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Abstract—We consider the problem of verifying the identity
of a distribution: Given the description of a distribution over
a discrete support p = (p1, p2, . . . , pn), how many samples
(independent draws) must one obtain from an unknown dis-
tribution, q, to distinguish, with high probability, the case
that p = q from the case that the total variation distance
(L1 distance) ||p − q||1≥ ε? We resolve this question, up to
constant factors, on an instance by instance basis: there exist
universal constants c, c′ and a function f(p, ε) on distributions
and error parameters, such that our tester distinguishes p = q
from ||p−q||1≥ ε using f(p, ε) samples with success probability
> 2/3, but no tester can distinguish p = q from ||p−q||1≥ c · ε
when given c′ · f(p, ε) samples. The function f(p, ε) is upper-
bounded by a multiple of ||p||2/3

ε2
, but is more complicated,

and is significantly smaller in some cases when p has many
small domain elements, or a single large one. This result
significantly generalizes and tightens previous results: since
distributions of support at most n have L2/3 norm bounded by√
n, this result immediately shows that for such distributions,

O(
√
n/ε2) samples suffice, tightening the previous bound of

O(
√
n polylogn

ε4
) for this class of distributions, and matching

the (tight) known results for the case that p is the uniform
distribution over support n.

The analysis of our very simple testing algorithm involves
several hairy inequalities. To facilitate this analysis, we give a
complete characterization of a general class of inequalities—
generalizing Cauchy-Schwarz, Hölder’s inequality, and the
monotonicity of Lp norms. Specifically, we characterize the
set of sequences (a)i = a1, . . . , ar, (b)i = b1, . . . , br, (c)i =
c1, . . . , cr, for which it holds that for all finite sequences of
positive numbers (x)j = x1, . . . and (y)j = y1, . . . ,

r∏
i=1

(∑
j

xai
j ybi

j

)ci

≥ 1.

For example, the standard Cauchy-Schwarz inequality cor-
responds to the sequences a = (1, 0, 1

2
), b = (0, 1, 1

2
), c =

( 1
2
, 1
2
,−1). Our characterization is of a non-traditional nature

in that it uses linear programming to compute a derivation that
may otherwise have to be sought through trial and error, by
hand. We do not believe such a characterization has appeared
in the literature, and hope its computational nature will be
useful to others, and facilitate analyses like the one here.

∗ Supported in part by NSF CAREER Award CCF-1351108. Portions of
this work were done while the author was a postdoc at Microsoft Research,
New England, and while the author was a visitor at the Simons Institute
for the Theory of Computing, UC Berkeley.

†Part of this work was done while the author was a visitor at the Simons
Institute for the Theory of Computing, UC Berkeley.

I. INTRODUCTION

Suppose you have a detailed record of the distribution of

IP addresses that visit your website. You recently proved

an amazing theorem, and are keen to determine whether

this result has changed the distribution of visitors to your

website (or is it simply that the usual crowd is visiting

your website more often?). How many visitors must you

observe to decide this, and, algorithmically, how do you

decide this? Formally, given some known distribution p over

a discrete (though possibly infinite) domain, a parameter

ε > 0, and an unknown distribution q from which we may

draw independent samples, we would like an algorithm that

will distinguish the case that q = p from the case that the

total variation distance, dtv(p, q) > ε. We consider this

basic question of verifying the identity of a distribution,

also known as the problem of “identity testing against a

known distribution”. This problem has been well studied,

and yielded the punchline that it is sometimes possible to

perform this task using far fewer samples than would be

necessary to accurately learn the distribution from which

the samples were drawn. Nevertheless, previous work on

this problem either considered only the problem of verifying

a uniform distribution (the case that p = Unif [n]), or

was from the perspective of worst-case analysis—aiming to

bound the number of samples required to verify a worst-case

distribution of a given support size.

Here, we seek a deeper understanding of this problem.

We resolve, up to constant factors, the sample complexity

of this task on an instance-by-instance basis—determining

the optimal number of samples required to verify the identity

of a distribution, as a function of the distribution in question.

Throughout much of TCS, the main challenge and goal is

to characterize problems from a worst-case standpoint, and

the efforts to describe algorithms that perform well “in prac-

tice” is often relegated to the sphere of heuristics. Still, there

is a developing understanding of domains and approaches

for which one may provide analysis beyond the worst-

case (e.g. random instances, smoothed analysis, competitive

analysis, analysis with respect to various parameterizations

of the problems, etc.). Against this backdrop, it seems

especially exciting when a rich setting seems amenable to

the development and analysis of instance optimal algorithms,

not to mention that instance optimality gives a strong
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recommendation for the practical viability of the proposed

algorithms.

In the setting of this paper, having the distribution p
explicitly provided to the tester enables our approach;

nevertheless, it is tantalizing to ask whether this style of

“instance-by-instance optimal” property testing/estimation

or learning is possible in more general distributional settings.

The authors are optimistic that such strong theoretical results

are both within our reach, and that pursuing this line may

yield practical algorithms suited to making the best use of

available data.

To more cleanly present our results, we introduce the

following notation.

Definition 1. For a probability distribution p, let p−max

denote the vector of probabilities obtained by removing the
entry corresponding to the element of largest probability.
For ε > 0, define p−ε to be the vector obtained from p
by iteratively removing the smallest domain elements and
stopping before more than ε probability mass is removed.

Hence p−max
−ε is the vector of probabilities corresponding

to distribution p, after the largest domain element and the

smallest domain elements have been removed. Our main

result is the following:

Theorem 1. There exist constants c1, c2 such that for any
ε > 0 and any known distribution p, for any unknown
distribution q, our tester will distinguish q = p from
||p − q||1≥ ε with probability 2/3 when run on a set of

at least c1 · max

{
1
ε ,
||p−max
−ε/16

||2/3
ε2

}
samples drawn from q,

and no tester can do this task with probability at least 2/3

with a set of fewer than c2 ·max

{
1
ε ,
||p−max
−ε ||2/3

ε2

}
samples.

In short, over the entire range of potential distributions

p, our tester is optimal, up to constant factors in ε and the

number of samples. The distinction of “constant factors in

ε” is needed, as ||p−ε/16||2/3 might not be within a constant

factor of ||p−ε||2/3 if, for example, the vast majority of the

2/3-norm of p comes from tiny domain elements that only

comprise an ε fraction of the 1-norm (and hence would be

absent from p−ε, though not from p−ε/16).

Because our tester is constant-factor tight, the subscript

and superscript and the max in the sample complexity

max

{
1
ε ,
||p−max
−O(ε)

||2/3
ε2

}
all mark real phenomena, and are

not just artifacts of the analysis. However, except for rather

pathological distributions, the theorem says that Θ(
||p||2/3

ε2 )
is the optimal number of samples. Additionally, note that

the subscript and superscripts only reduce the value of the

norm: ||p−max
−ε ||2/3< ||p−ε||2/3≤ ||p−ε/16||2/3≤ ||p||2/3,

and hence O(||p||2/3/ε2) is always an upper bound on the

number of samples required. Since x2/3 is concave, for

distributions p of support size at most n the L2/3 norm

is maximized on the uniform distribution, yielding that

||p||2/3≤
√
n, with equality if and only if p is the uniform

distribution. This immediately yields a worst-case bound

of O(
√
n/ε2) on the number of samples required to test

distributions supported on at most n elements, tightening the

previous bound of O(
√
n polylogn

ε4 ) from [5], and matching

the tight bound on the number of samples required for testing

the uniform distribution given in [13].

While the algorithm we propose is extremely simple, the

analysis involves sorting through several messy inequalities.

To facilitate this analysis, we give a complete characteriza-

tion of a general class of inequalities. We characterize the set

of sequences a = a1, . . . , ar, b = b1, . . . , br, c = c1 . . . , cr,
for which it holds that for all finite sequences of positive

numbers (x)j = x1, . . . and (y)j = y1, . . . ,

r∏
i=1

⎛
⎝∑

j

xai
j ybij

⎞
⎠

ci

≥ 1. (1)

This is an extremely frequently encountered class of

inequalities, and contains the Cauchy-Schwarz inequality

and its generalization, the Hölder inequality, in addition

to inequalities representing the monotonicity of the Lp

norm, and also clearly contains any finite product of such

inequalities. Additionally, we note that the constant 1 on

the right hand side cannot be made larger, for all such

inequalities are false when the sequences x and y consist

of a single 1; also, as we show, this class of inequality

is unchanged if 1 is replaced by any other constant in the

interval (0, 1].

Example 1. The classic Cauchy-Schwarz inequality
can be expressed in the form of Equation 1 as(∑

j Xj

)1/2 (∑
j Yj

)1/2 (∑
j

√
XjYj

)−1

≥ 1, corre-

sponding to the 3-term sequences a = (1, 0, 1
2 ), b =

(0, 1, 1
2 ), and c = ( 12 ,

1
2 ,−1). This inequality is tight when

the sequences X and Y are proportional to each other. The
Hölder inequality generalizes Cauchy-Schwarz by replacing
1
2 by λ ∈ [0, 1], yielding the inequality defined by the triples
a = (1, 0, λ), b = (0, 1, 1− λ), and c = (λ, 1− λ,−1).
Example 2. A fundamentally different inequality that can
also be expressed in the form of Equation 1 is the fact that
the Lp norm is a non-increasing function of p. For p ∈ [0, 1]

we have the inequality
(∑

j X
p
j

)(∑
j Xj

)−p

≥ 1, corre-
sponding to the 2-term sequences a = (p, 1), b = (0, 0), and
c = (1,−p). This inequality is tight only when the sequence
(X)j consists of a single nonzero term.

We show that the cases where Equation 1 holds are exactly

those cases expressible as a product of inequalities of the

above two forms, where two arbitrary combinations of x
and y are substituted for the sequence X and the sequence

Y in the above examples:
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Theorem 2. For fixed sequences (a)i = a1, . . . , ar, (b)i =
b1, . . . , br, and (c)i = c1, . . . , cr, the inequality∏r

i=1

(∑
j x

ai
j ybij

)ci ≥ 1 holds for all finite sequences
of positive numbers (x)j , (y)j if and only if it can
be expressed as a finite product of positive powers of

the Hölder inequalities
(∑

j x
a′
j yb

′
j

)λ (∑
j x

a′′
j yb

′′
j

)1−λ

≥∑
j x

λa′+(1−λ)a′′

j y
λb′+(1−λ)b′′

j , and the Lp monotonicity in-

equalities
(∑

j x
a
j y

b
j

)λ

≤∑
j x

λa
j yλbj , for λ ∈ [0, 1].

We state this theorem for pairs of sequences (x)j , (y)j ,
although an analogous statement (Theorem 3 stated in Sec-

tion II) holds for any number of sequences and is yielded

by a trivial extension of the proof of the above theorem.

Most commonly encountered instances of inequalities of the

above form, including those involved in our identity testing

result, involve only pairs of sequences. Further, the result is

nontrivial even for inequalities of the above form that only

involve a single sequence—see Example 3 for a discussion

of a single sequence inequality with surprising properties.

Our proof of Theorem 2 is algorithmic in nature; in fact,

we describe an algorithm which, when given the sequences

a, b and c, as input, will run in polynomial time, and either

output a derivation of the desired inequality as a product

of a polynomial number of Hölder and Lp monotonicity in-

equalities, or the algorithm will output a witness from which

a pair of sequences (x)j , (y)j that violate the inequality can

be constructed. It is worth stressing that the algorithm is

efficient despite the fact that the shortest counter-example

sequences (x)j , (y)j might require a doubly-exponential

number of terms (doubly-exponential in the number of bits

required to represent the sequences a, b, c—see Example 3).

The characterization of Theorem 2 seems to be a useful

and general tool, and seems absent from the literature, per-

haps because linear programming duality is an unexpected

tool with which to analyze such inequalities. The ability

to efficiently verify inequalities of the above form greatly

simplified the tasks of proving our instance optimality

results; we believe this tool will prove useful to others

and have made a Matlab implementation of our inequality

prover/refuter publicly available at http://theory.stanford.edu/
∼valiant/code.

A. Related Work

The general area of hypothesis testing was launched by

Pearson in 1900, with the description of Pearson’s chi-

squared test. In this current setting of determining whether a

set of k samples was drawn from distribution p = p1, p2, . . .,
that test would correspond to evaluating

∑
i

1
pi
(Xi− kpi)

2,
where Xi denotes the number of occurrences of the ith
domain element in the samples, and then outputting “yes” if

the value of this statistic is sufficiently small. Traditionally,

such tests are evaluated in the asymptotic regime, for a fixed

distribution p as the number of samples tends to infinity.

In the current setting of trying to verify the identity of a

distribution, using this chi-squared statistic might require

using many more samples than would be necessary even

to accurately learn the distribution from which the samples

were drawn (see, e.g. Example 6).

Over the past fifteen years, there has been a body of work

exploring the general question of how to estimate or test

properties of distributions using fewer samples than would
be necessary to actually learn the distribution in question.

Such properties include “symmetric” properties (properties

whose value is invariant to relabeling domain elements)

such as entropy, support size, and distance metrics between

distributions (such as L1 distance), with work on both the

algorithmic side (e.g. [6], [4], [10], [11], [12], [3], [8]),

and on establishing lower bounds [14], [18]. Such problems

have been almost exclusively considered from a worst-

case standpoint, with bounds on the sample complexity

parameterized by an upper bound on the support size of

the distribution. The recent work [16], [17] resolved the

worst-case sample complexities of estimating many of these

symmetric properties. Also see [15] for a recent survey.

The specific question of verifying the identity of a distri-

bution was one of the first questions considered in this line

of work. Motived by a connection to testing the expansion of

graphs, Goldreich and Ron [9] first considered the problem

of distinguishing whether a set of samples was drawn

from the uniform distribution of support n versus from a

distribution that is least ε far from the uniform distribution,

with the tight bound of Θ(
√
n

ε2 ) subsequently given by

Paninski [13]. For the more general problem of verifying

an arbitrary distribution, Batu et al. [5], showed that for

worst-case distributions of support size n, O(
√
n polylogn

ε4 )
samples are sufficient.

In a similar spirit to this current paper, motivated by a

desire to go beyond worst-case analysis, Acharya et al. [1],

[2] recently considered the question of identity testing with

two unknown distributions (i.e. both distributions p and q are

unknown, and one wishes to deduce if p = q from samples)

from the standpoint of competitive analysis. They asked how

many samples are required as a function of the number of

samples that would be required for the task of distinguishing

whether samples were drawn from p versus q in the case

where p and q were known to the algorithm. Their main

results are an algorithm that performs the desired task using

m3/2 polylogm samples, and a lower bound of Ω(m7/6),
where m represents the number of samples required to

determine whether a set of samples were drawn from p
versus q in the setting where p and q are explicitly known.

One of the main conceptual messages from Acharya et al.’s

results is that knowledge of the underlying distributions

is extremely helpful—without such knowledge one loses a

polynomial factor in sample complexity. Our results build

on this moral, in some sense describing the “right” way that

knowledge of a distribution could be used to test identity.
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The form of our tester may be seen as rather similar

to those in [7], which considered testing whether two

distributions were close or not when both distributions are

unknown. The testers in that paper and the tester proposed

here consist essentially of summing up carefully chosen

expressions independently evaluated at the different domain

elements and comparing this sum to a threshold, which is

somewhat simpler what has been pursued by many other

lines of research. The moral here is perhaps that combining

all your data in “clean” ways can lead to “clean” and

powerful results, at least provided one has the right analysis

tools. The lower bounds from [7] rely on Theorem 4 from

the present paper, which uses Hellinger distance to introduce

a flexible class of lower bounds, needed for the tight results

there and here.

B. Organization

We begin with our characterization of the class of in-

equalities, as we feel that this tool may be useful to the

broad TCS community; this first section is entirely self-

contained. Section III-A contains the definitions and ter-

minology relevant to the distribution testing portion of the

paper, and Section III-B describes our very simple instance-

optimal distribution identity testing algorithm, and provides

some context and motivation for the algorithm. Section IV

discusses the lower-bounds, establishing the optimality of

our tester.

II. A CLASS OF INEQUALITIES GENERALIZING

CAUCHY-SCHWARZ AND THE MONOTONICITY OF Lp

NORMS

In this section we characterize under what conditions a

large class of inequalities holds, showing both how to derive

these inequalities when they are true and how to refute

them when they are false. We encounter such inequalities

repeatedly in the analysis of our tester in Section III.

The basic question we resolve is: for what sequences

(a)i, (b)i, (c)i is it true that for all sequences of positive

numbers (x)j , (y)j we have

∏
i

⎛
⎝∑

j

xai
j ybij

⎞
⎠

ci

≥ 1 (2)

We note that the constant 1 on the right hand side cannot

be made larger, for all such inequalities are false when the

sequences x and y consist of a single 1; also, as we will show

later, if this inequality can be violated, it can be violated by

an arbitrary amount, so if any right hand side constant works,

for a given (a)i, (b)i, (c)i, then 1 works, as stated above.

Such inequalities are typically proven by hand, via trial

and error. One basic tool for this is the Cauchy-Schwarz

inequality,
(∑

j Xj

)1/2 (∑
j Yj

)1/2

≥ ∑
j

√
XjYj , or

the slightly more general Hölder inequality, a weighted

version of Cauchy-Schwarz, where for λ ∈ (0, 1) we have

(∑
j Xj

)λ (∑
j Yj

)1−λ

≥ ∑
j X

λ
j Y

1−λ
j . Writing this in

the form of Equation 2, and substituting arbitrary combina-

tions of x and y for X and Y yields families of inequalities

of the form:(∑
j

xa1
j yb1j

)λ(∑
j

xa2
j yb2j

)1−λ

(∑
j

x
λa1+(1−λ)a2

j y
λb1+(1−λ)b2
j

)−1

≥ 1,

and we can multiply inequalities of this form together to get

further cases of the inequality in Equation 2. This inequality

is tight when the two sequences X and Y are proportional

to each other.

A second and different basic inequality of our general

form, for λ ∈ [0, 1), is:
(∑

j Xj

)λ

≤ ∑
j X

λ
j , which

is the fact that the Lp norm is a decreasing function of

p. (Intuitively, this is a slight generalization of the trivial

fact that x2 + y2 ≤ (x + y)2, and follows from the fact

that the derivative of xλ is a decreasing function of x,

for positive x). As above, products of powers of x and y
may be substituted for X to yield a more general class of

inequalities:
∑

j x
λa
j yλbj

(∑
j x

a
j y

b
j

)−λ

≥ 1, for λ ∈ (0, 1].

Unlike the previous case, these inequalities are tight when

there is only a single nonzero value of X , and the inequality

may seem weak for nontrivial cases.

The main result of this section is that the cases where

Equation 2 holds are exactly those cases expressible as a

product of inequalities of the above two forms, and that such

a representation can be efficiently found. While we have

been discussing inequalities involving two sequences, these

results apply to inequalities on d sequences, for any positive

integer d. For completeness, we restate Theorem 2 in this

more general form. The proof of this more general theorem

is similar to that of its two-sequence analog, Theorem 2.

Theorem 3. For d + 1 fixed sequences (a)1,i =
a1,1 . . . , a1,r, . . . , (a)d,i = ad,1, . . . , ad,r, and (c)i =

c1, . . . , cr, the inequality
∏r

i=1

(∑
j

(∏d
k=1 x

ak,i

k,j

))ci ≥ 1

holds for all sets of d finite sequences of positive numbers
(x)k,j if and only if it can be expressed as a finite
product of positive powers of the Hölder inequalities(∑

j

(∏d
k=1 x

a′k
k,j

))λ (∑
j

(∏d
k=1 x

a′′k
k,j

))1−λ

≥∑
j

(∏d
k=1 x

λa′k+(1−λ)a′′k
k,j

)
, and the Lp monotonicity

inequalities
(∑

j

(∏d
k=1 x

a′k
k,j

))λ

≤∑
j

(∏d
k=1 x

λa′k
k,j

)
, for

λ ∈ [0, 1].

Further, there exists an algorithm which, given d + 1
sequences (a)1,i = a1,1 . . . , a1,r, . . . , (a)d,i =
ad,1, . . . , ad,r, and (c)i = c1, . . . , cr describing the
inequality, runs in time polynomial in the input description,
and either outputs a representation of the desired inequality
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as a product of a polynomial number of positive powers
of Hölder and Lp monotonicity inequalities, or yields a
witness describing d finite sequences of positive numbers
(x)k,j that violate the inequality.

The second portion of the theorem—the existence of an

efficient algorithm that provides a derivation or refutation

of the inequality—is surprising. As the following example

demonstrates, it is possible that the shortest sequences x, y
that violate the inequality have a number of terms that is

doubly exponential in the description length of the sequences

a, b, c (and exponential in the inverse of the accuracy of the

sequences). Hence, in the case that the inequality does not

hold, our algorithm cannot be expected to return a pair of

counter-example sequences. Nevertheless, we show that it

efficiently returns a witness describing such a construction.

We observe that the existence of this example precludes

any efficient algorithm that tries to approach this problem

by solving some linear or convex program in which the

variables correspond to the elements of the sequences x, y.

Example 3. Consider for some ε ≥ 0 the single-sequence
inequality(∑

j

x−2
j

)−1(∑
j

x−1
j

)3(∑
j

x0
j

)−2−ε

(∑
j

x1
j

)3(∑
j

x2
j

)−1

≥ 1,

which can be expressed in the form of Equation 1 via
the sequences a = (−2,−1, 0, 1, 2), b = (0, 0, 0, 0, 0), and
c = (−1, 3,−2 − ε, 3,−1). This inequality is true for
ε = 0 but false for any positive ε. However, the shortest
counterexample sequences have length that grows as exp( 1ε )
as ε approaches 0. Counterexamples are thus hard to write
down, though possibly easy to express—for example, letting
n = 641/ε, the sequence x of length 2 + n consisting of
n, 1

n , followed by n ones violates the inequality.1

In the following section we give an overview of the linear

programming based proof of Theorem 2. In Section II-B we

provide an intuitive interpretation of the computation being

performed by the linear program.

A. Proof Overview of Theorem 2

Our proof is based on constructing and analyzing a certain

linear program, whose variables �i represent log
∑

j x
ai
j ybij

for each i in the index set of the sequences (a)i, (b)i, (c)i.
Letting r denote the size of this index set, the linear program

will have r variables, and poly(r) constraints. We will

show that if the linear program does not have objective

value zero then we can construct a counterexample pair of

1Showing that counterexample sequences must be essentially this long
requires technical machinery from the proof of Theorem 2, however one
can glean intuition by evaluating the inequality on the given sequence—n,
1
n

, followed by n ones.

sequences (x)j , (y)j for which the inequality is contradicted.

Otherwise, if the objective value is zero, then we will

consider a solution to the dual of this linear program, and

interpret this solution as an explicit (finite) combination

of Hölder and Lp monotonicity inequalities whose product

yields the desired inequality in question. Combined, these

results imply that we can efficiently either derive or refute

the inequality in all cases.

Given (finite) sequences (x)j , (y)j , consider the function

� : R2 → R defined as �(a, b) = log
∑

j x
a
j y

b
j . We will call

this the norm graph of the sequences, and will analyze this

function for the remainder of this proof and show how to

capture many of its properties via linear programming. The

inequality in question,
∏

i

(∑
j x

ai
j ybij

)ci ≥ 1, is equivalent

(taking logarithms) to the claim that for all valid norm graphs

� we have
∑

i ci · �(ai, bi) ≥ 0.

The Hölder inequalities explicitly represent the fact that

norm graphs � must be convex, namely for each λ ∈ (0, 1)
and each pair (a′, b′), (a′′, b′′) we have λ�(a′, b′) + (1 −
λ)�(a′′, b′′) ≥ �(λa′ + (1− λ)a′′, λb′ + (1− λ)b′′). The Lp

monotonicity inequalities can correspondingly be expressed

in terms of norm graphs �, intuitively as “any secant of

� (interpreted as a line in 3 dimensions) that intersects

the z-axis must intersect it at a nonnegative z-coordinate;”

explicitly, for all (a′, b′) and all λ ∈ (0, 1) we have

λ�(a′, b′) ≤ �(λa′, λb′).
Instead of modeling the class of norm graphs directly, we

instead model the class of functions that are convex and

satisfy the secant property, what we could call “linearized

norm graphs”: let L represent this family of functions from

R
2 to R, namely, those functions that are convex and

whose secants through the z-axis pass through-or-above the

origin. As we will show, this class L essentially captures

the class of functions � : R
2 → R that can be realised

as �(a, b) = log
∑

j x
a
j y

b
j for some sequences (x)j , (y)j ,

provided we only care about the values of � at a finite

number of points (ai, bi), and provided we only care about

the r-tuple �(ai, bi) up to scaling by positive numbers. In

other words, the inequality
∑

i ci · �(ai, bi) ≥ 0 holds for

all norm graphs if and only if it holds for all linearized

norm graphs, showing that products of positive powers of

Hölder and Lp monotonicity inequalities (used to define

the class of linearized norm graphs) exactly capture all

norm graph inequalities. In this manner we can reduce

the very complicated combinatorial phenomena surrounding

Equation 2 to a linear program.

The proof can be decomposed into four steps:

1) We construct a homogeneous linear program (“homoge-

neous” means the constraints have no additive constants)

which we will analyze in the rest of the proof. The linear

program has r variables (�)i, where feasible points will

represent valid r-tuples �(ai, bi) for linearized norm graphs

� ∈ L. As will become important later, we set the objective
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function to minimize the expression corresponding to the

logarithm of the desired inequality: min
∑

i ci · �i. Also,

as will become important later, we will construct each

of the constraints of the linear program so that they are

positive linear combinations of logarithms of Hölder and

Lp monotonicity inequalities when the (�)i are interpreted

as the values of a norm graph at the points (ai, bi).

2) We show that for each feasible point, an r-tuple (�)i,
there is a linearized norm graph � : R2 → R that extends

�i = �(ai, bi) to the whole plane, where the function � is the

maximum of a finite number of affine functions (namely, of

the form αa+ βb+ γ).

3) For any desired accuracy ε > 0, we show that for

sufficiently small δ > 0 there is a (regular, not linearized)

norm graph �′ such that for any (a, b) ∈ R
2 the scaled

version δ · �′(a, b) approximates the linearized norm graph

constructed in the previous part, �(a, b), to within error ε.
Namely, any feasible point of our linear program corre-

sponds to a (possibly scaled) norm graph. Thus, if there

exists a feasible point for which the objective function is

negative,
∑

i ci · �i < 0, then we can construct sequences

(x)j , (y)j and a corresponding norm graph �′(a, b) =
log

∑
j x

a
j y

b
j for which (because �′ can be made to ap-

proximate � arbitrarily well at the points (ai, bi), up to

scaling) we have
∑

i ci · �′(ai, bi) < 0, meaning that the

sequences (x)j , (y)j violate the desired inequality. Thus we

have constructed the desired counterexample

4) In the other case, where the objective function of the

linear program cannot be negative, we note that because

by construction we have a homogeneous linear program

(each constraint has a right hand side of 0), the optimal

objective value must be 0. The solution to the dual of our

linear program gives a proof of optimality, in a particularly

convenient form: the dual solution describes a nonnegative

linear combination of the constraints that shows the objective

function is always nonnegative,
∑

i ci ·�i ≥ 0. Recall that, by

construction, if each �i is interpreted as the value of a norm

graph at point (ai, bi) then each of the linear program con-

straints is a positive linear combination of the logarithms of

certain Hölder and Lp monotonicity inequalities expressed

via values of the norm graph. Combining these two facts

yields that the inequality
∑

i ci ·�(ai, bi) ≥ 0 can be derived

as a positive linear combination of the logarithms of certain

Hölder and Lp monotonicity inequalities. Exponentiating

yields that the desired inequality can be derived as the prod-

uct of positive powers of certain Hölder and Lp monotonicity

inequalities, as desired.

See the full version of the paper for details of the proof.

B. Intuition behind the LP

We provide a pleasing and intuitive interpretation of the

computation being performed by the linear program in the

proof of Theorem 2. This interpretation is most easily

illustrated via an example, and we use one of the inequalities

that we encounter in Section III in the the analysis of our

instance-optimal tester.

Example 4. One of the components of the proof of Theo-
rem 1 consists of showing the inequality(∑

j

x2
jy
−2/3
j

)2(∑
j

x2
jy
−1/3
j

)−1(∑
j

xj

)−2

(∑
j

y
2/3
j

)3/2

≥ 1.

In the notation of Theorem 2, this inequality corre-
sponds to the sequence of four triples (ai, bi, ci) =
(2,− 2

3 , 2), (2,− 1
3 ,−1), (1, 0,−2), (0, 2

3 ,
3
2 ). How does The-

orem 2 help us, even without going through the algorithmic
machinery presented in the proof?

Consider the task of proving this inequality via a combi-
nation of Hölder and Lp monotonicity inequalities as trying
to win the following game. At any moment, the game board
consists of some numbers written on the plane (with the
convention that every point without a number is interpreted
as having a 0), and you win if you can remove all the
numbers from the board via a combination of moves of the
following two types:

1) Any two positive numbers can be moved to their
weighted mean. (Namely, we can subtract 1 from
one location in the plane, subtract 3 from a second
location in the plane, and add 4 to a point 3

4 of the
way from the first location to the second location.)

2) Any negative number can be moved towards the origin
by a factor λ ∈ (0, 1) and scaled by 1

λ . (Namely, we
can add 1 to one location in the plane, and subtract
2 from a location half the way to the origin.)

Thus our desired inequality corresponds to the “game
board” having a “2” at location (2,− 2

3 ), a “−1” at
location (2,− 1

3 ), a “−2” at location (1, 0), and a “3
2”

at location (0, 2
3 ). And the rules of the game allow us to

push positive numbers together, and push negative numbers
towards the origin (scaling them). Our visual intuition is
quite good at solving these types of puzzles. (Try it!)

The answer is to first realize that 3 of the points lie on
a line, with the “−2” halfway between the “3

2” and the
“2”. Thus we take 1 unit from each of the endpoints and
cancel out the “−2”. No three points are collinear now,
so we need to move one point onto the line formed by the
other two: “−1”, being negative, can be moved towards the
origin, so we move it until it crosses the line formed by the
two remaining numbers. This moves it 1

3 of the way to the
origin, thus increasing it from “−1” to “− 3

2”; amazingly,
this number, at position 2

3 (2,− 1
3 ) = ( 43 ,− 2

9 ) is now 2
3 of the

way from the remaining “ 1
2” at (0, 2

3 ) to the number “1” at
(2,− 2

3 ), meaning that we can remove the final three numbers
from the board in a single move, winning the game. We thus
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made three moves total, two of the Hölder type, one of the Lp

monotonicity type. Reexpressing these moves as inequalities
yields the desired derivation of our inequality as a product
of powers of Hölder and Lp monotonicity inequalities.

The above example demonstrates how transformative it

is to know that the only possible ways of making progress

proving a given inequality are by two simple possibilities,

thus transforming inequality proving into winning a 2d game

with two types of moves. As we show in Theorem 2, this

process can be completed automatically in polynomial time

via linear programming; but in practice looking at the “2d

game board” is often all that is necessary, even for intricate

counterintuitive inequalities like the one above.

III. AN INSTANCE-OPTIMAL TESTING ALGORITHM

In this section we describe our instance-by-instance op-

timal algorithm for verifying the identity of a distribution,

based on independent draws from a distribution. We begin by

providing the definitions and terminology that will be used

throughout the remainder of the paper. In Section III-B we

describe our very simple tester, and give some intuitions and

motivations behind its form.

A. Definitions

We use [n] to denote the set {1, . . . , n}, and denote a

distribution of support size n by p = p1, . . . , pn, where pi
is the probability of the ith domain element.

We denote the Poisson distribution with expectation λ by

Poi(λ), which has probability density function poi(λ, i) =
e−λλi

i! . We make heavy use of the standard “Poissonization”

trick. That is, rather than drawing k samples from a fixed

distribution p, we first select k′ ← Poi(k), and then draw

k′ samples from p. Given such a process, the number of

times each domain element occurs is independent, with the

distribution of the number of occurrences of the ith domain

element distributed as Poi(k ·pi). The independence yielded

from Poissonization significantly simplifies many kinds of

analysis. Additionally, since Poi(k) is closely concentrated

around k: from both the perspective of upper bounds as well

as lower bounds, at the cost of only a subconstant factor,

one may assume without loss of generality that one is given

Poi(k) samples rather than exactly k.

Much of the analysis in this paper centers on Lp norms,

where for a vector q, we use the standard notation ||q||c to

denote (
∑

i q
c
i )

1/c
. The notation ||q||bc is just the bth power

of ||q||c. For example, ||q||2/32/3=
∑

i q
2/3
i .

As in Definition 1, we use p−ε to denote the vector

of probabilities p≥s = ps, ps+1, . . . defined by sorting the

probabilities p1 ≤ p2 ≤ ... and letting s be the maximum

integer such that
∑

i<s pi ≤ ε. Additionally, we use p−max

to denote the vector of probabilities with the maximum

probability omitted. Hence the frequently used notation

p−max
−ε is the vector of probabilities obtained from p by both

removing the largest entry, and removing the smallest entries

until the weight of the small entries removed is at most ε.

B. An optimal tester

Our testing algorithm is extremely simple, and takes

the form of a simple statistic that is similar to Pearson’s

chi-squared statistic, though differs in two crucial ways.

Given a set of k samples, with Xi denoting the number

of occurrences of the ith domain element, and pi denoting

the probability of drawing the ith domain element from

distribution p, the Pearson chi-squared statistic is given as∑
i

1
pi
(Xi − kpi)

2. Adding a constant does not change the

behavior of the statistic, and it will prove easier to compare

with our statistic if we subtract k from each term, yielding

the following: ∑
i

(Xi − kpi)
2 − kpi

pi
. (3)

In the Poissonized setting (where the number of samples is

drawn from a Poisson distribution of expectation k), if the

samples are drawn from distribution p, then the expectation

of this chi-squared statistic is 0 because in that case Xi is

distributed according to a Poisson distribution of expectation

kpi, and hence has variance kpi. Our testing algorithm

is, essentially, obtained by modifying this statistic in two

ways: replacing the second occurrence of kpi with Xi, and

changing the scaling factor from 1/pi to 1/p
2/3
i :

∑
i

(Xi − kpi)
2 −Xi

p
2/3
i

. (4)

Note that this statistic still has the property that its expecta-

tion is 0 if the samples are drawn from distribution p. The

following examples motivate these two modifications.

Example 5. Let p be the distribution with p1 = p2 = 1/4,
and the remaining half of its probability mass composed of
n/2 domain elements, each occurring with probability 1/n.
If we draw k = n2/3 samples from p, the contribution of
the n/2 small elements to the variance of Pearson’s statistic
(Equation 3) is ≈ n

2 (n
−1/3n2) = Ω(n8/3), and the standard

deviation would be Ω(n4/3). If the k samples were not drawn
from p, and instead were drawn from distribution q that
is identical to p, except with p1 = 1/8 and p2 = 3/8,
then the expectation of Pearson’s statistic would be O(n4/3),
though this signal might be buried by the Ω(n4/3) standard
deviation due to the small domain elements.

The above example illustrates that the scaling factor 1/pi
in Pearson’s chi-squared statistic places too much weight on

the small elements, and motivates a smoother scaling factor.

There does not seem to be any intuition for the 2/3 exponent

in our statistic—it comes out of optimizing the interplay

between various inequalities in the analysis, and is cleanly

revealed by our inequality prover of Section II. Intuitive

reasoning from the perspective of the tester seems to lead to
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a scaling factor of p
1/2
i , whereas intuitive reasoning from the

perspective of the lower bounds seems to lead to a scaling

factor of p
3/4
i . Both intuitions turn out to be misleading, and

the correct scaling of p
2/3
i was unexpected.

The following example illustrates a second benefit of our

statistic of Equation 4 over the chi-squared statistic:

Example 6. Let p be the distribution with p1 = 1−1/n, and
the remaining 1/n probability mass is evenly split among n
domain elements each with probability 1/n2. If we draw
100 ·n samples, we are likely to see roughly 100±10 of the
“rare” domain elements, each exactly once. Such domain
elements will have a huge contribution to the variance of
Pearson’s chi-squared statistic—a contribution of Ω(n2). On
the other hand, these domain elements contribute almost
nothing to the variance of our statistic, because the contribu-
tion of such domain elements is essentially (X2

i −Xi)p
−2/3
i ,

which is 0 if Xi is 0 or 1 and with overwhelming probability,
none of these “rare” domain elements will occur more than
once. Hence our statistic is extremely robust to seeing rare
things either 0 or 1 times, and this significantly reduces the
variance of our statistic.

We now formally define our tester. The tester essentially

just computes the statistic of Equation 4, though one also

needs to shave off a small O(ε) portion of the distribution

p before computing it, and also verify that not too much

probability mass lies on this supposedly small portion that

was removed.
Throughout the remainder of the paper, we will assume,

without loss of generality, that the domain elements of

p are sorted in increasing order of probability. Let s be

the largest integer such that
∑

i<s pi ≤ ε/8, and for each

domain element i let Xi be the number of times element

i occurs in the sample. Note that p≥s is by definition the

same as p−ε/8 as defined in Definition 1, though it will be

easier to work explicitly with s in the proofs.

AN INSTANCE-OPTIMAL TESTER

Given a parameter ε > 0 and a set of k samples drawn

from q, let Xi represent the number of times the ith domain

element occurs in the samples. Assume wlog that the domain

elements of p are sorted in increasing order of probability,

and let s be the largest integer such that
∑

i<s pi ≤ ε/8 :

1) If
∑

i≥s,i �=argmax pi

[
(Xi − kpi)

2 −Xi

]
p
−2/3
i >

4k||p−max
≥s ||1/32/3, or

2) If
∑

i<s Xi >
3
16εk, then output “DIFFERENT”, else

output “SAME”

For convenience, we restate Theorem 1, characterizing the

performance of the above tester.

Theorem 1. There exist constants c1, c2 such that for any
ε > 0 and any known distribution p, for any unknown
distribution q, our tester will distinguish q = p from

||p − q||1≥ ε with probability 2/3 when run on a set of

at least c1 · max

{
1
ε ,
||p−max
−ε/16

||2/3
ε2

}
samples drawn from q,

and no tester can do this task with probability at least 2/3

with a set of fewer than c2 ·max

{
1
ε ,
||p−max
−ε ||2/3

ε2

}
samples.

In general, the “yes” case of the theorem, where q = p,

can be relaxed to a “tolerant testing” condition ||p − q||1≤
O( 1k ) where k = c1 ·max

{
1
ε ,
||p−max
−ε/16

||2/3
ε2

}
is the number

of samples used. This kind of tolerant testing result is true

for any tester, because statistical distance is subadditive on

product distributions, so a change of c
k in the distribution

p can induce a change of at most c on the distribution of

the output of any testing algorithm that uses k samples.

A more refined analysis of our tester (or a tester tailored

to the tolerant regime) yields better bounds in some cases.

However, the problem of distinguishing ||p−q|||1≤ ε1 from

||p− q|||1≥ ε2 enters a very different regime when ε1 is not

much smaller than ε2, and many more samples are required.

(These problems are very related to the task of estimating
the distance from q to the known distribution p.) For any

constants ε1 < ε2, it requires Θ( n
logn ) samples to distinguish

||p − q|||1≤ ε1 from ||p − q|||1≥ ε2 when p is the uniform

distribution on n elements, many more than the
√
n needed

here [16], [17].

Before discussing the proof approach, we provide some

intuition behind the form of the sample complexity,

max

{
1
ε ,
||p−max
−ε ||2/3

ε2

}
. The maximum with 1

ε only very

rarely comes into play: the 2
3 norm of a vector is always

at least its 1 norm, so the max with 1
ε only takes over

from ||p−max
−ε ||2/3/ε2 if p is of the very special form where

removing its max element and its smallest ε mass leaves less

than ε probability mass remaining; the max expression thus

prevents the sample size in the theorem from going to 0 in

extreme versions of this case.

The subscript and superscript in ||p−max
−ε ||2/3 each reduce

the final value, and mark two ways in which the problem

might be “unexpectedly easy”. To see the intuition behind

these two modifications in the vector of probabilities, note

that if the distribution p contains a single domain element

pm that comprises the majority of the probability mass, then

in some sense it is hard to hide changes in p: at least half of

the discrepancy between p and q must lie in other domain

elements, and if these other domain elements comprise just

a tiny fraction of the total probability mass, then the fact that

half the discrepancy is concentrated on a tiny fraction of the

distribution makes recognizing such discrepancy easier.

On the other hand, having many small domain elements

makes the identity testing problem harder, as indicated by

the L2/3 norm, however only “harder up to a point”. If

most of the L2/3 norm of p comes from a portion of
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the distribution with tiny L1 norm, then it is also hard to

“hide” much discrepancy in this region: if a portion of the

domain consisting of ε/3 total mass in p has discrepancy

ε between p and q, then the probability mass of these

elements in q must total at least 2
3ε by the triangle inequality,

namely at least twice what we would expect if q = p; this

discrepancy is thus easy to detect in O( 1ε ) samples. Thus

discrepancy cannot hide in the very small portion of the

distribution, and we may effectively ignore the small portion

of the distribution when figuring out how hard it is to test

discrepancy.

In these two ways—represented by the subscript and

superscript of p−max
−ε in our results—the identity testing

problem may be “easier” than the simplified O(
||p||2/3

ε2 )
bound. But our corresponding lower bound shows that these

are the only ways.

C. Analysis of the tester

The core of the proof of the algorithmic direction of

Theorem 1 is an application of Chebyshev’s inequality: first

arguing that if the samples were drawn from a distribution

q with ||p− q||1≥ ε, then the expectation of the statistic in

question is large in comparison to the variance, and if the

samples were drawn from p, then the variance is sufficiently

small so as to not overlap significantly with the likely range

of the statistic in the case that ||p − q||1≥ ε. In order to

prove the desired inequalities relating the expectation and

the variance, we reexpress these inequalities in terms of the

two sequences of positive numbers p = p1, p2, . . . , and

Δ = Δ1,Δ2, . . . , with Δi := |pi − qi|, leading to an

expression that is the sum of five inequalities essentially of

the canonical form
∏

i

(∑
j p

ai
j Δbi

j

)ci ≥ 1. The machinery

of Section II thus yields an easily verifiable derivation of

the desired inequalities as a product of positive powers of

Hölder type inequalities, and Lp monotonicity inequalities.

See the full version for proofs.

IV. LOWER BOUNDS

In this section we show how to construct distributions

that are very hard to distinguish from a given distribution

p despite being far from p, establishing the lower bound

portion of Theorem 1. Explicitly, we will construct a dis-

tribution over distributions, that we will call Qε, such that

most distributions in Qε are far from p, yet k samples from

a randomly chosen member of Qε will be distributed very

close to the distribution of k samples from p. Analyzing

the statistics of such sampling processes can be enormously

involved (see for example the lower bounds of [16], which

involve deriving new and general central limit theorems in

high dimensions).

In this paper, however, we show that the statistics of k
samples from a randomly chosen distribution from Qε can

be captured much more directly, by a product distribution

over the i domain elements of a “coin flip between Poisson

distributions.” Thus we can analyze this process dimension-

by-dimension and sum the distances. That is, if di is the

distance between what happens for the ith domain element

given k samples from p versus k samples from the product

distribution “capturing” Qε, we can sum these up to bound

the probability of distinguishing p from Qε by
∑

i di.
However, this is not good enough for us; since the actual

probability of distinguishing these two cases for an ideal

tester is more like the L2 norm of these di distances instead

of the L1 norm, to achieve a tight result we need something

like
√∑

i d
2
i .

To accomplish this, we analyze all distances below via

the Hellinger distance,

H(p, q) =
1√
2

√∑
i

(
√
pi −√qi)2.

Hellinger distance has two properties perfectly suited for

our task: its square is subadditive on product distributions

(meaning it combines via the L2 norm instead of the L1

norm), and the Hellinger distance (times
√
2) bounds the

statistical distance.

We first give a lemma characterizing the Hellinger dis-

tance between the “coin flip between Poisson distributions”

mentioned above and a regular Poisson distribution. We

then show how a product distribution of these coin flip

distributions forms a powerful class of testing lowerbounds,

Theorem 4, which has already found use in [7].

Let Poi(λ ± ε) denote the probability distribution with

pdf over nonnegative integers i: 1
2poi(λ+ ε)+ 1

2poi(λ− ε),
which is only defined for ε ≤ λ.

Lemma 1. H(Poi(λ), Poi(λ± ε)) ≤ c · ε2λ for constant c.

This lemma, proved in the full version of the paper, is a

crucial ingredient in the proof of the following general lower

bound.

Theorem 4. Given a distribution p, and associated values
εi such that εi ∈ [0, pi] for each domain element i, define
the distribution over distributions Qε by the process: for
each domain element i, randomly choose qi = pi ± εi,
and then normalize q to be a distribution. Then there exists

a constant c such that it takes at least c
(∑

i
ε4i
p2
i

)−1/2

samples to distinguish p from Qε with success probability
2/3. Further, with probability at least 1/2, the L1 distance
between a random distribution from Qε and p is at least
min{(∑i�=argmax εi

εi),
1
2

∑
i εi}.

The lower bound portion of Theorem 1 follows from the

above theorem by appropriately choosing the sequence εi.
The details are contained in the full version of the paper.

Proof of Theorem 4: Consider the following related

distributions, which emulate the number of times each

domain element is seen if we take Poi(k) samples: first

randomly generate q̄i = pi ± εi without normalizing, and
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then for each i draw a sample from Poi(q̄i · k); compare

this to, for each i, drawing a sample from Poi(pi · k). We

note that with probability at least 1
2 , we have

∑
i q̄i ≥ 1;

further, with probability at least 1
2 a Poisson distribution

with parameter at least k will yield a sample at least k.

Thus with probability at least 1
2 · 1

2 = 1
4 , the number of

samples from the first Poisson process emulating Qε will be

at least k; with probability 1
2 the number of samples from

the simpler second Poisson process emulating p will be at

least k. Thus with probability at least 1
8 we have “a set of

at least k samples” from both distributions.

If it were possible to distinguish p from Qε in k samples

with probability 2/3, then we could distinguish these two

Poisson processes with probability 1
2 + 1

6·8 . However, these

two Poisson processes are both product distributions, and

we can thus compare them from the fact that the squared

Hellinger distance is subadditive on product distributions.

For each component i, the squared Hellinger distance is

H(Poi(kpi), Poi(k[pi±εi]))2 which by Lemma 1 is at most

c1k
2 ε4

p2
i

. Summing over i and taking the square root yields a

bound on the Hellinger distance of k
(
c1

∑
i
ε4

p2
i

)1/2

, which

thus bounds the L1 distance. Thus for small enough c, when

k satisfies the bound of the theorem, the statistical distance

between a set of k samples drawn from p versus drawn from

a random distribution of Qe must be arbitrarily small, and

the two cannot be distinguished.

We now analyze the second part of the theorem, bounding

the distance between a distribution q ← Qε and p. We

note that the total excess probability mass in the process of

generating q that must subsequently be removed (or added,

if it is negative) by the normalization step is distributed as∑
i±εi, and thus by the triangle inequality, the L1 distance

between q and p is at least as large as a sample from∑
i εi − |

∑
i±εi|. We thus show that with probability at

least 1/2, a random value from |∑i±εi| is at most either

maxi εi or 1
2

∑
i εi.

Consider the sequence εi as sorted in descending order.

We have two cases. Suppose ε1 ≥ 1
2

∑
i εi. Consider the

random number |∑i±εi|, where without loss of generality

the plus sign is chosen for ε1. With probability at least 1/2,

the sum of the remaining elements will be ≤ 0; further, by

the assumption of this case, this sum cannot be smaller than

−2ε1. Thus the sum of all the elements has magnitude at

most ε1 with probability at least 1/2.

In the other case, ε1 < 1
2

∑
i εi. Consider randomly

choosing signs si ∈ {−1,+1} for the elements iteratively,

stopping before choosing the sign for the first element j

for which it would be possible for
∣∣∣(∑i<j siεi)± εj

∣∣∣ to

exceed 1
2

∑
i εi. Since by assumption ε1 < 1

2

∑
i εi, we have

j ≥ 2. Without loss of generality, assume
∑

i<j siεi ≥ 0.

We have
∑

i<j siεi < 1
2

∑
i εi, and (by symmetry) with

probability at most 1/2 the sum of the remaining elements

with randomly chosen signs will be positive. Further, since

s1ε1 + s2ε2 + . . . + sj−1εj−1 + εj ≥ 1
2

∑
i εi, we have

s1ε1 + s2ε2 + . . . + sj−1εj−1 −
∑

i≥j εi ≥ − 1
2

∑
i εi, for

otherwise if this last inequality was “<” we could subtract

these last two equations to conclude εj +
∑

i≥j εi >
∑

i εi,
which contradicts the facts that s1 ≥ sj and j ≥ 2. Thus a

random choice of the remaining signs starting with sj will

yield a total sum at most 1
2

∑
i εi, with probability at least

1/2, as desired.
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