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AN AUTOMATIC INEQUALITY PROVER AND INSTANCE
OPTIMAL IDENTITY TESTING*

GREGORY VALIANTT AND PAUL VALIANT?

Abstract. We consider the problem of verifying the identity of a distribution: Given the
description of a distribution over a discrete finite or countably infinite support, p = (p1, p2,...), how
many samples (independent draws) must one obtain from an unknown distribution, ¢, to distinguish,
with high probability, the case that p = ¢ from the case that the total variation distance (L1 distance)
[lp—qll1 > €? We resolve this question, up to constant factors, on an instance by instance basis: there
exist universal constants ¢, ¢’ and a function f(p,€) on the known distribution p and error parameter
€, such that our tester distinguishes p = ¢ from ||p — ¢||1 > € using f(p,€) samples with success
probability > 2/3, but no tester can distinguish p = ¢ from ||jp — ¢||1 > ¢+ € when given ¢’ - f(p,¢€)

samples. The function f(p,€) is upper-bounded by a multiple of HPsz/37 but is more complicated.

This result generalizes and tightens previous results: since distributions of support at most n have
Ls /3 norm bounded by \/n, this result immediately shows that for such distributions, O(y/n/€?)

samples suffice, tightening the previous bound of O(%) and matching the (tight) results
for the case that p is the uniform distribution of support n.

The analysis of our very simple testing algorithm involves several hairy inequalities. To facilitate
this analysis, we give a complete characterization of a general class of inequalities—generalizing
Cauchy-Schwarz, Holder’s inequality, and the monotonicity of L, norms. Specifically, we characterize
the set of sequences of triples (a,b,c¢); = (a1,b1,c1),...,(ar,br,cr) for which it holds that for all

b
finite sequences of positive numbers (z); = z1,... and (y); = y1,...,
ci
T
a;, bi
[T > a5y =1
i=1 \ j

For example, the standard Cauchy-Schwarz inequality corresponds to the triples (a,b,¢); = (1,0, %),

(0,1, %), (%, %, —1). Our characterization is constructive and algorithmic, leveraging linear program-
ming to prove or refute an inequality, which would otherwise have to be investigated, through trial
and error, by hand. We hope the computational nature of our characterization will be useful to
others, and facilitate analyses like the one here.

Key words. Hypothesis testing, identity testing, instance optimal, Holder’s inequality

AMS subject classifications. 68Q32, 26D15, 62G10

1. Introduction. Suppose you have a detailed record of the distribution of IP
addresses that visit your website. You recently proved an amazing theorem, and are
keen to determine whether this result has changed the distribution of visitors to your
website (or is it simply that the usual crowd is visiting your website more often?). How
many visitors must you observe to decide this, and, algorithmically, how do you decide
this? Formally, given some known distribution p over a discrete (though possibly
infinite) domain, a parameter ¢ > 0, and an unknown distribution ¢ from which we
may draw independent samples, we would like an algorithm that will distinguish the
case that ¢ = p from the case that the total variation distance, di,(p,q) > €. We
consider this basic question of verifying the identity of a distribution, also known as

*A preliminary version of this work appeared at the IEEE Symposium on Foundations of Com-

puter Science, 2014.
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2 GREGORY VALIANT AND PAUL VALIANT

the problem of “identity testing against a known distribution”. This problem has
been well studied, and yielded the punchline that it is sometimes possible to perform
this task using far fewer samples than would be necessary to accurately learn the
distribution from which the samples were drawn. Nevertheless, previous work on this
problem either considered only the problem of verifying a uniform distribution (the
case that p = Unif[n]), or was from the perspective of worst-case analysis—aiming to
bound the number of samples required to verify a worst-case distribution of a given
support size.

Here, we seek a deeper understanding of this problem. We resolve, up to con-
stant factors, the sample complexity of this task on an instance-by-instance basis—
determining the optimal number of samples required to verify the identity of a distri-
bution, as a function of the distribution in question.

Throughout much of theoretical computer science, the main challenge and goal
is to characterize problems from a worst-case standpoint, and the efforts to describe
algorithms that perform well “in practice” are often relegated to the sphere of heuris-
tics. Still, there is a developing understanding of domains and approaches for which
one may provide analysis beyond the worst-case (e.g., random instances, smoothed
analysis, competitive analysis, analysis with respect to various parameterizations of
the problems, etc.). Against this backdrop, it seems especially exciting when a rich
setting seems amenable to the development and analysis of instance optimal algo-
rithms, not to mention that instance optimality gives a strong recommendation for
the practical viability of the proposed algorithms.

In the setting of this paper, having the distribution p explicitly provided to the
tester enables our approach; nevertheless, it is tantalizing to ask whether this style
of “instance-by-instance optimal” property testing/estimation or learning is possible
in more general distributional settings. The authors are optimistic that such strong
theoretical results are both within our reach, and that pursuing this line may yield
practical algorithms suited to making the best use of available data. We refer the
reader to [22] for an example of subsequent work in this direction.

To more cleanly present our results, we introduce the following notation.

max

DEFINITION 1. For a probability distribution p over a discrete support, let p~
denote the vector of probabilities obtained from p by removing the entry corresponding
to the element of largest probability (with ties broken arbitrarily if there are multiple
such elements). For e > 0, define p_. to be the vector obtained from p by removing
the domain elements of smallest probability mass under p, and stopping just before
more than € probability mass is removed.

Hence p~"** is the vector of probabilities corresponding to distribution p, af-

ter the largest probability element and the smallest probability elements have been
removed.

Throughout, we use the standard notation for the L, norm of a vector: given a
vector x, and a real number o we define the o norm of x as

1/«
el = (Zﬁ“)

Our main result is the following:

THEOREM 2. There exist constants c1,co such that for any € > 0 and any known
distribution p, for any unknown distribution q, our tester will distinguish ¢ = p from
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AN AUTOMATIC INEQUALITY PROVER AND INSTANCE OPTIMAL IDENTITY TESTING

lp—qllx > € with probability 2/3 when run on a set of at least c; -max {E, =

samples drawn from q, and no tester can do this task with probability at least 2/3 with

P~ o™l
a set of fewer than cs - max {i, # samples.

In short, over the entire range of potential distributions p, our tester is optimal,
up to constant factors in € and the number of samples. The distinction of “con-
stant factors in €” is needed, as |[p_./i6//2/3 might not be within a constant factor
of [|[p_acll2/3 if, for example, the vast majority of the 2/3-norm of p comes from tiny
domain elements that only comprise an € fraction of the 1-norm (and hence would be
absent from p_s., though not from p_e/lﬁ).l

Because our tester is constant-factor tight, the subscript and superscript on p

1 Hp:g(a:; l2/3

and the max with % in the sample complexity max{ = all mark real

€’
phenomena, and are not just artifacts of the analysis. However, except for rather

pathological distributions, the theorem says that 6(”’1'722/3) is the optimal number of
samples. Additionally, note that the subscript and superscript only reduce the value of
the norm: [|pZ5¢™(la/z < [Ip-2¢[l2/3 < [IP—c/16ll2/3 < [[Pll2/3, and hence O(|[pll2/3/€?)
is always an upper bound on the number of samples required. Since /3 is concave, for
distributions p of support size at most n the Ljy/3 norm is maximized on the uniform
distribution, yielding that |[p||2/3 < v/n, with equality if and only if p is the uniform
distribution. This immediately yields a worst-case bound of O(y/n/€?) on the number
of samples required to test distributions supported on at most n elements, tightening
the previous bound of O( %) from [6], and matching the tight bound on the
number of samples required for testing the uniform distribution given in [17].

The core of our testing algorithm is an extremely simple statistic that is similar to
Pearson’s chi-squared statistic. Given a set of k samples, with X; denoting the number
of occurrences of the ith domain element, and p; denoting the probability of drawing

the ith domain element from distribution p, the Pearson chi-squared statistic is given
g — ; 2— ; . . . . . . . .

as y ., W. Our testing algorithm is, essentially, obtained by modifying this

statistic in two crucial ways: replacing the second occurrence of kp; with X; (which

has expectation kp; when drawing samples from p), and changing the scaling factor

from 1/p; to 1/1)2/3 :

?

(X; — kp;)? — X;
) EE

Our simple testing algorithm is stated below:

n the language of the abstract, Theorem 2 defines a function f(p,€) characterizing the sample
complexity of testing the identity of p, tight up to a factor of 32 in the error € and some constant
c1/c2 in the number of samples. Interestingly, since the function f(p,€) grows at least inversely in
€ as € goes to 0, we can merge the two constants into a single multiplicative constant in the error ¢
and say that the right number of samples for testing the identity of p to within € must lie between
f(p, 322—; -€) and f(p,€). This is a cleaner result, in some sense; however, of the two parameters—the
accuracy € and the sample size k—it is often perhaps more important to have precise control of the
accuracy, so we wanted to emphasize that while our results are constant-factor-tight, the constant,
32, in front of € is explicit, and can be made small.
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4 GREGORY VALIANT AND PAUL VALIANT

AN INSTANCE-OPTIMAL TESTER

Given a parameter € > 0 and a set of k samples drawn from ¢, let X; represent the
number of times the ith domain element occurs in the samples. Assume wlog that
the domain elements of p are sorted in non-increasing order of probability. Define
s=min{i: >, ;p; <¢/8}, andlet M ={2,...,s}, and S ={s+1,5+2,...}.

—max)

(Note that pyr = P_¢s -
LI e “‘f}# > 4kllpary)3, or

2. If 3,5 X; > ek, then output “||p — g|[1 > €”, else output “p = ¢”.

While the algorithm we propose is extremely simple, the analysis involves sorting
through several messy inequalities. To facilitate this analysis, we give a complete
characterization of a general class of inequalities. We characterize the set of sequences
of triples (a,b,¢); = (a1,b1,¢1),...,(ar, by, c.) for which it holds that for all finite
sequences of positive numbers (z); = z1,... and (y); = y1,...,

ci
I

(1) H Zx?y;’ > 1.
J

i=1

This is an extremely frequently encountered class of inequalities, and contains the
Cauchy-Schwarz inequality and its generalization, the Holder inequality, in addition
to inequalities representing the monotonicity of the L, norm, and also clearly contains
any finite product of such inequalities. Additionally, we note that the constant 1 on
the right hand side cannot be made larger, for all such inequalities are false when the
sequences x and y consist of a single 1; also, as we show, the class of valid inequalities
is unchanged if 1 is replaced by any other constant in the interval (0, 1].

EXAMPLE 1. The classic Cauchy-Schwarz inequality can be expressed in the form

1/2 1/2 -1
of Equation 1 as (Z] Xj) (Z] Y]> (Z] W/Xij> > 1, corresponding to the
triples (a,b,c); = (1,0,%), (0,1,%), (%,%,—1). This inequality is tight when the
sequences X and Y are proportional to each other. The Holder inequality generalizes
Cauchy-Schwarz by replacing % by A € [0,1], yielding the inequality defined by the
triples (a,b,¢); = (1,0,A), (0,1,1 = A), (A, 1 — A, —1).

EXAMPLE 2. A fundamentally different inequality that can also be expressed in
the form of Equation 1 is the fact that the L, norm is a non-increasing function of

-p
p. For p € [0,1] we have the inequality (Zj X;’) (ZJ Xj) > 1, corresponding to
the two triples (a,b,c); = (p,0,1),(1,0,—p). This inequality is tight only when the

sequence (X); consists of a single nonzero term.

We show that the cases where Equation 1 holds are exactly those cases expressible
as a product of inequalities of the above two forms, where two arbitrary combinations
of x and y are substituted for the sequence X and the sequence Y in the above
examples:

THEOREM 3. For a fized sequence of triples (a,b,c); = (a1,b1,¢1), ... (ar, by, cp),

Ci
the inequality [T;_, (ZJ ' y?") > 1 holds for all finite sequences of positive numbers

(@), (y); if and only if it can be expressed as a finite product of positive powers of
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Hoélder inequalities of the form

A 1-X

a b ) Z a”’ b’ Z Aa’+(1=X)a” b’ +(1-N)b"
>y Tj Y 22T Yj )
J J J

A
and L, monotonicity inequalities of the form (Z] x?y;’) < Zj ac;‘ay;\b7 where A €

0, 1].

We state this theorem for pairs of sequences (x);, (y);, of positive numbers, al-
though an analogous statement (Theorem 4 stated in Section 2) holds for any number
of positive sequences and is yielded by a trivial extension of the proof of the above
theorem. Most commonly encountered instances of inequalities of the above form,
including those involved in our identity testing result, involve only pairs of sequences.
Further, the result is nontrivial even for inequalities of the above form that only in-
volve a single sequence—see Example 3 for a discussion of a single sequence inequality
with surprising properties.

Our proof of Theorem 3 is algorithmic in nature; in fact, we describe an algorithm
which, when given the sequence of triples (a, b, c); as input, will run in polynomial
time, and either output a derivation of the desired inequality as a product of a polyno-
mial number of Hélder and L, monotonicity inequalities, or the algorithm will output
a witness from which a pair of sequences (z);, (y); that violate the inequality can be
constructed. It is worth stressing that the algorithm is efficient despite the fact that
the shortest counter-example sequences (z);, (y); might require a doubly-exponential
number of terms (doubly-exponential in the number of bits required to represent the
sequence of triples (a, b, ¢);—see Example 3).

The characterization of Theorem 3 seems to be a useful and general tool, and
seems absent from the literature, perhaps because linear programming duality is an
unexpected tool with which to analyze such inequalities. The ability to efficiently
verify inequalities of the above form greatly simplified the tasks of proving our instance
optimality results; we believe this tool will prove useful to others and have made a
Matlab implementation of our inequality prover/refuter publicly available at http:
/ /theory.stanford.edu/~valiant/code.html.

1.1. Related work. The general area of hypothesis testing was launched by
Pearson in 1900, with the description of Pearson’s chi-squared test. In this cur-
rent setting of determining whether a set of k£ samples was drawn from distribution
P = D1,P2,. .., that test would correspond to evaluating >, i(Xi — kp;)?, where X;
denotes the number of occurrences of the ith domain element in the samples, and
then outputting “yes” if the value of this statistic is sufficiently small. Traditionally,
such tests are evaluated in the asymptotic regime, for a fixed distribution p as the
number of samples tends to infinity. In the current setting of trying to verify the
identity of a distribution, using this chi-squared statistic might require using many
more samples than would be necessary even to accurately learn the distribution from
which the samples were drawn (see, e.g., Example 6).

Over the past fifteen years, there has been a body of work exploring the general
question of how to estimate or test properties of distributions using fewer samples
than would be necessary to learn the distribution in question. Such properties include
“symmetric” properties (properties whose value is invariant to relabeling domain ele-
ments) such as entropy, support size, and distance metrics between distributions (such
as Ly distance), with work on both the algorithmic side (e.g., [7, 5, 12, 15, 16, 4, 9]),
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6 GREGORY VALIANT AND PAUL VALIANT

and on establishing lower bounds [18; 23]. Such problems have been almost exclu-
sively considered from a worst-case standpoint, with bounds on the sample complexity
parameterized by an upper bound on the support size of the distribution. The recent
work [20, 21] resolved the worst-case sample complexities of estimating many of these
symmetric properties. Also see [19] for a recent survey.

The specific question of verifying the identity of a distribution was one of the
first questions considered in this line of work. Motived by a connection to testing
the expansion of graphs, Goldreich and Ron [11] first considered the problem of dis-
tinguishing whether a set of samples was drawn from the uniform distribution of
support n versus from a distribution that is least e¢ far from the uniform distribu-
tion, with the tight bound of @(@) on the number of samples subsequently given by
Paninski [17]. For the more general problem of verifying the identity of an arbitrary
distribution, Batu et al. [6], showed that for worst-case distributions of support size

n, O(%) samples are sufficient. Since the publication of this current paper,
Diakonikolis et al. [10], considered the problem of identity testing under various as-
sumptions about the shape of the distribution, including, for example, assuming the
distribution is monotone, unimodal, multimodal, or piecewise constant, etc., relative
to an ordering of the domain elements; for distributions assumed to be piecewise con-

stant with ¢ pieces, they show a tester with O(g) samples, which, letting t = n yields

a O(g)—sample tester in our setting, which has worst-case optimal dependence on n
and e (but is not instance-optimal).

In a similar spirit to this current paper, motivated by a desire to go beyond worst-
case analysis, Acharya et al. [1, 2] recently considered the question of identity testing
with two unknown distributions (i.e., both distributions p and ¢ are unknown, and one
wishes to deduce if p = ¢ from samples) from the standpoint of competitive analysis.
They asked how many samples are required as a function of the number of samples
that would be required for the task of distinguishing whether samples were drawn
from p versus ¢ in the case where p and ¢ were known to the algorithm. Their main
results are an algorithm that performs the desired task using m?/2 polylog m samples,
and a lower bound of Q(m7/ 6), where m represents the number of samples required to
determine whether a set of samples were drawn from p versus ¢ in the setting where
p and q are explicitly known. One of the main conceptual messages from Acharya et
al.’s results is that knowledge of the underlying distributions is extremely helpful—
without such knowledge one loses a polynomial factor in sample complexity. Our
results build on this moral, in some sense describing the “right” way that knowledge
of a distribution can be used to test identity.

The form of our tester may be seen as rather similar to those in [1, 2, 8], which
considered testing whether two distributions were close or not when both distributions
are unknown. The testers in those papers and the tester proposed here consist es-
sentially of summing up carefully chosen expressions independently evaluated at the
different domain elements and comparing this sum to a threshold. These testers are
considerable simpler than many of the proposed testers in other works (including [10]
and the initial pioneering work [6]), which proceed by subdividing the domain into a
super-constant number of partitions, and applying tests to each partition separately.
From a technical perspective, our lower bounds leverage Hellinger distance to intro-
duce a flexible class of lower bound instances, which yield the tight results of this
work, and were also employed to give the lower bounds in [8].
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1.2. Organization. We begin with our characterization of the class of inequal-
ities, as we feel that this tool may be useful to the broader community; this first
section is entirely self-contained. Section 3.1 contains the definitions and terminology
relevant to the distribution testing portion of the paper, and Section 3.2 describes
our very simple instance-optimal distribution identity testing algorithm, and provides
some context and motivation for the algorithm. Section 4 discusses the lower bounds,
establishing the optimality of our tester.

2. A class of inequalities generalizing Ho6lder’s inequality and the mono-Ji
tonicity of L, norms. In this section we characterize under what conditions a large
class of inequalities holds, showing both how to derive these inequalities when they
are true and how to refute them when they are false. We encounter such inequalities
repeatedly in the analysis of our tester in Section 3.

The basic question we resolve is: for what sequences of triples (a, b, ¢); is it true
that for all sequences of positive numbers (z);, (y); we have

Ci

® IT(Swt) =
J

%

We note that the constant 1 on the right hand side cannot be made larger, for all
such inequalities are false when the sequences x and y consist of a single 1; also, as we
will show later, if this inequality can be violated, it can be violated by an arbitrary
amount, so if any right hand side constant works, for a given (a,b,c¢);, then 1 works,
as stated above.

Such inequalities are typically proven by hand, via trial and error. One basic tool

1/2 1/2
for this is the Cauchy-Schwarz inequality, (ZJ Xj) (ZJ Yj) > > VXY, or
the slightly more general Holder inequality, a weighted version of Cauchy-Schwarz,
A 1-X
where for A € [0, 1] we have (Z] Xj) (Zj YJ> >3, X;‘le_k. Writing this in

the form of Equation 2, and substituting arbitrary combinations of x and y for X and
Y yields families of inequalities of the form:

A 1—X —1
Aar+(1—X Ab1+(1—X)b
(E x?lyfl) (E x?2y§2) ( AL A )2) > 1,
i i 7

and we can multiply (positive powers of) inequalities of this form together to get
further cases of the inequality in Equation 2. This inequality is tight when the two
sequences X and Y are proportional to each other.

A second and different basic inequality of our general form, for A € [0,1], is:

A
(Zj Xj) < Zj Xjf\, which is the fact that the L, norm is a decreasing function of p.

(Intuitively, this is a slight generalization of the trivial fact that 2% +y? < (z+y)?, and
follows from the fact that the derivative of z* is a decreasing function of z, for positive
x). As above, products of powers of  and y may be substituted for X to yield a more

A
> 1, for A € [0,1]. Unlike the

previous case, these inequalities are tight when there is only a single nonzero value of
X, and the inequality may seem weak for nontrivial cases.

The main result of this section is that the cases where Equation 2 holds are
ezxactly those cases expressible as a product of inequalities of the above two forms,

general class of inequalities: j asg\“y;‘b (Z j a:‘]’yé’)
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8 GREGORY VALIANT AND PAUL VALIANT

and that such a representation can be efficiently found. While we have been discussing
inequalities involving two sequences, these results apply to inequalities on d sequences,
for any positive integer d. For completeness, we restate Theorem 3 in this more general
form. The proof of this more general theorem is similar to that of its two-sequence
analog, Theorem 3.

THEOREM 4. For d + 1 fized sequences (a)1; = a11-.-,010, ...y (@)ai =

Cq
adg,---, a4y, and (¢); = c1,...,¢r, the inequality T],_, (EJ (szl xZ’})) > 1

holds for all sets of d finite sequences of positive numbers (x)r; if and only if it
can be expressed as a finite product of positive powers of Hdélder inequalities of the

form (Zj (HZ:l fﬂZ;}))A (Z] (HZ:l ngj)>1_)\ 2 Zj (HZ:l x23;+(17)\)ag)’ and

SN A ,
S L d d  Aal,
L, monotonicity inequalities of the form (Z; (szl xZ’“J)) <> (szl xkfljk),
where X € [0,1], and where a},,a} can be any real numbers.

Further, there exists an algorithm which, given d + 1 sequences (a)1,; = @11 --.,a1,r,
ooy (@ai =ad1,.-., 04, and (¢); =c1, ..., ¢ describing the inequality, runs in time
polynomial in the input description, and either outputs a representation of the desired
inequality as a product of a polynomial number of positive powers of Hélder and L,
monotonicity inequalities, or yields a witness describing d finite sequences of positive
numbers (x)k ; that violate the inequality.

The second portion of the theorem—the existence of an efficient algorithm that
provides a derivation or refutation of the inequality—is surprising. As the following
example demonstrates, it is possible that the shortest sequences z,y that violate the
inequality have a number of terms that is doubly exponential in the description length
of the sequence of triples (a, b, ¢); (and exponential in the inverse of the accuracy of the
sequences). Hence, in the case that the inequality does not hold, our algorithm cannot
be expected to return a pair of counter-example sequences. Nevertheless, we show that
it efficiently returns a witness describing such a construction. We observe that the
existence of this example precludes any efficient algorithm that tries to approach this
problem by solving some linear or convex program in which the variables correspond
to the elements of the sequences x, y.

ExampLE 3. Consider for some € > 0 the single-sequence inequality

-1 —2— -1
(E7) () (Z2) (24) (X2) =»
J J J J J

which can be expressed in the form of Equation 1 via the triples (a,b,c); = (—=2,0,—1),
(-1,0,3), (0,0,—2—¢€), (1,0,3), (2,0,—1). This inequality is true for e = 0 but false
for any positive €. However, the shortest counterexample sequences have length that
grows as exp(%) as € approaches 0. Counterexamples are thus hard to write down,
though possibly easy to express— for example, letting n = 64'/¢, the sequence x of
length 2 + n consisting of n, %, followed by n ones violates the inequality.”

In the following section we give an overview of the linear programming based
proof of Theorem 3, and then give the formal proof in Section 2.2. In Section 2.3 we

2Showing that counterexample sequences must be essentially this long requires technical machin-
ery from the proof of Theorem 3, however one can glean intuition by evaluating the inequality on
the given sequence—n, %, followed by n ones.
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provide an intuitive interpretation of the computation being performed by the linear
program.

2.1. Proof overview of Theorem 3. Our proof is based on constructing and
analyzing a certain linear program, whose variables, which we denote by /;, represent
log3_; x;ly;’ for each 4 in the index set of triples (a, b, ¢);. Letting r denote the size
of this index set, the linear program will have r variables, and poly(r) constraints.
We will show that if the linear program does not have objective value zero then we
can construct a counterexample pair of sequences (x);, (y); for which the inequality is
contradicted. Otherwise, if the objective value is zero, then we will consider a solution
to the dual of this linear program, and interpret this solution as an explicit (finite)
combination of Hélder and L, monotonicity inequalities whose product yields the
desired inequality in question. Combined, these results imply that we can efficiently
either derive or refute the inequality in all cases.

Given (finite) sequences (z);, (y);, consider the function ¢ : R? — R defined as
(a,b) =log ), 24y, We will call this 2-dimensional function £(a, b) the norm graph
of the sequences (z);, (y);, and will analyze this function for the remainder of this
proof and show how to capture many o£ its properties via linear programming. The
inequality in question, Hz( Ja:?y;’> C > 1, is equivalent (taking logarithms) to
the claim that >, ¢; - £(a;,b;) > 0 for every norm graph ¢ that can be realized via
sequences (x);, (y);-

The Hélder inequalities explicitly represent the fact that norm graphs ¢ must be
convex, namely for each A € (0,1) and each pair (a’,V'), (a”,b"”) we have M(a’,b") +
(1=X)l(a”,b") > L(Aa’+ (1 —=N)a”, Ab' + (1 —A)b"”). The L, monotonicity inequalities
can correspondingly be expressed in terms of norm graphs ¢, intuitively as “any secant
of the graph of ¢ (interpreted as a line in 3 dimensions) that intersects the z-axis must
intersect it at a nonnegative z-coordinate,” explicitly, for all (a’,d") and all A € (0,1)
we have M(a/,b") < £(Aa’, \V').

Instead of modeling the class of norm graphs directly, we instead model the class
of functions that are convex and satisfy the secant property, which we call “linearized
norm graphs”: let £ represent this family of functions from R? to R, namely, those
functions that are convex and whose secants through the z-axis pass through-or-above
the origin. As we will show, this class £ essentially captures the class of functions
¢ :R? — R that can be realised as £(a,b) = log > :c;lyj’ for some sequences (z);, (¥);,
provided we only care about the values of ¢ at a finite number of points (a;,b;), and
provided we only care about the r-tuple ¢(a;,b;) up to scaling by positive numbers.
In other words, the inequality ). ¢;-€(a;, b;) > 0 holds for all norm graphs if and only
if it holds for all linearized norm graphs, showing that products of positive powers of
Hoélder and L, monotonicity inequalities (used to define the class of linearized norm
graphs) exactly capture all norm graph inequalities. In this manner we can reduce
the very complicated combinatorial phenomena surrounding Equation 2 to a linear
program.

The proof can be decomposed into four steps:

1) We construct a homogeneous linear program (“homogeneous” means the con-
straints have no additive constants) which we will analyze in the rest of the proof. The
linear program has r variables (¢);, where feasible points will represent valid r-tuples
l(ai,b;) for linearized norm graphs ¢ € £. As will become important later, we set
the objective function to minimize the expression corresponding to the logarithm of
the desired inequality: min), ¢; - ¢;. Also, as will become important later, we will
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construct each of the constraints of the linear program so that they are positive linear
combinations of logarithms of Hélder and L, monotonicity inequalities when the (¢);
are interpreted as the values of a norm graph at the points (a;, b;).

2) We show that for each feasible point, an r-tuple (¢);, there is a linearized norm
graph £ : R? — R that extends ¢; = £(a;,b;) to the whole plane, where, further, the
function ¢ is the maximum of a finite number of affine functions (functions of the form
aa+ b+ 7).

3) For any desired accuracy € > 0, we show that for sufficiently small § > 0 there is a
(regular, not linearized) norm graph ¢ such that for any (a,b) € R? the scaled version
d - 0'(a,b) approximates the linearized norm graph constructed in the previous part,
¢(a,b), to within error e.

Namely, any feasible point of our linear program corresponds to a (possibly scaled)
norm graph. Thus, if there exists a feasible point for which the objective function is
negative, >, ¢;-¢; < 0, then we can construct sequences ();, (y); and a corresponding
norm graph ¢'(a,b) = log > ; x;‘yé’ for which (because ¢ can be made to approximate
¢ arbitrarily well at the points (a;,b;), up to scaling) we have >, ¢; - £(a;,b;) < 0,
meaning that the sequences (z);, (y); violate the desired inequality. Thus we have
constructed the desired counterexample

4) In the other case, where the minimum objective function of the linear program
is nonnegative, we note that because by construction we have a homogeneous linear
program (each constraint has a right hand side of 0), the optimal objective value must
be 0. The solution to the dual of our linear program gives a proof of optimality, in
a particularly convenient form: the dual solution describes a nonnegative linear com-
bination of the constraints that shows the objective function is always nonnegative,
Zi ¢; - ¢; > 0. Recall that, by construction, if each ¢; is interpreted as the value of a
norm graph at point (a;,b;) then each of the linear program constraints is a positive
linear combination of the logarithms of certain Holder and L, monotonicity inequal-
ities expressed via values of the norm graph. Combining these two facts yields that
the inequality . ¢; - £(a;,b;) > 0 can be derived as a positive linear combination of
the logarithms of certain Hélder and L, monotonicity inequalities. Exponentiating
yields that the desired inequality can be derived as the product of positive powers of
certain Holder and L, monotonicity inequalities, as desired.

The following section provides the proof details for the above overview.

2.2. Proof of Theorem 3. Given r triples, (a1,b1,¢1),. .., (ar, by, ¢;), consider
the linear program with 7 variables denoted by {1,...,¢, with objective function
min ) . ¢; - ¢;. For each index k € [r] we add linear constraints to enforce that the
point (ag, by, £x) in R3 lies on the lower convex hull of the points (a;, b;, ¢;) and the
extra point (2ag, 2bg,20;). Recall that the parameters (a;,b;) are constants, so we
may use them arbitrarily to set up the linear program. Explicitly, for each triple,
pair, or singleton from the set {(a;,b;) : i # k} U {(2ax,2b;)} that have a unique
convex combination that equals (ag, bx), we add a constraint that the corresponding
combination of their associated z-values (i.e. the corresponding ¢; or 2{;) must be
greater than or equal to £;. The total number of constraints is thus O(r*). We note
that these are homogeneous constraints—there are no additive constants. Intuitively,
we are expressing all our constraints on the linearized norm graph in this convex hull
form: the Holder inequalities are naturally convexity constraints, and by adding these
“fictitious” points (2ag, 2bg, 2¢x), the L, monotonicity inequalities can now also be
treated as convexity constraints.
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We now begin our proof of one direction of Theorem 3—that if the above linear
program has objective function value 0, then the desired inequality can be expressed
as the product of a finite number of Hélder and L, monotonicity inequalities. As
a first step, we establish that each of the above constraints can be expressed as a
positive linear combination of these two types of inequalities:

LEMMA 5. Fach of the above-described constraints can be expressed as a positive
linear combination of the logarithms of Holder and L, monotonicity inequalities.

Proof. Consider, first, the case when the convex combination does not involve the
special point (2ag,2b;). Thus there are indices i1,42,43 and nonnegative constants
A1, Az, A3 with Ay + Ao + A3 = 1 for which /\1((1,'1, b“) + )\g(aiz, bzg) + )\3(0;1‘3, bzg) =
(ag,br) and we want to conclude a kind of “three-way Holder inequality”, that
A1l(ai1, bi1) + Aal(aia, bio) + Asl(ais, bis) > £(ak,by), for any norm graph ¢. If two
of the three X’s are 0 (without loss of generality A\a = A3 = 0) then A\; = 1 and
(ai1,bi1) = (ax, by) making the inequality trivially £(ay, by) > £(ak, bg). If only one of
the X’s is 0, without loss of generality A3 = 0 and A\; + A2 = 1, making the desired
inequality a standard Holder inequality,

(3) Al(air, bin) + (1 — M )l(aiz, biz) > €</\1ai1 + (1= A1)aiz, Mbin + (1 — )\1)51'2)-
In the case that all three \’s are nonzero, we derive the result by replacing A\; with

A\ = x in Equation 3 and multiplying both sides of the inequality by A1 4+ Ao,
and then addlng the following Holder inequality:

4) M+ /\2)€<;\1ai1 + (1= X)asz, A + (1 — 5\1)51'2) + Asl(a;s, biz) > £(ak, by).

Finally, we consider the case where (2ag,2bg,2¢(ax,by)) is used; we only con-
sider the triple case as the other cases are easily dealt with. Thus we have that
a convex combination with coefficients Ay + Ay + A3 = 1 of the points (a;1,b;1),
(aiz, bi2), (2ak, 2b;) equals (ag, by ). We thus must derive the somewhat odd inequality
)\1[((12'1, bzl) +/\2€(ai2, bi2)+2/\3€(ak, bk) > )\(ak, bk) As above, substitute 5\1 = )\1)_\’_1/\2
for A; in Equation 3 and multiply by A1 + Ag; this time, add to it Ay + Ao times the
L,, monotonicity inequality

1— 2\
A1+ A2

1-2%  1—2)\
bk)

5 ;
5) )\1+)\2ak AL+ A2

Uag, by) < e(

Everything is seen to match up since the points at which the ¢ functions on the
right hand sides of Equations 3 and 5 are evaluated are equal (since (1 — 2\3)ax =
A1a1; + A2ag; from the original interpolation). 0

Given the above lemma, the proof of one direction of Theorem 3 now follows
easily—essentially following from step 4 of the proof overview given in the previous
section.

LEMMA 6. If the objective value of the linear program is non-negative, then it
must be zero, and the inequality [, (Z xa’y] ) ! can be expressed as a product of at
most O(r*) Hélder and L, monotonicity inequalities.

Proof. Recall that since the linear program is homogeneous (each constraint has
a right hand side of 0), the optimal objective value cannot be larger than 0, and
hence if the objective value is not negative, it must be 0. The solution to the dual
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12 GREGORY VALIANT AND PAUL VALIANT

of our linear program gives a proof of optimality, in a particularly convenient form:
the dual solution describes nonnegative coefficients for each of the primal inequality
constraints, such that when we add up these constraints scaled by these coefficients,
we find )", ¢; - ; > 0—a lower bound on our primal objective function. Recall that,
by construction, if each ¢; is interpreted as the value of a norm graph at point (a;, b;),
then Lemma 5 shows that each of the linear program constraints is a positive linear
combination of the logarithms of certain Hélder and L, monotonicity inequalities
expressed via values of the norm graph. Combining these two facts yields that the
inequality ), ¢; - £(a;,b;) > 0 can be derived as a positive linear combination of the
logarithms of certain Holder and L, monotonicity inequalities. Exponentiating yields
that the desired inequality can be derived as the product of positive powers of Holder
and L, monotonicity inequalities, as claimed. 0

We now flesh out steps 2 and 3 of the proof overview of the previous section to
establish the second direction of the theorem—namely that if the solution to the linear
program is negative, we can construct a pair of sequences (z);, (y); that violates the
inequality. We accomplish this in two steps. The first step is to show that for any
feasible point, (¢);, of the linear program, one can construct a function £(a, b) : R — R
defined on the entire plane with the property that the function is convex and has the
secants through-or-above the origin property, and satisfies ¢(a;,b;) = ¢;, where £; is
the assignment of the linear program variable corresponding to a;, b;.

LEMMA 7. For any feasible point (£); of the linear program, we can construct
a linearized norm graph £(a,b) : R? — R, which will be the mazimum of r affine
functions z;(a,b) = c;a + B;b + ; with v; > 0, such that the function is convez, and
for any i € [r], £(a;,b;) = {;.

Proof. We explicitly construct ¢ as the maximum of r linear functions. Recall
that for each index k we constrained (ag, by, £x) to lie on the lower convex hull of all
the points (a;, b;, ¢;) and the special point (2ag, 2bg, 2¢x). Thus through each point
(ak, br, L) construct a plane that passes through or below all these other points; define
¢(a, b) to be the maximum of these r functions. For each k € [r] we have £(ay, b) = {i
since the kth plane passes through this value, and every other plane passes through or
below this value. The maximum of these planes is clearly a convex function. Finally,
we note that each plane passes through-or-above the origin since a plane that passes
through (ag, b, ¢x) and through-or-below (2ay, 2by, 2¢)) must pass through or above
the origin; hence for all ¢ € [r], v; > 0. 0

The second step of the proof consists of showing that we can use the function
{(a,b) of the above lemma to construct sequences (x);, (y); that instantiate solutions
of the linear program arbitrarily well, up to a scaling factor:

LEMMA 8. For a feasible point of the linear program, expressed as an r-tuple of
values (£);, and any € > 0, for sufficiently small § > 0 there exist finite sequences
(%), (y); such that for all i € [r],

|¢; — 5log2x?"'y?" <e.
J

Proof. Consider the linearized norm graph £(a, b) of Lemma 7 that extends ¢(a;, b; )|}
to the whole plane, constructed as the maximum of r planes z;(a, b) = a;a + ;b + 4,
with v; > 0.

Consider, for parameter t; to be defined shortly, the sequences (z);, (y); consisting
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of t; copies respectively of e*/% and /%, Hence, for all a,b we have that

510ng?y§ = q;a + B;b+ dlogt;.
J

Since ~; > 0, if we let t; = round(e"”/ 5) we can approximate ~; arbitrarily well
for small enough §. Finally, we concatenate this construction for all i. Namely, let
(), (y); consist of the concatenation, for all i, of ¢; = round(e7:/?) copies respectively
of e®i/% and e”/%. The values of Zj :c‘]lyé’ will be the sum of the values of these r
components, thus at least the maximum of these » components, and at most r times
the maximum. Thus the values of dlog)_ j x?yé’ will be within logr of § times
the logarithm of the max of these components. Since each of the r components
approximates the corresponding affine function z; arbitrarily well, for small enough 9,
the function 6 log " y :c?yé’ is thus an e-good approximation to the function ¢, and in
particular is an e-good approximation to ¢(a;, b;) when evaluated at (a;, b;), for each
i. a0

The following lemma completes the proof of Theorem 3:

LEMMA 9. Given a feasible point of the linear program that has a negative objec-
tive function value, there exist finite sequences (x);, (y); which falsify the inequality

c;
IL(S55wy) 21

Proof. Letting v > 0 denote the negative of the objective function value corre-
sponding to feasible point (¢); of the linear program, define € = ﬁ, and let 0. and

sequences (), (y); be those guaranteed by Lemma 8 to satisfy [£;—dc log ),z y;’ <
€, for all ¢ € r. Multiplying this expression by ¢; for each ¢, summing, and using the
triangle inequality yields

Zci& — 0, Zci lome}“y;?i <w,
i i j

and hence }_, ¢;log >~ m;lyé’ < 0, and the lemma is obtained by exponentiating both
sides. 0

2.3. A geometric interpretation of inequality derivations. We provide a
pleasing and intuitive interpretation of the problem being solved by the linear pro-
gram in the proof of Theorem 3. This interpretation is most easily illustrated via an
example, and we use one of the inequalities that we encounter in Section 3 in the the
analysis of our instance-optimal tester.

EXAMPLE 4. The 4th component of Lemma 10 (in Section 3.3) consists of show-
ing the inequality

2 1 2 3/2
—2/3 —-1/3 2/3
(6) Dowgy ) (e DIEZN I DI Bt
J J J J

where in the notation of the lemma, the sequence x corresponds to A and the se-
quence y corresponds to p. In the notation of Theorem 3, this inequality corresponds
to the sequence of four triples (a;,b;,c;) = (2, —%,2), (2, —%, —1),(1,0,-2), (0, %, %)
How does Theorem 3 help us, even without going through the algorithmic machinery
presented in the proof?
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14 GREGORY VALIANT AND PAUL VALIANT

Consider the task of proving this inequality via a combination of Holder and L,
monotonicity inequalities as trying to win the following game. At any moment, the
game board consists of some numbers written on the plane (with the convention that
every point without a number is interpreted as having a 0), and you win if you can
remove all the numbers from the board via a combination of moves of the following
two types:

1. Any two positive numbers can be moved to their weighted mean. (Namely,
we can subtract 1 from one location in the plane, subtract 3 from a second
location in the plane, and add 4 to a point % of the way from the first location
to the second location.)

2. Any negative number can be moved towards the origin by a factor A € (0,1)
and scaled by % (Namely, we can add 1 to one location in the plane, and
subtract 2 from a location halfway to the origin.)

Thus our desired inequality corresponds to the “game board” having a ‘2”7 at location
(2,-2), a “~17 at location (2,—%), a “=27 at location (1,0), and a “3” at location
(0, %) And the rules of the game allow us to push positive numbers together, and push
negative numbers towards the origin (scaling them). Our visual intuition is quite good
at solving these types of puzzles. (Try it!)

1
23 {/S 23 @ 23 @ 2/3—— Success! —|
\r\
0 -2 0— 0—— 0
O
LY % : 8 @\/
2/3 2) 23 1) 273 @ 23
0 1 2 0 1 2 0 1 2 0 1 2

Fic. 1. Depiction of a successful sequence of “moves” in the game corresponding to the inequal-

ity (Z] z?y;2/3)2 (Z] x?y;l/g) ' (Z] xj> : <Z] y?/3)3/2 > 1, showing that the inequality is
true. The first diagram illustrates the initial configuration of positive and negative weights, together
with the “Holder-type move” that takes one unit of weight from each of the points at (0,2/3) and
(2,—2/3) and moves it to the point (1,0), canceling out the weight of —2 that was initially at (1,0).
The second diagram illustrates the resulting configuration, together with the “Ly, monotonicity move”
that moves the —1 weight at location (2, —1/3) towards the origin by a factor of 2/3 while scaling it
by a factor of 3/2, resulting in a point at (4/3,—2/9) with weight —3/2, which is now collinear with
the remaining two points. The third diagram illustrates the final “Hélder-type move” that moves the
two points with positive weight to their weighted average, zeroing out all weights.

The answer, as illustrated in Figure 1 is to first realize that 3 of the points lie on
a line, with the “—27 halfway between the “% 7 and the “2”. Thus we take 1 unit from
each of the endpoints and cancel out the “—2”. No three points are collinear now, so
we need to move one point onto the line formed by the other two: “—17, being negative,
can be moved towards the origin, so we move it until it crosses the line formed by the
two remaining numbers. This moves it % of the way to the origin, thus increasing

it from “—17 to “—%”; amazingly, this number, at position %(2,—%) = (%,—%) 18
now % of the way from the remaining ‘% 7 at (0, %) to the number “17 at (2,7%),

meaning that we can remove the final three numbers from the board in a single move,
winning the game. We thus made three moves total, two of the Holder type, one of
the L, monotonicity type. Reexpressing these moves as inequalities yields the desired
derivation of our inequality (Equation 6) as a product of powers of Hélder and L,
monotonicity inequalities, explicitly, as the product of the following three inequalities,
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which are respectively 1) the square of a Cauchy-Schwarz inequality, 2) the 3/2 power
of an L, monotonicity inequality for A = 2/3, and 3) the 3/2 power of a Hélder
inequalty for A =2/3:

-2
2 —2/3 0,2/3 1.0
>y >y >y 21
7 7 7
3/2 -1
4/3 —2/9 2 —1/3
Yo7y > 23y, >1
7 j
1/2 —3/2
9 —2/3 0 2/3 4/3 —2/9
>y >y ;'Y >1
5 7 7

The above example demonstrates how transformative it is to know that the only possi-
ble ways of making progress proving a given inequality are by two simple possibilities,
thus transforming inequality proving into winning a 2d game with two types of moves.
As we have shown in Theorem 3, this process can be completed automatically in poly-
nomial time via linear programming; but in practice looking at the “2d game board”
is often all that is necessary, even for intricate counterintuitive inequalities like the
one above.

3. An instance-optimal testing algorithm. In this section we describe our
instance-by-instance optimal algorithm for verifying the identity of a distribution,
based on independent draws from the distribution. We begin by providing the defi-
nitions and terminology that will be used throughout the remainder of the paper. In
Section 3.2 we describe our very simple tester, and give some intuitions and motiva-
tions behind its form.

3.1. Definitions. We use [n] to denote the set {1,...,n}, and denote a distribu-
tion of support size n by p = p1, ..., pn, where p; is the probability of the ith domain
element. Throughout, we assume that all samples are drawn independently from the
distribution in question.

We denote the Poisson distribution with expectation A by Poi(\), which has
probability density function poi(\,i) = 67;’\1. We make heavy use of the standard
“Poissonization” trick (this goes back to at least Kolmogorov’s 1933 paper [13]; see
Chapter 5.4 of [14]). That is, rather than drawing k samples from a fixed distribution
p, we first select k' + Poi(k), and then draw k' samples from p. Given such a
process, the number of times each domain element occurs is independent, with the
distribution of the number of occurrences of the ith domain element distributed as
Poi(k-p;). The independence yielded from Poissonization significantly simplifies many
kinds of analysis. Additionally, since Poi(k) is closely concentrated around k: from
both the perspective of upper bounds as well as lower bounds, at the cost of only
a subconstant factor, one may assume without loss of generality that one is given
Poi(k) samples rather than exactly k.

Much of the analysis in this paper centers on L, norms, where for a vector ¢, we
1/c

use the standard notation ||¢||. to denote (3, ¢¢)”“. The notation ||g||% is just the

bth power of ||g||.. For example, ||qH§§§ =5 "

i 117
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16 GREGORY VALIANT AND PAUL VALIANT

3.2. An optimal tester. Our testing algorithm is extremely simple, and takes
the form of a simple statistic that is similar to Pearson’s chi-squared statistic, though
differs in two crucial ways. Given a set of k samples, with X; denoting the number
of occurrences of the ith domain element, and p; denoting the probability of drawing
the ith domain element from distribution p, the Pearson chi-squared statistic is given
as y p%(Xi — kp;)?. Adding a constant does not change the behavior of the statistic,
and it will prove easier to compare with our statistic if we subtract k£ from each term,
yielding the following:

(7) 3 (Xi — k?JUi_)2 —kpi.
; pi
In the Poissonized setting (where the number of samples is drawn from a Poisson
distribution of expectation k), if the samples are drawn from distribution p, then the
expectation of this chi-squared statistic is 0 because in that case X; is distributed
according to a Poisson distribution of expectation kp;, and hence has variance kp;.
Our testing algorithm is, essentially, obtained by modifying this statistic in two ways:
replacing the second occurrence of kp; with X; (which has expectation kp; when
drawing samples from p and thus does not change the statistic in expectation), and
changing the scaling factor from 1/p; to 1/ pz/ 2.

(2

2/3
i i
Note that this statistic still has the property that its expectation is 0 if the samples are
drawn from distribution p. The following examples motivate these two modifications.

EXAMPLE 5. Let p be the distribution with p1 = pa = 1/4, and where the re-
maining half of its probability mass composed of n/2 domain elements, each oc-
curring with probability 1/n. If we draw k = n**® samples from p, the contribu-
tion of the n/2 small elements to the variance of Pearson’s statistic (Equation 7)
is ~ 2(n~13n?) = Q(n¥3), and the standard deviation would be Q(n*/3). If the k
samples were not drawn from p, and instead were drawn from distribution q that is
identical to p, except with py = 1/8 and ps = 3/8, then the expectation of Pearson’s
statistic would be O(n*/3), though this signal might be buried by the Q(n*/?) standard
deviation due to the small domain elements.

The above example illustrates that the scaling factor 1/p; in Pearson’s chi-squared
statistic places too much weight on the small elements, burying a drastic change in
the distribution (that could be detected with O(1) samples). Thus we are motivated
to consider a smoother scaling factor. There does not seem to be a simple intuition for
the 2/3 exponent in our statistic—it comes out of optimizing the interplay between
various inequalities in the analysis, and is cleanly revealed by our inequality prover
of Section 2. Intuitive reasoning from the perspective of the tester seems to lead

/ 2, whereas intuitive reasoning from the perspective of the

/

to a scaling factor of pi

lower bounds seems to lead to a scaling factor of p‘? *. Both intuitions turn out to be

misleading, and the correct scaling of p?/ 3
lower bound desiderata—was unexpected.

The following example illustrates a second benefit of our statistic of Equation 8
over the chi-squared statistic, resulting from changing kp; to X;:

—resulting from balancing the upper and
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EXAMPLE 6. Let p be the distribution with py =1 — 1/n, and where the remain-
ing 1/n probability mass is evenly split among n domain elements each with prob-
ability 1/n%. If we draw 100 - n samples, we are likely to see roughly 100 + 10 of
the “rare” domain elements, each exactly once. Such domain elements will have a
huge contribution to the variance of Pearson’s chi-squared statistic—a contribution
of Q(n?). On the other hand, these domain elements contribute almost nmothing to
the wvariance of our statistic, because the contribution of such domain elements is
(X; — kp)? — Xi)pZQ/B ~ (X7 - Xi)p;2/3, which is 0 if X; is 0 or 1 and with
overwhelming probability, none of these “rare” domain elements will occur more than
once. Hence our statistic is extremely robust to seeing rare things either 0 or 1 times,
and this significantly reduces the variance of our statistic.

We now formally define our tester and prove Theorem 2. The tester essentially
just computes the statistic of Equation 8, though one also needs to shave off a small
O(e) portion of the distribution p before computing it, and also verify that not too
much probability mass lies on this supposedly small portion that was removed.

AN INSTANCE-OPTIMAL TESTER

Given a parameter € > 0 and a set of k samples drawn from ¢, let X; represent the
number of times the ith domain element occurs in the samples. Assume wlog that
the domain elements of p are sorted in non-increasing order of probability. Define
s=min{i: . ;p; <e€/8} andlet M ={2,...,s},and S={s+1,s+2,...}.

~me)

i—kpi)° =X, 1/3
1. If ZieM (Xp# > 4k||pMH2§3a or

(Note that pps = p

2. If Y g Xi > %ek, then output “||p — ¢||1 > €7, else output “p = ¢”.

For convenience, we restate Theorem 2, characterizing the performance of the
above tester.

Theorem 2. There exist constants ci,co such that for any ¢ > 0 and any known
distribution p, for any unknown distribution q, our tester will distinguish ¢ = p from
lp—qll1 > € with probability 2/3 when run on a set of at least c1 -max {i, Hp“iﬂ

samples drawn from q, and no tester can do this task with probability at least 2/3 with

=2 N2/
a set of fewer than cs - max {i, 2;722/5 samples.

Before proving the theorem, we provide some intuition behind the form of the

P e ll2/s

sample complexity, max {i, > } The maximum with % only very rarely

comes into play: the % norm of a vector is always at least its 1 norm, so the max with
1 only takes over from ||p~22**||2/3/€? if p is of the very special form where removing
its max element and its smallest ce mass leaves less than e probability mass remaining;
the max expression thus prevents the sample size in the theorem from going to 0 in
extreme versions of this case.

The subscript and superscript in [[p—2**||lz/3 each reduce the final value, and
mark two ways in which the problem might be “unexpectedly easy”. To see the
intuition behind these two modifications in the vector of probabilities, note that if the
distribution p contains a single domain element p,, that comprises the majority of the
probability mass, then in some sense it is hard to hide changes in p: at least half of
the discrepancy between p and ¢ must lie in other domain elements, and if these other
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18 GREGORY VALIANT AND PAUL VALIANT

domain elements comprise just a tiny fraction of the total probability mass, then the
fact that half the discrepancy is concentrated on a tiny fraction of the distribution
makes recognizing such discrepancy easier.

On the other hand, having many small domain elements makes the identity testing
problem harder, as indicated by the Ly,3 norm, however only “harder up to a point”.
If most of the Ly/3 norm of p comes from a portion of the distribution with tiny L,
norm, then it is also hard to “hide” much discrepancy in this region: if a portion
of the domain consisting of €/3 total mass in p has discrepancy € between p and g,
then the probability mass of these elements in ¢ must total at least %e by the triangle
inequality, namely at least twice what we would expect if ¢ = p; this discrepancy is
thus easy to detect in O(%) samples. Thus discrepancy cannot hide in the very small
portion of the distribution, and we may effectively ignore the small portion of the
distribution when figuring out how hard it is to test discrepancy.

In these two ways—represented by the subscript and superscript of p—»®* in our

HPHz/s
€2 )

results—the identity testing problem may be “easier” than the simplified O(
bound. But our corresponding lower bound shows that these are the only ways.

Remark on “tolerant testing”. We note that the “yes” case of the theorem, where
q = p, can always be relaxed to a “tolerant testing” condition |[p — ¢y < O(3) where

1 ||P:3T§H2/3
—=

k = c; - max {e, } is the number of samples used. This kind of tolerant

testing result is true for any tester, because statistical distance is subadditive on
product distributions, so a change of  in the distribution p can induce a change of at
most ¢ on the distribution of the output of any testing algorithm that uses k£ samples.
A more refined analysis of our tester (or a tester tailored to the tolerant regime) yields
better bounds in some cases. However, the problem of distinguishing ||p — ¢|l1 < €1
from ||p —q|j1 > €2 enters a very different regime when €; is not much smaller than e,
and many more samples are required. (These problems are very related to the task
of estimating the distance from ¢ to the known distribution p.) For any constants
€1 < €2, it requires O(g;g) samples to distinguish [[p — ¢f1 < € from [[p —qfl1 = €2
when p is the uniform distribution on n elements, many more than the y/n needed
here [20, 21].

3.3. Analysis of the tester. The core of the proof of the algorithmic direction
of Theorem 2 is an application of Chebyshev’s inequality: first arguing that if the
samples were drawn from a distribution ¢ with ||p — ¢||1 > €, then the expectation of
the statistic in question is large in comparison to its standard deviation, whereas if the
samples were drawn from ¢ = p, then the expectation is 0 and the standard deviation
is sufficiently small so that the distribution of the statistic will not overlap significantly
with the previous case (where ||[p—¢||1 > €). In order to prove the desired inequalities
relating the expectation and the variance, we reexpress these inequalities in terms
of the two sequences of positive numbers p = p1,p2,..., and A = Ay, As, ..., with
A; := |pi—qi|, leading to an expression that is the sum of five inequalities essentially of

Cq
the canonical form [], (Z j p?'i A;’f‘) > 1. The machinery of Section 2 thus yields an

easily verifiable derivation of the desired inequalities as a product of positive powers of
Hélder type inequalities, and L,, monotonicity inequalities. For the sake of presenting
a self-contained complete proof of Theorem 2, we write out these derivations explicitly
below.

We now begin the analysis of the performance of the above tester, establishing
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the upper bounds of Theorem 2. When ||p — ¢||1 > €, we note that at most half of
the discrepancy is accounted for by the most frequently occurring domain element of
p, since the total probability masses of p and ¢ must be equal (to 1), and thus > ¢/2
discrepancy must occur on the remaining elements. We split the analysis into two
cases: when a significant portion of the remaining €/2 discrepancy falls above s then we
show that case 1 of the algorithm will recognize it; otherwise, if ||p<s —g<s||1 > (3/8)¢,
then case 2 of the algorithm will recognize it.

We first analyze the mean and variance of the left hand side of the first condition
of the tester, under the assumption (as discussed in Section 3.1) that a Poisson-
distributed number of samples, Poi(k) is used. This makes the number of times each
domain element is seen, X;, be distributed as Poi(kg;), and makes all X; independent
of each other. It is thus easy to calculate the mean and variance of each term.
Explicitly, defining A; = p; — ¢; we have

B (10 = ko) = Xilp, | = k2ol
XIHPOZ(qu)

and

X; — kpi)? = Xilp; 2| = [203(pi — D)2 + 4KP (p; — A)AZ] p 23
o IOG =k = Xilp ] = 20— A7+ 48 (i~ D) AT )

Note that when p = ¢, the expectation is 0, since A; = 0. However, in the case
that a significant portion of the € deviation between p and ¢ occurs in the region above
s, we show that for suitable k, the variance is somewhat less than the square of the
expectation, leading to a reliable test for distinguishing this case from the p = ¢ case.

The motivation for the convoluted steps in the derivations in the following lemma
comes entirely from the general inequality result of Theorem 3, though as guaranteed
by that theorem, the resulting inequalities can all be derived by elementary means
without reference to the theorem.

As defined in the tester, considering the elements of p to be sorted in decreasing
order by probability, we let s be the smallest integer so that ) . =~ < €/8. For
notational convenience, we define the set M = {2,..., s}, so that pys consists of those
elements of p that have “medium” probabilities—not the largest element, and not
the smallest elements that comprise < /8 probability. We define M so that we may
explicitly analyze the corresponding discrepancies Ajs. (Note that the probabilities
in the distribution ¢ will typically not be sorted, and may not be similar to the
corresponding probabilities in p).

The following lemma shows that the variance of case 1 of our estimator can be
made arbitrarily smaller than the square of its expectation, which we will use for a
Chebyshev bound proof in Proposition 11 below.

LEMMA 10. For any ¢ > 1, if k = ¢ - max{ ”5?“2//;) prjé!f{%} and if at least €/8

of the discrepancy falls in the medium region, namely Y.\, |As| > €/8, then

Z [2k2(pi — A)% + 4K (p; — &) A2 p; P < 16 [Z K2A2 —2/3]

€M i€M

Proof. Dividing both sides by k*, the left hand side has terms proportional to
(pi — A;)/k and its square. We bound such terms via the triangle inequality and the
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739 definition of k as (p; — A;)/k < <pZ (c/8)° | |A;

1/3
TosTars pb (61//83)> /c. Expanding, yields the

”2/3
740 left hand side divided by k* bounded as the sum of 5 terms:

2/3
o S 2 (s B a a8 o agapd (/8
2 1 1
ien Iearls s lpali)s lpalys
742 +é AQ —-1/3 (6/8)2 | 3‘ —4/3p3 (6/8)
e \ P Yol Iparlly)s
2
743 We bound each of the five terms separately by [Zz‘eM Agp;2/3 , using the fact

744 that % < 1 and sum the constants 2(1 4 2+ 1) + 4(1 + 1) to yield 16 on the right
745 hand side.

746 1. Cauchy-Schwarz yields >, ,, A 2p:2/3 > (Ciem |Ai|)2/(zleMpf/3) >
77 (§)? /HpM||2/3 Squaring this inequality and noting that, by definition, ZZeMpf/?) =
748 ||pM||2/3 bounds the first term as desired.

- -1/3 -1/3 .

749 2. We bound 7 = x5 Siear [Ailps /3> TESTr Sienr [Ailp; /% since p; >
750 ps for i € M. Multlplymg this inequality by the square of the Cauchy-Schwarz
751  inequality of the previous case: (Z e A7 _2/3> > ||AM||‘11/||pMH;§g and the bound
752 |An|? > (§)? yields the desired bound on the second term.

753 3. Simplifying the third term via p; —4/3 2/3 <p, ~2/3 ets us bound this term as
754 the product of the Cauchy-Schwarz 1nequahty of the first case: > ., A2p _2/ 3>
. 2/3

755 ||AMH1/||pM||2§3 and the bound ||Ay/||? > (g)z.

756 4. Here and in the next case we use the basic fact that for 5 > a > 0 and

57 a (nonnegative) vector z we have ||z||g < ||2]lo (with equality only when z has at

’L

_ 3/2
758 most one nonzero entry). Thus Y, AZp, 173 < (Z em A 4/3 2/9) , and this
759 last expression is bounded via (the 3/2 power of) Holder’s 1nequality for A = 2/3

w1/2
760 by (EZGM AN2p,; 2/3) (ZieMp?/3> . Multiplying this inequality by the Cauchy-

761 Schwarz inequality of the first case: |An||3/|lpas H2/3 <D iem A2pZ % and the bound

762 (§)* < ||An]|7 yields the desired bound on the fourth term.
5. The norm inequality from the previous case also yields

3/2 3/2
S Ak < (Z A?p58/9> <p;'/? <Z A?P;2/3> :

€M €M €M

Multiplying by the square root of the Cauchy-Schwarz bound of the first case,

1/2
12Nl /lparlly) < (ZA? />

ieM

763 and the bound § < ||Axs|1 yields the desired bound on the fifth term.

764 We now prove the upper bound portion of Theorem 2.
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ProPOSITION 11. There exists a constant c¢; such that for any € > 0 and any
known distribution p, for any unknown distribution q on the same domain, our tester
will distinguish ¢ = p from ||p — qll1 > € with probability 2/3 using a set of k =

€1 - max {i, lp_/elflm} samples.

Proof. We first show that if p = ¢ then the tester will recognize this fact with
high probability.

Consider the first test of the algorithm, whether

S — kpi)? = Xi] p; P > dkllpadlly)-
€M

As calculated above, the expectation of the left hand side is 0 in this case, and the

gg Thus Chebyshev’s inequality yields that this random variable

will be greater than 2v/2 standard deviations from its mean with probability at most
1/8, and thus the first test will be accurate with probability at least 7/8 in this case.

For the second test, whether ;¢ X; > %ek, recall that S was defined to contain
those elements of p with probabilities smaller than the “medium” elements M, and,
explicitly, have total probability mass ||ps|| < €/8. Denote this total mass by m. Thus
> icg Xi is distributed as Poi(mk), which has mean and variance both mk < %.
Thus Chebyshev’s inequality yields that the probability that this quantity exceeds

. 2 p 2 5 . 8 .
%ek is at most ((3/16)%) < (%) = f—k Hence provided k& > 2?, this
probability will be at most 1/8. For the sake of what follows, we actually make k at

least twice as large as this, setting ¢; > 2° so that, from the definition of k, we have

variance is 2k2||pas||

k=c;- max{i, 7‘@_(/6126”2/3 > %

We now consider the case when ||p — ¢lj1 > €, and show that the tester is also
correct in this setting. Consider the element with largest probability under distri-
bution p, and note that at most half of the discrepancy ||p — ¢|/1 can be due to the
difference in probabilities assigned to this one element, since the total probability
masses of p and ¢ are equal (to 1). Thus at least half the discrepancy between p and
q occurs on the remaining elements, which consist of the elements in S U M. Hence
[(p — q)sunllr = €/2. We consider two cases. If ||(p — q)s|l1 > 2¢, namely if most of
the at least €/2 discrepancy occurs on the small elements, then since ||pg||1 < %6 by
assumption, the triangle inequality yields that ||gs|[; > te. Consider the second test
in this case. Analogously to the argument above, Chebyshev’s inequality shows that
this test will pass except with probability at most %. Hence since k£ > % from the
previous paragraph, we have that the algorithm will be successful in this case with
probability at least 7/8.

In the remaining case, ||(p — ¢)a|l1 > %€, we apply Lemma 10. We first show

that the number of samples k = clw is at least as many as needed for the

Uparllaja Jiparllaya
pi%(e/8)’ (/)"
of this maximum is trivially less than or equal to k, since by definition ||pas[l2/3 =

lemma, ¢ - max{ }, provided ¢; > 128c. The second component

— max — max

||p_6/8 ll2/3 < ||p_e/16||2/3. To bound the first component, we let r (analogously to
s) be defined as the smallest integer such that ) . p; < €/16, recalling that the
probabilities p; are sorted in decreasing order. Since ZiZs pi = ZiESU{s} pi > €/8,
the difference of these expressions yields Z:z <Di > €/16. Since each p; in this last
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2/3

sum is at most ps, we have that p;1/3 > ps_l/3 for such 4, which yields Y..__ p;’” >

- 2/3 2/3 2/3
Wz/g. Thus ||p7€r7?g||2§3 =>", P> S P> @’ where the second-to-last

inequality assumes s # 1. Multiplying by the inequality ||p_ ma"||1/3 > |lp= ma"||1/3

—¢/16112/3 —e/8 ll2/3
yields the bound. (In the unusual case that s = 1, the set M = {2,...,s} is empty,
and thus Lemma 10 is trivially true, requiring 0 samples, which we trivially have.)
We thus invoke Lemma 10, which shows that, for any ¢ > 1, the expectation of
the left hand side of the first test, >°. 5, [(Xi — kp;)? — X;] pi_2/3, is at least y/c/16
times its standard deviation; further, we note that the triangle-inequality expression
by which we bounded the standard deviation is minimized when p = ¢, in which case,

as noted above, the standard deviation is \/§k||pM||;§g

right hand side of the first test, 4k||pM||§§§, is always at least \/c/16 — 2v/2 standard
deviations away from the mean of the left hand side. Thus for ¢ > 512, Chebyshev’s
inequality yields that the first test will correctly report that p and ¢ are different with
probability at least 7/8.

Thus by the union bound, in either case p = ¢ or ||p — ¢||1 > €, the tester will
correctly report it with probability at least %. ]

Thus the expression on the

4. Lower bounds. In this section we show how to construct distributions that
are very hard to distinguish from a given distribution p despite being far from p,
establishing the lower bound portion of Theorem 2. Explicitly, we will construct
a distribution over distributions, that we will call )., such that most distributions
in Q. are far from p, yet k samples from a randomly chosen member of @, will be
distributed very close to the distribution of & samples from p. Analyzing the statistics
of such sampling processes can be enormously involved (see for example the lower
bounds of [20], which involve deriving new and general central limit theorems in high
dimensions).

In this paper, however, we show that the statistics of k samples from a ran-
domly chosen distribution from ). can be captured much more directly, by a product
distribution over univariate distributions that are a “coin flip between Poisson dis-
tributions.” Thus we can analyze this process dimension-by-dimension and sum the
distances. That is, if d; is the distance between what happens for the ith domain
element given k samples from p versus k samples from the product distribution “cap-
turing” @, we can sum these up to bound the probability of distinguishing p from
Qe by >, d;. However, this is not good enough for us since the actual probability of
distinguishing these two cases for an ideal tester is more like the Lo norm of these d;
distances instead of the L; norm—to achieve a tight result we need something like
/>, d? instead of Y. d;.

To accomplish this, we analyze all distances below via the Hellinger distance,

Hp.0) = 55 [/ = VEP.

%

Hellinger distance has two properties perfectly suited for our task: its square is sub-
additive on product distributions (meaning it combines via the Lo norm instead of
the L; norm), and the Hellinger distance (times v/2) bounds the statistical distance.
See [3] for a more in-depth discussion of Hellinger distance and its applications to
hypothesis testing lower bounds.

We first prove a technical but ultimately straightforward lemma characterizing the
Hellinger distance between the “coin flip between Poisson distributions” mentioned
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above and a regular Poisson distribution. We then show how a product distribution
of these coin flip distributions forms a powerful class of testing lowerbounds, Theo-
rem 13, which has already found use in [8]. We then assemble the pieces using some
inequalities, to show the lowerbound portion of Theorem 2.

Let Poi(\ + €) denote the probability distribution with pdf over nonnegative
integers i: poi(A + €) + $poi(A — €), which is only defined for € < \.

LEMMA 12. H(Poi(\), Poi(At¢€)) <c- % for constant c.

Proof. Assume throughout this proof that ¢ < %\F)\, for otherwise the lemma is
trivially true.
We bound

H(Poi(). Poi(Ae))? ( e /\)\Z \/ e —¢( /\Jre) e ’\“('/\fe) ])

z>0

—Ayi

term-by-term via the inequality |\/a — Vb < la=bl  We let a = © Z.!A and b =

Vb
—A—e i —Atery_ )i . i
% = ;,Aﬁ) + < i(/\ <) ] for some specific 7, and sum over ¢ later. We bound the

numerator of f‘ by noting that

e le M A4 le M A ¢

_p Z Z
e il 2 il

is bounded by %e2 times the maximum magnitude of the second derivative with respect

(i—x)%—i

to x of poi(x,i) for z € [A\ — €, A + €]. Explicitly, & e 67_“’ = poi(x,1)~—3

bl

For the denominator of % we will first bound it in the case when A > 1, in which

case since € < %ﬁ7 there is an absolute constant ¢ such that for any z € [A —¢€, A+ €
we have poi(z,1) < ¢ b = 1c[Poi(A — €) + Poi(A + €)]. Let z* be the value of  in
the interval [\ — €, \ + €] where poi(z, ) is maximized.Thus the denominator v/b is at
least y/ 1poi(z*,i).
We combine the bounds of the previous two paragraphs to conclude the case A > 1.
Thus we have ‘a\;gbl < f 2\/mmaxx€[>\ et ’(1%2,271
G

our case, this last expression is thus bounded as coe? poi(x*,i)%m for some
constant co. We thus sum the square of this expression, over all 4 > 0, to obtain our
bound on the (square of the) Hellinger distance. Since poi(z*, ) dies off exponentially
outside an interval of width O(v/)), we may bound the sum over all 7 as just a constant
times the sum over an interval of width v/A centered at z*. We note that poi(z*, 1) is
bounded by a constant multiple of %; since we are considering ¢ within l A of x*,

.Since)\—ezéin

which is Wlthln A of A by definition, we have that i is bounded by a constant times
A, asis (i — \)2. Thus, in total for the square of the Helhnger distance, we have v\

terms that are each bounded as <6262 poi(x* )w) < 0364%%2 = 03%5
for some constant ¢3. Multiplying by the number of terms, v\, yields the desired
bound.

For the case A < 1, we note that the second derivative of poi(x,i) is globally
bounded by a constant, bounding the numerator of % by O(€?). To bound the

—A—e¢ i —Ate i
(A+e€) e (A—¢)
3! + o!

denominator, we note that, for A < 1, the value b = % [e is
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Q(1) for i = 0, it is Q(\) for i = 1, and it is Q(\?) for i = 2, thus yielding a bound of
O(;i) on each of the first three terms in the expression for H2. For i > 3 we have,

for z € (0,2)] that d2pm(m i) = pm-(m)m =0(

x2

1—2:2
ATl) Thus the numerator

of % is bounded by €2 times this. To bound the denominator, we have that b >

1poi(A+e,i) = Q(3), leading to a combined bound of 12 = O(e2X7/2-2 L) which
is bounded as O(——) since ¢ > 3 and A < 1. Summing up the square of this over

all i > 3 clearly yields O(/\—z)7 the desired bound.

Thus in all cases the square of the Hellinger distance is O(;—Z), yielding the lemma.

This lemma is a crucial ingredient in the proof of the following general lower
bound.

THEOREM 13. Given a distribution p, and associated values €; such that €¢; €
[0, pi] for each domain element i, define the distribution over distributions Q. by the
process: for each domain element i, randomly choose q; = p; = €;, and then normalize

q to be a distribution. Then there exists a constant ¢ such that it takes at least
aN —1/2

c (27 ;—2) samples to distinguish p from Q. with success probability 2/3. Further,

with probability at least 1/2, the Ly distance between a random distribution from Q.

and p is at least min{(z#argmaxel €), L 52 ;€it-

The lower bound portion of Theorem 2 follows from the above theorem by appro-
priately choosing the sequence ;.

Proof of T heorem 13. For the first part of the theorem, we first analyze the trivial
case where ), € > 5 4 The inequality ), p? <1 (Lp monotonicity) and Cauchy-

Schwarz yield that Z P> iy, p4 > (>, e§)2 > 45, which means the number

of samples requested by the theorem can be made 1 by setting ¢ < 6 1> and clearly at
least 1 sample is needed to distinguish different distributions, yielding the theorem in
this case.

Otherwise, we assume ), e < &. Consider the following distributions, which
emulate the number of times each domain element is seen in Q. and p if we take
Poi(2k) samples: first randomly generate §; = p; + ¢; without normalizing, and then
for each 7 draw a sample from Poi(q;-2k); compare this to, for each i, drawing a sample
from Poi(p; - 2k). Since ), (jl has mean 1 and variance Z 6 1> by Chebyshev’s
inequality, we have ). G; 2 with probability at least Pr0v1ded > i@ > , then
the expected number of samples drawn (when, as descrlbed above, for each i we draw
a sample from from Poi(q; - 2k) ) is at least k, and thus with probability at least i,
at least k samples will be drawn. Thus via this Poisson process, with probability 3,
we have emulated drawing a sample of size k from a distribution that corresponds to
Q. at least of the time.

Correspondlngly, we emulate p by the simple Poisson process of drawing Poi(2k)
samples from p, and throwing out all but k& samples; there will be at least k samples
with probability greater than %

Assume for the sake of contradiction that there is a hypothetical tester that could
distinguish p from Q. in k samples with probability 2/3, then this tester could be
used to distinguish the following two processes with probability M = 11:

1. Draw q; = p; £ ¢;
(a) If>", ¢ < % then with probability % output “FAIL” and with probability
% output “Q”
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(b) Otherwise, for each i generate a sample from Poi(g; - 2k); if fewer than
k total samples are generated, output “FAIL”, otherwise flip a biased
coin and either output a randomly chosen k of the generated samples, or
“FAIL” so that the total probability of outputting “FAIL” in this case
equals %

2. Or, draw a sample of size Poi(2k) from p, and if fewer than k total samples
are generated, output “FAIL”, otherwise flip a biased coin and either output
a randomly chosen k of the generated samples, or “FAIL” so that the total
probability of outputting “FAIL” in this case equals %

The tester is simulated on the samples if the chosen process above outputs sam-
ples, yielding an opinion “P” or “Q”; if the chosen process above outputs “FAIL”,
then a random one of “P” or “Q” is chosen; and if the (first) process outputs “Q”,
then this is output overall. This tester succeeds with probability at least the average
of % and %, since the above processes outputs “FAIL” with probability % yielding a
random guess about “P” or “Q”, and otherwise either generate a faithful sample from
the corresponding distribution, or in Case la outputs the answer directly, and is thus
at least as accurate as the %—accurate tester.

The same tester will perform within 3% of the success rate above if we remove
Case la and replace it with Case 1b, since this change affects the outcome only if
2@ < % and simultaneously “FAIL” is not chosen, which happens with probability
1—16 . % = 3—12, yielding an accuracy at least 1—72 — % > %

We thus derive a contradiction by showing that we cannot distinguish the fol-
lowing two processes with constant probability bounded above 1/2: 1) for each i,
draw a sample from Poi((p; £ €;) - 2k); versus 2) for each i, draw a sample from
Poi(p; - 2k). These two Poisson processes are both product distributions, and we can
thus compare them from the fact that the squared Hellinger distance is subadditive
on product distributions. For each component i, the squared Hellinger distance is
H(Poi(kp;), Poi(k[p; £ €]))? which by Lemma 12 is at most clk2;—:. Summing over ¢

1/2

and taking the square root yields a bound on the Hellinger distance of k& (61 Do ;—z) / ,

which thus bounds the L distance. Thus when £ satisfies the bound of the théorem,

the statistical distance between a set of k£ samples drawn from p versus drawn from a

random distribution of Q. is bounded as O(c), and thus for small enough constant ¢

the two cannot be distinguished.

We now analyze the second part of the theorem, bounding the distance between
a distribution q¢ +— Q. and p. We note that the total excess probability mass in the
process of generating ¢ that must subsequently be removed (or added, if it is negative)
by the normalization step is distributed as ), £e;, and thus by the triangle inequality,
the L; distance between g and p is at least as large as a sample from ). e; —|> ", £e;].
We thus show that with probability at least 1/2, a random value from [}, +¢;| is at
most either max; €; or >, €.

Consider the sequence €; as sorted in descending order. We have two cases.
Suppose €1 > £ >, €;. Consider the random number |}, +¢;|, where without loss of
generality the plus sign is chosen for ¢;. With probability at least 1/2, the sum of
the remaining elements will be < 0; further, by the assumption of this case, this sum
cannot be smaller than —2¢;. Thus the sum of all the elements has magnitude at
most €; with probability at least 1/2.

In the other case, €1 < % >, €i- Consider randomly choosing signs s; € {—1,+1}
for the elements iteratively, stopping before choosing the sign for the first element

This manuscript is for review purposes only.
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j for which it would be possible for |(};_; si€;) £€;| to exceed 3>, €. Since

by assumption €¢; < %ZZ €;, we have j > 2. Without loss of generality, assume
ZKJ. s;€; > 0. We have EKj 856 < %ZZ €;, and (by symmetry) with probabil-
ity at most 1/2 the sum of the remaining elements with randomly chosen signs will
be positive. Further, since si€; + sa€g + ... + sj_1€6j_1 + €5 > %Zz €;, we have
si1€1+ S2€a+ ...+ Sj_1€65-1 — Zizj € > —% >, €, for otherwise if this last inequality
was “<” we could subtract these last two equations to conclude €; + Zizj € > Y . €
which contradicts the facts that s; > s; and j > 2. Thus a random choice of the re-
maining signs starting with s; will yield a total sum at most % >, €, with probability
at least 1/2, as desired. d

We apply this result as follows.

COROLLARY 14. There is a constant ¢’ such that for all probability distributions

~1/2

. . 2/314

p and each o > 0, there is no tester that, via a set of ¢ - <Z#m mm{p”}’}#
samples can distinguish p from distributions with Ly distance % > it MiIn{p;, apf/s}

from p with probability 0.6, where m is the index of the element of p with maximum
probability.

Note that for sufficiently small a, the min is superfluous and the bound on

the number of samples becomes W and the L; distance bound becomes
a2||p— max||L/3

/

_ 2/3 . s . .
max|| /3 which more intuitively rephrases the result in terms of basic norms,

1
50( ‘ |p 2/31
for this range of parameters.

Proof. Consider defining the vector of ¢;’s by letting ¢; = min{pi,ap?/ 3} for
i # m, and €, = MaX;.n, €; hence if the domain is sorted with p; > ps > ...,
then for ¢ > 2 we set ¢; = min{pi,ap?/g}, and then set e1e5. Theorem 13 yields
—1/2
. . 2/3y4

that p and Q. cannot be distinguished given a set of v/2c¢- <Z#m mm{pl}’)#
samples where ¢ is the constant from Theorem 13. Also from Theorem 13, with
probability at least 1/2, the distance between p and an element of Q. is at least the

min of Z#m min{pi,ap?/?’} and %ZZ min{pi,ap?/?’}, which we trivially bound by

%Z#m min{p;, apf/g}. We derive a contradiction as follows. If a tester with the
parameters of this corollary existed, then repeating it a constant number of times
and taking the majority output would amplify its success probability to at least 0.9;
such a tester could be used to violate Theorem 13 via the procedure: given a set of
samples drawn from either p or ()., run the tester, and if it outputs “Q.” then output
“Q.”, and if it outputs “p” then flip a coin and with probability 0.7 output “p” and
otherwise output “Q.”. If the distribution is p then our tester will correctly output
this with 0.9 - 0.7 > 0.6 probability. If the distribution was drawn from Q. then with
probability at least 1/2 the distribution will be far enough from p for the tester to
apply (as noted above, by Theorem 13) and report this with probability 0.9; otherwise
the tester will report “Q).” with probability at least 1 —0.7 = 0.3. Thus the tester will
correctly report “Q.” with probability at least ()'9'2"& = 0.6 in all cases, the desired
contradiction. O

We now prove the lower bound portion of Theorem 2.

PROPOSITION 15. There exists a constant co such that for any € € (0,1) and any
known distribution p, no tester can distinguish for an unknown distribution q whether

This manuscript is for review purposes only.
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g =p orlp—qlli > € with probability > 2/3 when given a set of samples of size

1 P2 Ml2ys
Co - mMax PE s E—

Proof. We note, trivially, that the distributions of the vectors of k samples from
two distributions that are e far apart are themselves at most ke far apart; thus for
an appropriate constant co, at least co - % samples are needed to distinguish such
distributions, showing the first part of our max bound.

To show that the second term in the maximum is also a lower bound on the
necessary sample size, we apply Corollary 14. Consider the probabilities p; to be
sorted in decreasing order, so that p; is the maximum probability element. Define «
to be the value which satisfies 3 3., min{p;, apf/s} = ¢, and let s be the smallest

integer such that >, p; < 2e. We note that for ¢ € {2,...,s} the min is never
pi, or else (since p; are sorted in descending order and the inequality p; < ap?/ 3 gets
stronger for smaller p;), the sum would be at least ), . p; which is greater than 2e by

definition of s. Thus a).; , p?/g =>7, min{pi,ap?m} < i min{pi,ozp?/?’} =
2¢, which yields a < 2||p{2’_“’5}‘|27/23/36. The lower bound on k from Corollary 14 is

thus bounded (since the min of two quantities can only increase if we replace one
~1/2

min{pi,apf/3}4> /

min{piap;” ;o

by a weighted geometric mean of both of them) as ¢ - (sz =
~1/2 ~1/2

c - (2122 min{p?, 044]9?/3}) > <a3 > iso min{p;, ozpf/g}) . We bound this

last expression by bounding a® by the cube of our bound « < 2Hp{2,_”75}||2_/23/3e and

then plugging in the definition % ZiZQ min{p;, ap?/B} = € to yield a lower bound on

_1/2 ’
kof ¢ - (16||p{27_“7s} ||2_/2364> =< w A constant number of repetitions
lets us amplify the accuracy of the tester from the 0.6 of Corollary 14 to the 2/3 of
this theorem. O
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