicitly708

below.709

We now begin the analysis of the performance of the above tester, establishing710

This manuscript is for review purposes only.



AN AUTOMATIC INEQUALITY PROVER AND INSTANCE OPTIMAL IDENTITY TESTING19

the upper bounds of Theorem 2. When ‖p − q‖1 ≥ ε, we note that at most half of711

the discrepancy is accounted for by the most frequently occurring domain element of712

p, since the total probability masses of p and q must be equal (to 1), and thus ≥ ε/2713

discrepancy must occur on the remaining elements. We split the analysis into two714

cases: when a significant portion of the remaining ε/2 discrepancy falls above s then we715

show that case 1 of the algorithm will recognize it; otherwise, if ‖p<s−q<s‖1 ≥ (3/8)ε,716

then case 2 of the algorithm will recognize it.717

We first analyze the mean and variance of the left hand side of the first condition
of the tester, under the assumption (as discussed in Section 3.1) that a Poisson-
distributed number of samples, Poi(k) is used. This makes the number of times each
domain element is seen, Xi, be distributed as Poi(kqi), and makes all Xi independent
of each other. It is thus easy to calculate the mean and variance of each term.
Explicitly, defining ∆i = pi − qi we have

E
Xi←Poi(kqi)

[
[(Xi − kpi)2 −Xi]p

−2/3
i

]
= k2∆2

i p
−2/3
i

and

V ar
Xi←Poi(kqi)

[
[(Xi − kpi)2 −Xi]p

−2/3
i

]
=
[
2k2(pi −∆i)

2 + 4k3(pi −∆i)∆
2
i

]
p
−4/3
i

Note that when p = q, the expectation is 0, since ∆i ≡ 0. However, in the case718

that a significant portion of the ε deviation between p and q occurs in the region above719

s, we show that for suitable k, the variance is somewhat less than the square of the720

expectation, leading to a reliable test for distinguishing this case from the p = q case.721

The motivation for the convoluted steps in the derivations in the following lemma722

comes entirely from the general inequality result of Theorem 3, though as guaranteed723

by that theorem, the resulting inequalities can all be derived by elementary means724

without reference to the theorem.725

As defined in the tester, considering the elements of p to be sorted in decreasing726

order by probability, we let s be the smallest integer so that
∑
i>s ≤ ε/8. For727

notational convenience, we define the set M = {2, . . . , s}, so that pM consists of those728

elements of p that have “medium” probabilities—not the largest element, and not729

the smallest elements that comprise ≤ ε/8 probability. We define M so that we may730

explicitly analyze the corresponding discrepancies ∆M . (Note that the probabilities731

in the distribution q will typically not be sorted, and may not be similar to the732

corresponding probabilities in p).733

The following lemma shows that the variance of case 1 of our estimator can be734

made arbitrarily smaller than the square of its expectation, which we will use for a735

Chebyshev bound proof in Proposition 11 below.736

Lemma 10. For any c ≥ 1, if k = c ·max{
‖pM‖1/32/3

p
1/3
s ·(ε/8)

,
‖pM‖2/3

(ε/8)2 } and if at least ε/8

of the discrepancy falls in the medium region, namely
∑
i∈M |∆i| ≥ ε/8, then

∑
i∈M

[
2k2(pi −∆i)

2 + 4k3(pi −∆i)∆
2
i

]
p
−4/3
i <

16

c

[∑
i∈M

k2∆2
i p
−2/3
i

]2

Proof. Dividing both sides by k4, the left hand side has terms proportional to737

(pi −∆i)/k and its square. We bound such terms via the triangle inequality and the738
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definition of k as (pi−∆i)/k ≤
(
pi

(ε/8)2

‖pM‖2/3
+ |∆i|p

1/3
s (ε/8)

‖pM‖1/32/3

)
/c. Expanding, yields the739

left hand side divided by k4 bounded as the sum of 5 terms:740

∑
i∈M

2

c2

p2/3
i

(ε/8)4

‖pM‖22/3
+ 2|∆i|p−1/3

i

p
1/3
s (ε/8)3

‖pM‖4/32/3

+ ∆2
i p
−4/3
i

p
2/3
s (ε/8)2

‖pM‖2/32/3

741

+
4

c

∆2
i p
−1/3
i

(ε/8)2

‖pM‖2/3
+ |∆3

i |p
−4/3
i

p
1/3
s (ε/8)

‖pM‖1/32/3

 .742

We bound each of the five terms separately by
[∑

i∈M ∆2
i p
−2/3
i

]2
, using the fact743

that 1
c2 ≤

1
c , and sum the constants 2(1 + 2 + 1) + 4(1 + 1) to yield 16 on the right744

hand side.745

1. Cauchy-Schwarz yields
∑
i∈M ∆2

i p
−2/3
i ≥

(∑
i∈M |∆i|

)2/(∑
i∈M p

2/3
i

)
≥746

( ε8 )2/‖pM‖2/32/3. Squaring this inequality and noting that, by definition,
∑
i∈M p

2/3
i =747

‖pM‖2/32/3 bounds the first term as desired.748

2. We bound ε

p
1/3
s

= ε
‖∆M‖1

∑
i∈M |∆i|p−1/3

s ≥ ε
‖∆M‖1

∑
i∈M |∆i|p−1/3

i since pi ≥749

ps for i ∈ M . Multiplying this inequality by the square of the Cauchy-Schwarz750

inequality of the previous case:
(∑

i∈M ∆2
i p
−2/3
i

)2

≥ ‖∆M‖41/‖pM‖
4/3
2/3 and the bound751

‖∆M‖31 ≥ ( ε8 )3 yields the desired bound on the second term.752

3. Simplifying the third term via p
−4/3
i p

2/3
s ≤ p

−2/3
i lets us bound this term as753

the product of the Cauchy-Schwarz inequality of the first case:
∑
i∈M ∆2

i p
−2/3
i ≥754

‖∆M‖21/‖pM‖
2/3
2/3 and the bound ‖∆M‖21 ≥ ( ε8 )2.755

4. Here and in the next case we use the basic fact that for β > α > 0 and756

a (nonnegative) vector z we have ‖z‖β ≤ ‖z‖α (with equality only when z has at757

most one nonzero entry). Thus
∑
i∈M ∆2

i p
−1/3
i ≤

(∑
i∈M ∆

4/3
i p

−2/9
i

)3/2

, and this758

last expression is bounded via (the 3/2 power of) Hölder’s inequality for λ = 2/3759

by
(∑

i∈M ∆2
i p
−2/3
i

)(∑
i∈M p

2/3
i

)1/2

. Multiplying this inequality by the Cauchy-760

Schwarz inequality of the first case: ‖∆M‖21/‖pM‖
2/3
2/3 ≤

∑
i∈M ∆2

i p
−2/3
i and the bound761

( ε8 )2 ≤ ‖∆M‖21 yields the desired bound on the fourth term.762

5. The norm inequality from the previous case also yields

∑
i∈M

∆3
i p
−4/3
i ≤

(∑
i∈M

∆2
i p
−8/9
i

)3/2

≤ p−1/3
s

(∑
i∈M

∆2
i p
−2/3
i

)3/2

.

Multiplying by the square root of the Cauchy-Schwarz bound of the first case,

‖∆M‖1/‖pM‖1/32/3 ≤

(∑
i∈M

∆2
i p
−2/3
i

)1/2

and the bound ε
8 ≤ ‖∆M‖1 yields the desired bound on the fifth term.763

We now prove the upper bound portion of Theorem 2.764

This manuscript is for review purposes only.



AN AUTOMATIC INEQUALITY PROVER AND INSTANCE OPTIMAL IDENTITY TESTING21

Proposition 11. There exists a constant c1 such that for any ε > 0 and any765

known distribution p, for any unknown distribution q on the same domain, our tester766

will distinguish q = p from ‖p − q‖1 ≥ ε with probability 2/3 using a set of k =767

c1 ·max

{
1
ε ,
‖p−max
−ε/16‖2/3
ε2

}
samples.768

Proof. We first show that if p = q then the tester will recognize this fact with769

high probability.770

Consider the first test of the algorithm, whether∑
i∈M

[
(Xi − kpi)2 −Xi

]
p
−2/3
i > 4k‖pM‖1/32/3.

As calculated above, the expectation of the left hand side is 0 in this case, and the771

variance is 2k2‖pM‖2/32/3. Thus Chebyshev’s inequality yields that this random variable772

will be greater than 2
√

2 standard deviations from its mean with probability at most773

1/8, and thus the first test will be accurate with probability at least 7/8 in this case.774

For the second test, whether
∑
i∈S Xi >

3
16εk, recall that S was defined to contain775

those elements of p with probabilities smaller than the “medium” elements M , and,776

explicitly, have total probability mass ‖pS‖ ≤ ε/8. Denote this total mass by m. Thus777 ∑
i∈S Xi is distributed as Poi(mk), which has mean and variance both mk ≤ εk

8 .778

Thus Chebyshev’s inequality yields that the probability that this quantity exceeds779

3
16εk is at most

( √
mk

(3/16)εk−mk

)2

≤
( √

εk√
8(1/16)εk

)2

= 25

εk . Hence provided k ≥ 28

ε , this780

probability will be at most 1/8. For the sake of what follows, we actually make k at781

least twice as large as this, setting c1 ≥ 29 so that, from the definition of k, we have782

k = c1 ·max

{
1
ε ,
‖p−max
−ε/16‖2/3
ε2

}
≥ 29

ε .783

We now consider the case when ‖p − q‖1 ≥ ε, and show that the tester is also784

correct in this setting. Consider the element with largest probability under distri-785

bution p, and note that at most half of the discrepancy ‖p − q‖1 can be due to the786

difference in probabilities assigned to this one element, since the total probability787

masses of p and q are equal (to 1). Thus at least half the discrepancy between p and788

q occurs on the remaining elements, which consist of the elements in S ∪M . Hence789

‖(p− q)S∪M‖1 ≥ ε/2. We consider two cases. If ‖(p− q)S‖1 ≥ 3
8ε, namely if most of790

the at least ε/2 discrepancy occurs on the small elements, then since ‖pS‖1 ≤ 1
8ε by791

assumption, the triangle inequality yields that ‖qS‖1 ≥ 1
4ε. Consider the second test792

in this case. Analogously to the argument above, Chebyshev’s inequality shows that793

this test will pass except with probability at most 64
εk . Hence since k ≥ 29

ε from the794

previous paragraph, we have that the algorithm will be successful in this case with795

probability at least 7/8.796

In the remaining case, ‖(p − q)M‖1 ≥ 1
8ε, we apply Lemma 10. We first show797

that the number of samples k = c1
‖p−max
−ε/16‖2/3
ε2 is at least as many as needed for the798

lemma, c · max

{
‖pM‖1/32/3

p
1/3
s (ε/8)

,
‖pM‖2/3

(ε/8)2

}
, provided c1 ≥ 128c. The second component799

of this maximum is trivially less than or equal to k, since by definition ‖pM‖2/3 =800

‖p−max
−ε/8 ‖2/3 ≤ ‖p

−max
−ε/16‖2/3. To bound the first component, we let r (analogously to801

s) be defined as the smallest integer such that
∑
i>r pi ≤ ε/16, recalling that the802

probabilities pi are sorted in decreasing order. Since
∑
i≥s pi =

∑
i∈S∪{s} pi ≥ ε/8,803

the difference of these expressions yields
∑r
i=s pi ≥ ε/16. Since each pi in this last804
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sum is at most ps, we have that p
−1/3
i ≥ p

−1/3
s for such i, which yields

∑r
i=s p

2/3
i ≥805

ε

16p
1/3
s

. Thus ‖p−max
−ε/16‖

2/3
2/3 =

∑r
i=2 p

2/3
i ≥

∑r
i=s p

2/3
i ≥ ε

16p
1/3
s

, where the second-to-last806

inequality assumes s 6= 1. Multiplying by the inequality ‖p−max
−ε/16‖

1/3
2/3 ≥ ‖p

−max
−ε/8 ‖

1/3
2/3807

yields the bound. (In the unusual case that s = 1, the set M = {2, . . . , s} is empty,808

and thus Lemma 10 is trivially true, requiring 0 samples, which we trivially have.)809

We thus invoke Lemma 10, which shows that, for any c ≥ 1, the expectation of810

the left hand side of the first test,
∑
i∈M

[
(Xi − kpi)2 −Xi

]
p
−2/3
i , is at least

√
c/16811

times its standard deviation; further, we note that the triangle-inequality expression812

by which we bounded the standard deviation is minimized when p = q, in which case,813

as noted above, the standard deviation is
√

2k‖pM‖1/32/3. Thus the expression on the814

right hand side of the first test, 4k‖pM‖1/32/3, is always at least
√
c/16− 2

√
2 standard815

deviations away from the mean of the left hand side. Thus for c ≥ 512, Chebyshev’s816

inequality yields that the first test will correctly report that p and q are different with817

probability at least 7/8.818

Thus by the union bound, in either case p = q or ‖p − q‖1 ≥ ε, the tester will819

correctly report it with probability at least 3
4 .820

4. Lower bounds. In this section we show how to construct distributions that821

are very hard to distinguish from a given distribution p despite being far from p,822

establishing the lower bound portion of Theorem 2. Explicitly, we will construct823

a distribution over distributions, that we will call Qε, such that most distributions824

in Qε are far from p, yet k samples from a randomly chosen member of Qε will be825

distributed very close to the distribution of k samples from p. Analyzing the statistics826

of such sampling processes can be enormously involved (see for example the lower827

bounds of [20], which involve deriving new and general central limit theorems in high828

dimensions).829

In this paper, however, we show that the statistics of k samples from a ran-830

domly chosen distribution from Qε can be captured much more directly, by a product831

distribution over univariate distributions that are a “coin flip between Poisson dis-832

tributions.” Thus we can analyze this process dimension-by-dimension and sum the833

distances. That is, if di is the distance between what happens for the ith domain834

element given k samples from p versus k samples from the product distribution “cap-835

turing” Qε, we can sum these up to bound the probability of distinguishing p from836

Qε by
∑
i di. However, this is not good enough for us since the actual probability of837

distinguishing these two cases for an ideal tester is more like the L2 norm of these di838

distances instead of the L1 norm—to achieve a tight result we need something like839 √∑
i d

2
i instead of

∑
i di.840

To accomplish this, we analyze all distances below via the Hellinger distance,

H(p, q) =
1√
2

√∑
i

(
√
pi −

√
qi)2.

Hellinger distance has two properties perfectly suited for our task: its square is sub-841

additive on product distributions (meaning it combines via the L2 norm instead of842

the L1 norm), and the Hellinger distance (times
√

2) bounds the statistical distance.843

See [3] for a more in-depth discussion of Hellinger distance and its applications to844

hypothesis testing lower bounds.845

We first prove a technical but ultimately straightforward lemma characterizing the846

Hellinger distance between the “coin flip between Poisson distributions” mentioned847
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above and a regular Poisson distribution. We then show how a product distribution848

of these coin flip distributions forms a powerful class of testing lowerbounds, Theo-849

rem 13, which has already found use in [8]. We then assemble the pieces using some850

inequalities, to show the lowerbound portion of Theorem 2.851

Let Poi(λ ± ε) denote the probability distribution with pdf over nonnegative852

integers i: 1
2poi(λ+ ε) + 1

2poi(λ− ε), which is only defined for ε ≤ λ.853

Lemma 12. H(Poi(λ), Poi(λ± ε)) ≤ c · ε
2

λ for constant c.854

Proof. Assume throughout this proof that ε ≤ 1
2

√
λ, for otherwise the lemma is855

trivially true.856

We bound

H(Poi(λ), Poi(λ±ε))2 =
1

2

∑
i≥0

(√
e−λλi

i!
−

√
1

2

[
e−λ−ε(λ+ ε)i

i!
+
e−λ+ε(λ− ε)i

i!

])2

term-by-term via the inequality |
√
a −
√
b| ≤ |a−b|√

b
. We let a = e−λλi

i! and b =

1
2

[
e−λ−ε(λ+ε)i

i! + e−λ+ε(λ−ε)i
i!

]
for some specific i, and sum over i later. We bound the

numerator of |a−b|√
b

by noting that

|a− b| =
∣∣∣∣e−λλii!

− 1

2

e−λ−ε(λ+ ε)i

i!
− 1

2

e−λ+ε(λ− ε)i

i!

∣∣∣∣
is bounded by 1

2ε
2 times the maximum magnitude of the second derivative with respect857

to x of poi(x, i) for x ∈ [λ− ε, λ+ ε]. Explicitly, d2

dx2
e−xxi

i! = poi(x, i) (i−x)2−i
x2 .858

For the denominator of |a−b|√
b

we will first bound it in the case when λ ≥ 1, in which859

case since ε ≤ 1
2

√
λ, there is an absolute constant c such that for any x ∈ [λ− ε, λ+ ε]860

we have poi(x, i) ≤ c · b = 1
2c
[
Poi(λ − ε) + Poi(λ + ε)

]
. Let x∗ be the value of x in861

the interval [λ− ε, λ+ ε] where poi(x, i) is maximized.Thus the denominator
√
b is at862

least
√

1
cpoi(x

∗, i).863

We combine the bounds of the previous two paragraphs to conclude the case λ ≥ 1.864

Thus we have |a−b|√
b
≤
√
c

2 ε
2
√
poi(x∗, i) maxx∈[λ−ε,λ+ε]

∣∣∣ (i−x)2−i
x2

∣∣∣. Since λ − ε ≥ 1
2 in865

our case, this last expression is thus bounded as c2ε
2
√
poi(x∗, i) (i−λ)2+i

λ2 for some866

constant c2. We thus sum the square of this expression, over all i ≥ 0, to obtain our867

bound on the (square of the) Hellinger distance. Since poi(x∗, i) dies off exponentially868

outside an interval of width O(
√
λ), we may bound the sum over all i as just a constant869

times the sum over an interval of width
√
λ centered at x∗. We note that poi(x∗, i) is870

bounded by a constant multiple of 1√
λ

; since we are considering i within 1
2

√
λ of x∗,871

which is within 1
2

√
λ of λ by definition, we have that i is bounded by a constant times872

λ, as is (i− λ)2. Thus, in total for the square of the Hellinger distance, we have
√
λ873

terms that are each bounded as
(
c2ε

2
√
poi(x∗, i) (i−λ)2+i

λ2

)2

≤ c3ε
4 1√

λ
λ2

λ4 = c3
ε4

λ2
√
λ

874

for some constant c3. Multiplying by the number of terms,
√
λ, yields the desired875

bound.876

For the case λ < 1, we note that the second derivative of poi(x, i) is globally877

bounded by a constant, bounding the numerator of |a−b|√
b

by O(ε2). To bound the878

denominator, we note that, for λ < 1, the value b = 1
2

[
e−λ−ε(λ+ε)i

i! + e−λ+ε(λ−ε)i
i!

]
is879
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Ω(1) for i = 0, it is Ω(λ) for i = 1, and it is Ω(λ2) for i = 2, thus yielding a bound of880

O( ε
4

λ2 ) on each of the first three terms in the expression for H2. For i ≥ 3 we have,881

for x ∈ (0, 2λ] that d2

dx2 poi(x, i) = poi(x, i) (i−x)2−i
x2 = O(λ

i−2i2

i! ). Thus the numerator882

of |a−b|√
b

is bounded by ε2 times this. To bound the denominator, we have that b ≥883

1
2poi(λ+ ε, i) = Ω(λ

i

i! ), leading to a combined bound of |a−b|√
b

= O(ε2λi/2−2 i2√
i!

), which884

is bounded as O( ε
2

λ
i2√
i!

) since i ≥ 3 and λ < 1. Summing up the square of this over885

all i ≥ 3 clearly yields O( ε
4

λ2 ), the desired bound.886

Thus in all cases the square of the Hellinger distance is O( ε
4

λ2 ), yielding the lemma.887

This lemma is a crucial ingredient in the proof of the following general lower888

bound.889

Theorem 13. Given a distribution p, and associated values εi such that εi ∈890

[0, pi] for each domain element i, define the distribution over distributions Qε by the891

process: for each domain element i, randomly choose qi = pi± εi, and then normalize892

q to be a distribution. Then there exists a constant c such that it takes at least893

c
(∑

i
ε4i
p2i

)−1/2

samples to distinguish p from Qε with success probability 2/3. Further,894

with probability at least 1/2, the L1 distance between a random distribution from Qε895

and p is at least min{(
∑
i 6=arg max εi

εi),
1
2

∑
i εi}.896

The lower bound portion of Theorem 2 follows from the above theorem by appro-897

priately choosing the sequence εi.898

Proof of Theorem 13. For the first part of the theorem, we first analyze the trivial899

case where
∑
i ε

2
i ≥ 1

64 . The inequality
∑
i p

2
i ≤ 1 (Lp monotonicity) and Cauchy-900

Schwarz yield that
∑
i
ε4i
p2i
≥
∑
i p

2
i

∑
i
ε4i
p2i
≥
(∑

i ε
2
i

)2 ≥ 1
642 , which means the number901

of samples requested by the theorem can be made 1 by setting c ≤ 1
64 ; and clearly at902

least 1 sample is needed to distinguish different distributions, yielding the theorem in903

this case.904

Otherwise, we assume
∑
i ε

2
i <

1
64 . Consider the following distributions, which905

emulate the number of times each domain element is seen in Qε and p if we take906

Poi(2k) samples: first randomly generate q̄i = pi ± εi without normalizing, and then907

for each i draw a sample from Poi(q̄i·2k); compare this to, for each i, drawing a sample908

from Poi(pi · 2k). Since
∑
i q̄i has mean 1 and variance

∑
i ε

2
i <

1
64 , by Chebyshev’s909

inequality, we have
∑
i q̄i ≥

1
2 with probability at least 15

16 . Provided
∑
i q̄i ≥

1
2 , then910

the expected number of samples drawn (when, as described above, for each i we draw911

a sample from from Poi(q̄i · 2k) ) is at least k, and thus with probability at least 1
2 ,912

at least k samples will be drawn. Thus via this Poisson process, with probability 1
2 ,913

we have emulated drawing a sample of size k from a distribution that corresponds to914

Qε at least 15
16 of the time.915

Correspondingly, we emulate p by the simple Poisson process of drawing Poi(2k)916

samples from p, and throwing out all but k samples; there will be at least k samples917

with probability greater than 1
2 .918

Assume for the sake of contradiction that there is a hypothetical tester that could919

distinguish p from Qε in k samples with probability 2/3, then this tester could be920

used to distinguish the following two processes with probability 1/2+2/3
2 = 7

12 :921

1. Draw q̄i = pi ± εi922

(a) If
∑
i q̄i <

1
2 then with probability 1

2 output “FAIL” and with probability923
1
2 output “Q”924
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(b) Otherwise, for each i generate a sample from Poi(q̄i · 2k); if fewer than925

k total samples are generated, output “FAIL”, otherwise flip a biased926

coin and either output a randomly chosen k of the generated samples, or927

“FAIL” so that the total probability of outputting “FAIL” in this case928

equals 1
2 .929

2. Or, draw a sample of size Poi(2k) from p, and if fewer than k total samples930

are generated, output “FAIL”, otherwise flip a biased coin and either output931

a randomly chosen k of the generated samples, or “FAIL” so that the total932

probability of outputting “FAIL” in this case equals 1
2 .933

The tester is simulated on the samples if the chosen process above outputs sam-934

ples, yielding an opinion “P” or “Q”; if the chosen process above outputs “FAIL”,935

then a random one of “P” or “Q” is chosen; and if the (first) process outputs “Q”,936

then this is output overall. This tester succeeds with probability at least the average937

of 1
2 and 2

3 , since the above processes outputs “FAIL” with probability 1
2 yielding a938

random guess about “P” or “Q”, and otherwise either generate a faithful sample from939

the corresponding distribution, or in Case 1a outputs the answer directly, and is thus940

at least as accurate as the 2
3 -accurate tester.941

The same tester will perform within 1
32 of the success rate above if we remove942

Case 1a and replace it with Case 1b, since this change affects the outcome only if943 ∑
i q̄i <

1
2 and simultaneously “FAIL” is not chosen, which happens with probability944

1
16 ·

1
2 = 1

32 , yielding an accuracy at least 7
12 −

1
32 >

1
2 .945

We thus derive a contradiction by showing that we cannot distinguish the fol-946

lowing two processes with constant probability bounded above 1/2: 1) for each i,947

draw a sample from Poi((pi ± εi) · 2k); versus 2) for each i, draw a sample from948

Poi(pi · 2k). These two Poisson processes are both product distributions, and we can949

thus compare them from the fact that the squared Hellinger distance is subadditive950

on product distributions. For each component i, the squared Hellinger distance is951

H(Poi(kpi), Poi(k[pi± εi]))2 which by Lemma 12 is at most c1k
2 ε4

p2i
. Summing over i952

and taking the square root yields a bound on the Hellinger distance of k
(
c1
∑
i
ε4

p2i

)1/2

,953

which thus bounds the L1 distance. Thus when k satisfies the bound of the theorem,954

the statistical distance between a set of k samples drawn from p versus drawn from a955

random distribution of Qε is bounded as O(c), and thus for small enough constant c956

the two cannot be distinguished.957

We now analyze the second part of the theorem, bounding the distance between958

a distribution q ← Qε and p. We note that the total excess probability mass in the959

process of generating q that must subsequently be removed (or added, if it is negative)960

by the normalization step is distributed as
∑
i±εi, and thus by the triangle inequality,961

the L1 distance between q and p is at least as large as a sample from
∑
i εi−|

∑
i±εi|.962

We thus show that with probability at least 1/2, a random value from |
∑
i±εi| is at963

most either maxi εi or 1
2

∑
i εi.964

Consider the sequence εi as sorted in descending order. We have two cases.965

Suppose ε1 ≥ 1
2

∑
i εi. Consider the random number |

∑
i±εi|, where without loss of966

generality the plus sign is chosen for ε1. With probability at least 1/2, the sum of967

the remaining elements will be ≤ 0; further, by the assumption of this case, this sum968

cannot be smaller than −2ε1. Thus the sum of all the elements has magnitude at969

most ε1 with probability at least 1/2.970

In the other case, ε1 <
1
2

∑
i εi. Consider randomly choosing signs si ∈ {−1,+1}971

for the elements iteratively, stopping before choosing the sign for the first element972
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j for which it would be possible for
∣∣∣(∑i<j siεi)± εj

∣∣∣ to exceed 1
2

∑
i εi. Since973

by assumption ε1 < 1
2

∑
i εi, we have j ≥ 2. Without loss of generality, assume974 ∑

i<j siεi ≥ 0. We have
∑
i<j siεi <

1
2

∑
i εi, and (by symmetry) with probabil-975

ity at most 1/2 the sum of the remaining elements with randomly chosen signs will976

be positive. Further, since s1ε1 + s2ε2 + . . . + sj−1εj−1 + εj ≥ 1
2

∑
i εi, we have977

s1ε1 + s2ε2 + . . .+ sj−1εj−1−
∑
i≥j εi ≥ −

1
2

∑
i εi, for otherwise if this last inequality978

was “<” we could subtract these last two equations to conclude εj +
∑
i≥j εi >

∑
i εi,979

which contradicts the facts that s1 ≥ sj and j ≥ 2. Thus a random choice of the re-980

maining signs starting with sj will yield a total sum at most 1
2

∑
i εi, with probability981

at least 1/2, as desired.982

We apply this result as follows.983

Corollary 14. There is a constant c′ such that for all probability distributions984

p and each α > 0, there is no tester that, via a set of c′ ·
(∑

i 6=m
min{pi,αp2/3i }

4

p2i

)−1/2

985

samples can distinguish p from distributions with L1 distance 1
2

∑
i 6=m min{pi, αp2/3

i }986

from p with probability 0.6, where m is the index of the element of p with maximum987

probability.988

Note that for sufficiently small α, the min is superfluous and the bound on989

the number of samples becomes c′

α2‖p−max‖1/3
2/3

and the L1 distance bound becomes990

1
2α‖p

−max‖2/32/3, which more intuitively rephrases the result in terms of basic norms,991

for this range of parameters.992

Proof. Consider defining the vector of εi’s by letting εi = min{pi, αp2/3
i } for993

i 6= m, and εm = maxi 6=m εi; hence if the domain is sorted with p1 ≥ p2 ≥ . . . ,994

then for i ≥ 2 we set εi = min{pi, αp2/3
i }, and then set ε1ε2. Theorem 13 yields995

that p and Qε cannot be distinguished given a set of
√

2c ·
(∑

i 6=m
min{pi,αp2/3i }

4

p2i

)−1/2

996

samples where c is the constant from Theorem 13. Also from Theorem 13, with997

probability at least 1/2, the distance between p and an element of Qε is at least the998

min of
∑
i6=m min{pi, αp2/3

i } and 1
2

∑
i min{pi, αp2/3

i }, which we trivially bound by999

1
2

∑
i 6=m min{pi, αp2/3

i }. We derive a contradiction as follows. If a tester with the1000

parameters of this corollary existed, then repeating it a constant number of times1001

and taking the majority output would amplify its success probability to at least 0.9;1002

such a tester could be used to violate Theorem 13 via the procedure: given a set of1003

samples drawn from either p or Qε, run the tester, and if it outputs “Qε” then output1004

“Qε”, and if it outputs “p” then flip a coin and with probability 0.7 output “p” and1005

otherwise output “Qε”. If the distribution is p then our tester will correctly output1006

this with 0.9 · 0.7 > 0.6 probability. If the distribution was drawn from Qε then with1007

probability at least 1/2 the distribution will be far enough from p for the tester to1008

apply (as noted above, by Theorem 13) and report this with probability 0.9; otherwise1009

the tester will report “Qε” with probability at least 1−0.7 = 0.3. Thus the tester will1010

correctly report “Qε” with probability at least 0.9+0.3
2 = 0.6 in all cases, the desired1011

contradiction.1012

We now prove the lower bound portion of Theorem 2.1013

Proposition 15. There exists a constant c2 such that for any ε ∈ (0, 1) and any1014

known distribution p, no tester can distinguish for an unknown distribution q whether1015
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q = p or ‖p − q‖1 ≥ ε with probability ≥ 2/3 when given a set of samples of size1016

c2 ·max

{
1
ε ,
‖p−max
−2ε ‖2/3
ε2

}
.1017

Proof. We note, trivially, that the distributions of the vectors of k samples from1018

two distributions that are ε far apart are themselves at most kε far apart; thus for1019

an appropriate constant c2, at least c2 · 1
ε samples are needed to distinguish such1020

distributions, showing the first part of our max bound.1021

To show that the second term in the maximum is also a lower bound on the1022

necessary sample size, we apply Corollary 14. Consider the probabilities pi to be1023

sorted in decreasing order, so that p1 is the maximum probability element. Define α1024

to be the value which satisfies 1
2

∑
i≥2 min{pi, αp2/3

i } = ε, and let s be the smallest1025

integer such that
∑
i>s pi ≤ 2ε. We note that for i ∈ {2, . . . , s} the min is never1026

pi, or else (since pi are sorted in descending order and the inequality pi ≤ αp2/3
i gets1027

stronger for smaller pi), the sum would be at least
∑
i≥s pi which is greater than 2ε by1028

definition of s. Thus α
∑s
i=2 p

2/3
i =

∑s
i=2 min{pi, αp2/3

i } ≤
∑
i≥2 min{pi, αp2/3

i } =1029

2ε, which yields α ≤ 2‖p{2,...,s}‖
−2/3
2/3 ε. The lower bound on k from Corollary 14 is1030

thus bounded (since the min of two quantities can only increase if we replace one1031

by a weighted geometric mean of both of them) as c′ ·
(∑

i≥2
min{pi,αp2/3i }

4

p2i

)−1/2

=1032

c′ ·
(∑

i≥2 min{p2
i , α

4p
2/3
i }

)−1/2

≥ c′ ·
(
α3
∑
i≥2 min{pi, αp2/3

i }
)−1/2

. We bound this1033

last expression by bounding α3 by the cube of our bound α ≤ 2‖p{2,...,s}‖
−2/3
2/3 ε and1034

then plugging in the definition 1
2

∑
i≥2 min{pi, αp2/3

i } = ε to yield a lower bound on1035

k of c′ ·
(

16‖p{2,...,s}‖−2
2/3ε

4
)−1/2

= c′

4 ·
‖p{2,...,s}‖2/3

ε2 . A constant number of repetitions1036

lets us amplify the accuracy of the tester from the 0.6 of Corollary 14 to the 2/3 of1037

this theorem.1038
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