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Abstract

We further our algorithmic and structural understand-
ing of Nash equilibria. Specifically:

- We distill the hard core of the complexity of Nash
equilibria, showing that even correctly computing
a logarithmic number of bits of the equilibrium
strategies of a two-player win-lose game is as hard
as the general problem.

- We prove the following structural result about
Nash equilibria: “the set of approximate equilibria
of a zero-sum game is convex.”1

1 Introduction

The notion of Nash equilibria [18, 19] has captured
the imagination of much of the computer science the-
ory community, both for its many applications in the
growing domain of online interactions and for its deep
and fundamental mathematical structure. As the com-
plexity and scale of typical internet applications in-
crease, the problem of efficiently analyzing their game-
theoretic properties becomes more pointed. A variety
of algorithms have been proposed to compute Nash
equilibria using ideas from mathematical programming
[10, 14, 15, 17, 23, 24]. In the last few years, signifi-
cant progress has been made on algorithms for the ap-
proximation of equilibria [16], algorithms that apply
to special forms of games [21, 2, 13]. There has been
much recent work on characterizing the complexity of
the computation and approximation of Nash equilibria
[7, 11, 4, 3, 5, 1, 6, 12, 9, 8, 22].

Intuitively, the complexity of a game grows along
a few axes: the number of players involved, the num-
ber of choices available to each player, the complexity
of the payoffs that specify the game, and the accuracy
we desire for the computed equilibrium. In this paper
we show, however, that being able to compute Nash
equilibria is an all-or-nothing problem. That is, if we
can even roughly approximate the Nash equilibria of
the simplest imaginable games—the two-player games
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1See Lemma 3.1 for the precise statement.

where the outcome for either player is either a “win” or
a “loss”—then we can compute the Nash equilibria of
arbitrary games to as much precision as we desire. In
particular, we show that finding a logarithmic number
of bits of a Nash equilibrium of a two player win-lose
game is exactly as hard as the general version: comput-
ing a polynomial number of bits of an equilibrium in a
general r-player game, for any fixed r ≥ 2.

The consideration of Θ(log n)-bit computation is
significant both from a numerical analysis and a prac-
tical modeling perspective. Recently the field of al-
gorithms has shifted focus from exact to approximate
algorithms, in large part because for most purposes an
approximate solution is almost as meaningful as an ex-
act solution, but also because in many cases the inputs
to the problem are only known approximately. These
observations may be particularly true in the realm of
game theory, where the parameters of a game are de-
signed to approximately model the true preferences of
the players, and the Nash equilibria are meant to model
players’ actions. In practice, neither the inputs nor the
outputs of the Nash problem may be significant beyond
the first few digits.

Previously, different papers have analyzed the im-
portance of different aspects of the three “axes of hard-
ness” of the Nash problem: the bit-complexity of the
inputs, the number of players, and the desired precision
of the output. Abbott, Kane, and Valiant showed that
win-lose two-player games are as hard as general two-
player games [1]. Chen and Deng [4], building on work
by Daskalakis, Goldberg, and Papadimitriou [9] show
that two-player games are as hard as r-player games.
Chen, Deng and Teng show that finding Nash equilibria
of two-player games to Θ(log n) bits of precision is as
hard as the general two-player case [5]. In this work we
combine the strongest aspects of these previous reduc-
tions, showing that finding an approximate equilibrium
of a two-player win-lose game is as hard as the general
case. To prove this, we compose the transformations
of [1] and [5], and analyze its stability under approxi-
mations. As one of the contributions of this paper, we
establish a convexity result about approximate equilib-
ria for two-player zero-sum games, in analogy with the
classic result that their exact equilibria form a convex



set.

2 Games and Nash Equilibria

We introduce the concepts from game theory that we
will use for the rest of the paper. We begin with the
definition of a two-player game.

Definition 2.1. (Two-player Game) A two-player
game is defined by a pair of real-valued “payoff” or
“utility” matrices (U,V) of the same size, where the
game is conducted as follows: the first and second play-
ers simultaneously and independently choose a row and
column respectively of the matrices; the first player re-
ceives “payoff” corresponding to the entry of U specified
by this row and column, and the second player receives
“payoff” corresponding to the entry of V.

When playing such a game, the players may pick a
certain row or column ahead of time and play it with
probability 1, or they can pick probability distributions
on the rows or columns and, when asked to play, flip
random coins and draw from these distributions. We
denote a pair of strategies by a pair of vectors (x,y),
where x is a probability distribution over the rows, and
y is a probability distribution over the columns. We will
denote the set of probability vectors in n dimensions by
Pn.

Given that the first player plays strategy x, if
the second player plays column i, then if we let Vi

denote the ith column of matrix V, the expected payoff
the second player will receive is exactly xT Vi. More
generally, we refer to the vector xT V as the vector of
incentives for the second player to play each of the
columns. Thus if the second player plays strategy y,
then his expected payoff is xT Vy. Similarly, we say
that vector Uy represents the first player’s incentives,
and the expected payoff for the first player when playing
his strategy x is xT Uy.

To capture the notion of reasonable play in such a
game, we have the notion of a Nash equilibrium, which
says intuitively that a pair (x,y) is in equilibrium if
each player’s strategy is optimal with respect to the
other player’s strategy. (Note that the next definition
is syntactically different from the standard one; we
write it this way to motivate the notion of approximate
equilibria that we use. )

Definition 2.2. (Nash Equilibrium) Given a two-
player game (U,V), and denoting the ith row of U by
Ui, and the ith column of V by Vi, a pair of strategies
(x,y) is a Nash equilibrium if for each pair of indices
i, j, Uiy < Ujy ⇒ xi = 0 and xT Vi < xT Vj ⇒ yi = 0.

The celebrated theorem of Nash [18, 19] shows
that every two-player game (U,V) has Nash equilibria.

The problem of finding one of these has been an
exciting and challenging problem. To be precise with
the computational complexity, naturally, we have to
properly define the input size. In the complexity theory
over the reals, each payoff entry is a number. So the
input size is just twice the product of the number of row
and column strategies. But in the discrete complexity
setting, we may assume entries are rational. So, in
addition to the number of strategies, the input length
of a two-player game depends on the representation of
its payoff entries. One can express each rational number
c = d/e by the binary representations of d and e, and
hence its length is dlog2 de+ dlog2 ee. The input size of
a bimatrix game is then the sum of the lengths of all
its entries.

Although its worst-case complexity is exponential
[22], the classic Lemke-Howson algorithm [15] for find-
ing a Nash equilibrium of a bimatrix game can be used
to prove that the entries of equilibria of any rational bi-
matrix game are rational. Moreover, the length of the
rational expression of an equilibrium is polynomial in
the input length.

We will refer to the problem of finding the rational
representation of an equilibrium of a rational bimatrix
game as RATIONAL BIMATRIX. A win-lose game on the
other hand is specified by a pair of {0, 1}-matrices. We
denote the problem of finding a rational representation
of a Nash equilibrium of a win-lose game by WIN-LOSE
BIMATRIX.

In this paper we are concerned with approximate
Nash equilibria. There are several ways to define an
approximate Nash equilibrium. Perhaps, the most com-
monly used definition of approximate Nash equilibria is
the following one:

Definition 2.3. (ε-approximate Nash equilibrium)
Given a two-player game (U,V), we define a pair
of strategies (x,y) to be an ε-approximate Nash
equilibrium if ∀ u ∈ Pn,v ∈ Pn, the pair satisfies
xT Uy ≥ uT Uy − ε and xT Vy ≥ xT Vv − ε.

For the purpose of convenience, we work with the
following definition, which is shown equivalent up to
polynomial factors to the above definition in [5].

Definition 2.4. (ε-well-supported Nash) Given
a two-player game (U,V), we define a pair of strategies
(x,y) to be an ε-well-supported Nash equilibrium if for
any pair of indices i, j we have Uiy < Ujy−ε ⇒ xi = 0
and xVi < xVj − ε ⇒ yi = 0.

3 A Convexity Lemma

The reduction of [1] involves constructing a 0-1 “gener-
ator” game G whose unique Nash equilibrium consists



of vectors containing powers of 2; they then use the
game G to express arbitrary rational payoffs in binary.
In this section and the next we extend their results to
show that an approximate version of this result holds
even for ε-well-supported Nash equilibria.

The result of this section is a convexity lemma we
develop for ε-well-supported Nash equilibria. Recall
from standard game theory that in a so-called zero-
sum game, where the sum U + V = 0 throughout the
matrix, the Nash equilibria are solutions to a linear
program, and hence form a convex set. We show an
analog of this result in the approximate equilibrium
setting. We use this in the following section to help
characterize the approximate equilibria of G. There
are very few known results about the general structure
of approximate equilibria and we hope that this lemma
will prove useful as this field grows.

Lemma 3.1. (Approximate Convexity) Given a
zero-sum bimatrix game (U,V), a convex combination
of a pair of ε-well-supported Nash equilibria of (U,V)
will be a 4

δ ε-well-supported Nash equilibrium of (U,V),
where δ is the minimum non-zero weight found as an
element of one of the equilibria where the corresponding
element of the other equilibria has weight 0.

Proof. Suppose (U,V) has two ε-well supported Nash
equilibria, (r1, c1) and (r2, c2). Without loss of gen-
erality, we can write r1 and r2 in block form as r1 =
[x,y1,0] and r2 = [0,y2, z], where the first block con-
sists of those rows only played in the first equilib-
rium, the second block consists of those rows played
in both equilibriums, and the third block consists of
those rows only played in the second equilibrium. Sim-
ilarly, we can express c1 and c2 in block form as
c1 = [p,q1,0] and c2 = [0,q2, r]. Note that without
loss of generality we may ignore those rows and columns
never played in either equilibrium.

With this block decomposition in mind, we express
the row-player’s payoff matrix U as

U =

 A B C
D E F
G H I

 ,

where the payoff matrix for the column player is just
V = −U since (U,V) is a zero-sum game.

Let I1 be the maximum incentive for the row player
in the equilibrium (r1, c1), namely maxUc1, and let
I2 = maxUc2 be the maximum incentive for the row
player in the equilibrium (r2, c2). From the definition
of an ε-well supported Nash equilibrium, we have the

following inequalities:

I1 − ε ≤ Ap + Bq1 ≤ I1(3.1)
I1 − ε ≤ Dp + Eq1 ≤ I1(3.2)

Gp + Hq1 ≤ I1(3.3)

I2 − ε ≤ Eq2 + Fr ≤ I2(3.4)
I2 − ε ≤ Hq2 + Ir ≤ I2(3.5)

Bq2 + Cr ≤ I2(3.6)

Now consider the expression r1Uc1 ≡ −r1Vc1.
We interpret this as follows: up to sign change, the
average incentive for the row player to play a row
equals the average incentive for the column player to
play a column, where the averages are taken over the
distributions induced by r1 and c1 respectively.

Since each incentive is within ε of the maximum
incentive for that player, the average incentives must
also be within ε of these respective maxima, and we
conclude that

−max r1V ≤ I1 ≡ maxUc1 ≤ 2ε−max r1V, and
−max r2V ≤ I2 ≡ maxUc2 ≤ 2ε−max r2V.

Using this, we now write out the inequalities for
the column-player’s payoffs. Noting that V = −U, the
direction of the inequalities is different from above:

I1 − 2ε ≤ xA + y1D ≤ I1 + ε(3.7)
I1 − 2ε ≤ xB + y1E ≤ I1 + ε(3.8)
I1 − 2ε ≤ xC + y1F(3.9)
I2 − 2ε ≤ y2E + zH ≤ I2 + ε(3.10)
I2 − 2ε ≤ y2F + zI ≤ I2 + ε(3.11)
I2 − 2ε ≤ y2D + zG(3.12)

If we multiply equation (3.2) on the left by y2,
equation (3.3) by z, and add the results, we have that

y2Dp + y2Eq1 + zGp + zHq1 ≤ I1(ȳ2 + z̄),

where we use the notation v̄ to denote the sum of the
elements of a vector v. If we multiply equation (3.10)
on the right by q1, equation (3.12) by p, and add the
results, we have that

(I2 − 2ε)(p̄ + q̄1) ≤ y2Dp + y2Eq1(3.13)
+ zGp + zHq1.

Comparing these two inequalities reveals that (I2 −
2ε)(p̄ + q̄1) ≤ I1(ȳ2 + z̄). We note that since r2 and
c1 are probability vectors, p̄ + q̄1 = ȳ2 + z̄ = 1, and
we may thus conclude that I2 ≤ I1 + 2ε. Since there
is nothing asymmetric about the roles of the row and



column players, we have by symmetry that I1 ≤ I2+2ε.
Combining this and (3.13) yields

I1 − 4ε ≤ y2Dp + y2Eq1 + zGp + zHq1.

From equation (3.2), we have I1ȳ2 ≥ y2Dp + y2Eq1.
Subtracting these two inequalities, and noting that
1− ȳ2 = z̄ we have that I1z̄− 4ε ≤ z(Gp + Hq1).

Since each entry of Gp + Hq1 is at most I1 from
equation 3, and each entry of z is at least δ by definition
of δ, we conclude that I1− (4ε)/δ ≤ Gp+Hq1, namely
that the incentive for the row player to play in rows in
the third block when the column player plays strategy
c1 is within 4

δ ε of optimum. Since this is certainly also
the case when the column player plays strategy c2, we
have that for any convex combination of strategies c1

and c2 the rows of the third row-block have incentive
within 4

δ ε of optimal. We note that the same holds true
for rows in the second row-block since each incentive
is within ε of optimal in both the c1 and c2 cases by
definition.

We now invoke symmetry to claim that the incen-
tives for all the rows and columns of the game are within
4
δ ε of optimal for any convex combination of the two
original equilibria, which implies that any convex com-
bination will be a 4

δ ε-well supported Nash equilibrium,
as desired.

4 Approximate Equilibria in the Generator
Game G

Recall from [1] the generator game G, that enabled
them to translate general payoffs into binary.

Definition 4.1. (Generator Game) Define matri-
ces A,B and Sj as

A =

 1 0 0
0 1 0
0 0 1

 , B =

 1 1 0
0 1 1
1 0 1

 ,

Sj =


A A · · · A B
A A · · · B 0
...

... . .
. ...

...
A B · · · 0 0
B 0 · · · 0 0

 .

The k × k matrix Sj is a j × j block matrix, where
k = 3j. Define the game Gj = (Sj , 1− Sj).

The following claim is shown in [1]:

Claim 4.1. The game Gj = (Sj , 1 − Sj) has a unique
(exact) Nash equilibrium (r, c) of

r = c =

(
2j−1, 2j−1, 2j−1, ..., 4, 4, 4, 2, 2, 2, 1, 1, 1

)T

3(2j − 1)
.

As a first step to showing an approximate version
of this, we characterize the full-support approximate
equilibria of Gj , that is, those equilibria for which
every row and column is played with strictly positive
probability.

Claim 4.2. Every full-support ε-well-supported Nash
equilibrium of the game (Sj , 1 − Sj) differs from (r, c)
defined above by at most 18j2ε in any coordinate.

Proof. Consider such an equilibrium (r′, c′). We note
that each of the incentives Sjc′ must be between q and
q − ε where q here is the highest incentive. Let c′′ be
the solution to the equation Sjc′′ = q. From Claim 4 in
[1] we have that c′′ must be proportional to our target
of c.

We note that Sj is invertible and further has the
property that all the entries of its inverse have absolute
value less than 1. The latter can be verified by writing
down the closed form of (Sj)−1, which can be quite
easily determined from the block-triangular structure
of Sj . Thus each coordinate of c′ differs from the
corresponding coordinate of c′′ by less than 3jε, where
3j is the number of rows or columns of Sj .

By definition, both c and c′ have sum 1. Thus c′′

has sum within (3j)2ε of 1, since each of the 3j entries
of c′′ is within 3jε of the corresponding entry of c′.
Also, since each of the entries of c is positive, and c′′

is proportional to c, the total (L1) distance between c
and c′′ equals the difference between their sums. Thus
from the triangle inequality the L1 distance between c
and c′ is at most 18j2ε, as desired.

The same argument applies to the row-player’s
strategy, yielding the desired result.

We now show that for small enough ε we can remove
the full-support condition from the above claim without
changing the result.

Claim 4.3. Every ε-well supported Nash equilibrium of
the game (Sj , 1−Sj) differs from (r, c) defined above by
at most 18j2ε in any coordinate provided ε < 1

648j24j .

Proof. Suppose for the sake of contradiction that we
had an equilibrium (r′, c′) which violated this condi-
tion. By the previous claim, (r′, c′) cannot have full
support: it must play certain strategies with probabil-
ity 0. We now apply Lemma 3.1 to the pair of equilibria
(r′, c′) and (r, c), with the latter as defined in Claim 4.1.

These are both ε-well-supported, so the ε from
Lemma 3.1 is just ε. To compute δ, we note that since
(r, c) is a full-support equilibrium, from the definition
of δ we have that δ must be at least the minimum value
of r and c, namely δ ≥ 1

3(2j−1) .



We now conclude from Lemma 3.1 that any convex
combination of (r′, c′) and (r, c) is a 12(2j − 1)ε-well-
supported Nash equilibrium. We note further that
any strictly positive convex combination of these will
have full support, and is thus subject to Claim 4.2.
Explicitly, any strictly positive convex combination of
these two equilibria must be within 18j2 · 12(2j − 1)ε of
(r, c) in any coordinate. Since each entry of r and c is at
least 1

3(2j−1) and some entry of (r′, c′) is 0, this implies
that ε ≥ 1

648j2(2j−1)2 , which contradicts our bound on
ε. Thus no other equilibria exist.

5 Translating to 0-1: Stability Analysis of a
Nash Homomorphism

In this section, we introduce a notion of “well-scaled”
two-player games and perform a stability analysis of the
Nash homomorphism developed in [1] on this family
of games. As the family of hard two-player games
constructed in [5] can be transformed into well-scaled
games, we will use this stability analysis in the next
section to prove our main result.

A matrix U is K-well-scaled for a positive integer
K if each entry of U can be expressed as r/K for some
integer r between K/2 and K. A two-player game
(U,V) is K-well-scaled if both U and V are K-well-
scaled.

The following is the main result of this section.

Theorem 5.1. There exists a pair of polynomial-time
computable functions f, g such that given an n×n game
H = (A,B), and integers K = 3(2k − 1) ≤ n such
that H is K-well-scaled, f(H) is a 0-1 game H ′ =
(A′,B′) of dimensions Θ(nk2), and for any ε/n25-well-
supported Nash equilibrium (x′,y′) of game H ′, where
ε ≤ 1, (x,y) = g(x′,y′) is an ε-well-supported Nash
equilibrium of H.

We apply the Nash homomorphism of [1] to con-
struct the map f .

Construction 5.1. (Translation) Let H = (A,
B) be a bimatrix game, where A and B are both n× n
matrices. A is K-well-scaled, where K = 3(2k−1) ≤ n,
k ∈ Z+. Each row of B has an entry at least 1

2 and
0 ≤ B ≤ 1. Let H ′ = (A′,B′) be a pair of 2n × 2n
block matrices, defined in Figure 1.

In detail, the blocks in A′ are: block (i, 2i− 1), for
1 ≤ i ≤ n, is a 3k × 1 vector of all 1s; block (i, 2i), for
1 ≤ i ≤ n, is the 3k × 3k matrix Sk; block (n + i, 2j),
for 1 ≤ i, j ≤ n, is a 1 × 3k 0-1 vector Ri,j such that
Ri,jc = Ai,j, and the remaining blocks are matrices of

A′ =



1 Sk 0 0 . . . 0 0
0 0 1 Sk . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 Sk

0 R1,1 0 R1,2 . . . 0 R1,n

0 R2,1 0 R2,2 . . . 0 R2,n

...
...

...
...

. . .
...

...
0 Rn,1 0 Rn,2 . . . 0 Rn,n



B′ =



0 1− Sk 0 0 . . . 0 0
0 0 0 1− Sk. . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1− Sk

B1,1 0 B1,2 0 . . . B1,n 0
B2,1 0 B2,2 0 . . . B2,n 0

...
...

...
...

. . .
...

...
Bn,1 0 Bn,2 0 . . . Bn,n 0


.

Figure 1: Matrices A′ and B′

all 0’s of proper size, where recall the vectors

r = c =

(
2k−1, 2k−1, 2k−1, ..., 4, 4, 4, 2, 2, 2, 1, 1, 1

)T

3(2k − 1)

are the exact Nash equilibrium of the generator game
Gk = (Sk, 1 − Sk). Note that for any entry Ai,j of a
K-well-scaled game, there exists a 0-1 vector Ri,j such
that Ri,jc = Ai,j.

The blocks of B′ are: block (i, 2i), for 1 ≤ i ≤ n,
is the 3k × 3k matrix 1 − Sk; block (n + i, 2j − 1), for
1 ≤ i, j ≤ n, is the scalar Bi,j; the rest of the blocks are
matrices of all 0’s of proper size.

Let (x,y) be an ε′-well-supported Nash equilibrium
of H ′ = (A′,B′), where ε′ = ε/n12 and ε ≤ 1. Since
x and y may be thought of as block vectors, we index
them by block as follows: for 1 ≤ i ≤ n and 1 ≤ j ≤ 3k,
let xi

j = x(i−1)(3k)+j and yi
j = y(i−1)(3k+1)+(j+1). For

1 ≤ i ≤ n, let xi
(∗) (yi

(∗) ) denote the 3k-vector whose
jth entry is xi

j (yi
j ). Let x̄i and ȳi denote the sum of

each block, namely

x̄i =
∑

1≤j≤3k

xi
j and ȳi =

∑
1≤j≤3k

yi
j .

As above, we use A′
i to denote the ith row of A′ and

B′i to denote the ith column of B′. Recall we assumed
that K = 3(2k − 1) ≤ n, and thus k = O(log n). We let



ck be the vector defined in Section 4 such that (ck, ck)
is the unique Nash equilibrium of generator Gk.

We first prove a few lemmas to characterize the
structure of (x,y), and then we show how this structure
is in fact related to that of an approximate equilibrium
of the original game H.

Lemma 5.1. If xi > 0 then A′
iy

T ≥ 1
n(3k+1) − ε′; If

yi > 0 then B′Ti x ≥ 1
2

1
n(3k+1) − ε′.

Proof. We note that from the definition of K-well-
scaled, and the construction of A′ and B′, we have
that each column of A′ contains a 1, and each row of
B′ contains an entry at least 1

2 .
From the definition of an ε′-well-supported Nash

equilibrium we have that any row i with xi > 0 must
have incentive A′

iy
T within ε′ of the maximum row

incentive. We note that since the game has n′ = n(3k+
1) columns, one of these columns j must have yj ≥ 1/n′.
Since this column contains an entry Ai′,j = 1 by the
above observation, the i′th row must have incentive at
least 1/n′, and thus any row with xi > 0 must have
incentive within ε′ of this, as desired. The argument
for the columns is almost identical.

Lemma 5.2. If ȳi ≥ n6ε′ for some i : 1 ≤ i ≤ n, then
we have x̄i ≥ 1/n3 and yi

(∗) = ȳick ± n4ε′.

Proof. Suppose for the sake of contradiction that x̄i <
1/n3. Then for each column of the block yi

(∗), since
0 ≤ B′ ≤ 1, the expected payoff of the second player
is less than 1/n3. But 1/n3 < 1

2
1

n(3k+1) − ε′, we may
invoke Lemma 5.2 to conclude that the columns of this
block are never played, the desired contradiction.

To prove the second half, we note that if we let L =
max(1/x̄i, 1/ȳi), then if we consider the pair of vectors
(xi

(∗)/x̄i,yi
(∗)/ȳi) as a pair of strategies in the sub-game

Gk, we note that they satisfy all the conditions for being
a Lε′-well-supported Nash equilibrium of the game Gk.

Since x̄i ≥ 1/n3 and ȳi ≥ n6ε′, we have Lε′ ≤
max(n3ε′, 1/n6) ≤ 1/n6 � 1/(648k24k). We thus
invoke Lemma 4.3 to conclude that yi

(∗) = ȳick ±
18k2Lȳiε′. Since Lȳi = max(1, ȳi/x̄i), and ȳi ≤ 1 and
x̄i ≥ 1/n3, we have Lȳi ≤ n3. For large enough n,
we have 18k2 ≤ n since k = O(log n), so we have that
yi

(∗) = ȳick ± n4ε′.

We note the following immediate corollary:

Corollary 5.1. If ȳi ≥ n6ε′ for some 1 ≤ i ≤ n, then
for all j, 1 ≤ j ≤ 3k we have

Rj,i(yi
(∗))

T = Aj,iȳ
i ± n5ε′, and

Sk
j (yi

(∗))
T = ȳi/3k ± n5ε′,

where Sk
j denotes the jth row of Sk.

Proof. From the definition of Rj,i that Rj,ick = Aj,i.
Since from Lemma 5.2 we have that yi

(∗) = ȳick ±n4ε′,
we have that Rj,i(yi

(∗))
T = Aj,iȳ

i ± n4ε′
∑

Rj,i. Since
Rj,i is a vector of length 3k � n, and each of whose
elements is at most 1, we have that Rj,i(yi

(∗))
T =

Aj,iȳ
i ± n5ε′, as desired.

To prove the second part, we again have that
yi

(∗) = ȳick ± n4ε′ from Lemma 5.2, and note that ck

is a full-support Nash equilibrium of the 3k × 3k game
Gk = (Sk, 1− Sk), and so Sk

j ck = 1
3k . Thus, as above,

we conclude Sk
j (yi

(∗))
T = ȳi/3k ± n5ε′ as desired.

Lemma 5.3. If si
def= y(i−1)(3k+1)+1 = 0 for some

1 ≤ i ≤ n then ȳi < n6ε′.

Proof. Assume ȳi ≥ n6ε′, then from Lemma 5.2 we
have that x̄i ≥ 1/n3 and yi

(∗) = ȳick ± n4ε′.
Consider the incentive of the row player to play

in row-block i as opposed to some other row. Since
si = 0, the only contributions to the incentive for rows
in the ith block come from yi

(∗), and we have from
the above corollary that Sk

j (yi
(∗))

T = ȳi/3k ± n5ε′.
However, consider his incentive to play row 3kn + i,
namely Rj,i(yi

(∗))
T = Aj,iȳ

i ± n5ε′. Since Aj,i ≥ 1
2 , we

have Rj,i(yi
(∗))

T ≥ 1
2 ȳi − n5ε′. Since ȳi ≥ n6ε′ we have

that the incentive for the first player to play row i is
more than ε′ less than his incentive to play row 3kn+ i,
and thus he will not play rows in the ith block in an
ε′-well-supported Nash equilibrium, which contradicts
our result that x̄i ≥ 1/n3.

We next provide lower bounds for the total weights
in certain rows and columns.

Lemma 5.4. Let ri = x3kn+i for all i : 1 ≤ i ≤ n, then∑
1≤i≤n ri ≥ 1/n3.

Proof. Suppose for the sake of contradiction that∑
ri < 1/n3.
Consider the payoffs in the column-blocks indexed

by si = y(i−1)(3k+1)+1. Since the only non-zero payoffs
in these columns for the column player lie in the rows
indexed by ri, and each of these payoffs is at most 1,
the total incentive for any of these columns is at most∑

ri < 1/n3. From Lemma 5.2 we see that this implies
that si = 0 for all i. Since y is a vector with sum 1,
we have

∑
ȳi = 1. Thus for some row block j, we have

ȳj ≥ 1/n � n6ε′. However, from Lemma 5.3 we have
that each ȳj ≤ n6ε′. Since ε′ = ε/n12 and ε ≤ 1, we
have the desired contradiction.

Lemma 5.5.
∑

1≤i≤n ȳi ≥ 1/n3.



Proof. Suppose for the sake of contradiction that∑
ȳi < 1/n3.
Consider the incentive for the row player to play in

the rows corresponding to ri = x3kn+i. Since the only
non-zero entries occur in the columns ȳ(∗), and each
entry is at most 1, we have that the total incentive to
play in any of these rows is at most

∑
ȳi < 1/n3.

As above, we compare this with Lemma 5.2 and see
that ri = 0 for all i. However, this contradicts Lemma
5.4, implying that in fact

∑
ȳi ≥ 1/n3, as desired.

We are now in a position to construct a scheme to
recover ε-well-supported Nash equilibria of the original
game H from ε′-well-supported Nash equilibria of the
modified game H ′.

Construction 5.2. Given an ε′-well-supported equi-
librium (x′,y′) of H ′, where ε′ = ε/n12 and ε ≤ 1,
define the variables x̄i, ȳi, ri, si as above. We construct
an ε-well-supported equilibrium (x,y) of H:

• Let C1 = 1/
∑

ri, and let x = C1r, where xi = ri

for all i : 1 ≤ i ≤ n.

• Let q be the length n vector such that qi = 0 if
ȳi < n6ε′ and qi = ȳi otherwise.

• Let C2 = 1/
∑

qi, and let y = C2q.

Given what the above lemmas tell us about the struc-
ture of the equilibrium (x′,y′) we are now in a posi-
tion to prove directly that (x,y) as constructed is an
ε-well-supported Nash equilibrium of the original game
H = (A,B). We show first that no column played has
incentive more than ε less than optimal, and then show
the corresponding statement for rows.

Lemma 5.6. For all 1 ≤ i, j ≤ n, if xT Bj < xT Bi − ε
then yj = 0.

Proof. In the above construction, the columns i, j of
B correspond to columns (3k + 1)(i − 1) + 1 and
(3k + 1)(j − 1) + 1 of B′. Further, because of the way
we construct B′, the entries in the last n rows of these
columns are identical with the entries of B. Thus we
have

ε < xT Bi − xT Bj = C1(rT Bi − rT Bj)
= C1(rT B(3k+1)(i−1)+1 − rT B(3k+1)(j−1)+1),

where this last expression, when divided by C1, is the
incentive difference for these columns in the game H ′.
From Lemma 5.4 we have that C1 ≤ n3, so thus the
incentive difference of these columns of H ′ is at least
ε/n3 > ε′. Thus rj = 0, which from the construction of
y implies yj = 0 as desired.

Lemma 5.7. For all 1 ≤ i, j ≤ n, if AjyT < AiyT − ε
then xj = 0.

Proof. Consider the incentives for the row player in the
transformed game H ′. Let Ii, Ij be the incentives to
play in rows 3kn + i, 3kn + j respectively. We lower-
bound Ii and upper-bound Ij to prove the desired
result. We have from Corollary 5.1 that

Ii =
∑

1≤m≤n

Ri,m(ym
(∗))

T ≥
∑

qm>0

Ri,m(ym
(∗))

T

≥
∑

qm>0

Ai,mȳm − n5ε′ ≥ Aiy/C2 − n6ε′.

Similarly, from Corollary 5.1 and the construction
of y we have Ij ≤ Ajy/C2 + n7ε′ + n6ε′. We note that
from Lemma 5.5 and the definition of C2 we have that
C2 ≤ n4. Thus Ii − Ij � ε′ since ε′ = ε/n12. Thus
rj = 0 in the game H ′, from which we conclude that
xj = 0, as desired.

We combine the above lemmas to yield the follow-
ing:

Lemma 5.8. There exists a pair of polynomial-time
computable functions (f, g) such that given a n × n
game H = (A,B), and integers K = (2k − 1) ≤ n
such that A is K-well-scaled, and each row of B has
an entry at least 1

2 and 0 ≤ B ≤ 1, f(H) is a
game H ′ = (A′,B′) where 1). both A′ and B′ are
n(3k +1)×n(3k +1) matrices; 2). A′ is a 0-1 matrix,
and every column has at least one nonzero entry; 3).
B′ has entries either 0, 1 or from B. For every ε/n12-
well-supported Nash equilibrium (x′,y′) of H ′, where
ε ≤ 1, (x,y) = g(x′,y′) is an ε-well-supported Nash
equilibrium of H.

Let f and g be the two functions defined by
Constructions 5.1 and 5.2 respectively. Then we have
the desired result from Lemmas 5.6 and 5.7. We now
show our main result, Theorem 5.1.

Proof. [Theorem 5.1] Given a K-well-scaled game H =
(A,B), first apply Construction 5.1 to yield a game
H ′ = (A′,B′) where A′ and B′ satisfy the conditions
listed in Lemma 5.8. Let n′′ = n(3k + 1) and K ′′ =
3(2k+1 − 1) = 2K + 3. We define the game H ′′ =
(A′′,B′′) where B′′ def= A′T and A′′ def= (K+2)+KB′

K′′ .
One can check that A′′ is K ′′-well-scaled, and K ′′ =
2K + 3 ≤ 2n + 3 < n′′. For any c > 0, if (x′′,y′′)
is a c/3-well-supported Nash equilibrium of H ′′, then
(y′′,x′′) is a c-well-supported Nash equilibrium of H ′.
Now we may apply Construction 5.1 again, to yield a
0-1 game H ′′′ = (A′′′,B′′′).



Given an ε/n25-well-supported Nash equilibrium
(x′′′,y′′′) of H ′′′, we may find an ε/(3n12)-well-
supported Nash equilibrium (x′′,y′′) of game H ′′ by
Construction 5.2, since k = O(log n) and

ε

3n12
· 1
(n′′)12

=
ε

3n12
· 1
(n(3k + 1))12

>
ε

n25
.

The construction from H ′ to H ′′ shows that (x′,y′) =
(y′′,x′′) is an ε/n12-well-supported Nash equilibrium
of H ′. We now apply Construction 5.2 a final time
to recover an ε-well-supported equilibrium of H, as
desired.

6 Approximate Win or Lose: All or Nothing

To define the computational complexity of finding
and approximating Nash equilibria, we must decide
the format of representation of the equilibria. Note
that each entry in an equilibrium is a number be-
tween 0 and 1. One way to specify such a num-
ber 0 ≤ c ≤ 1 is to express it using its binary rep-
resentation (c0.c1 · · · cL · · · ), where ci ∈ {0, 1} and
c = limi→∞

∑
i=0 ci/2i.

As the binary representation of some rational num-
bers may not be finite, we have to round off the numbers
in order to use a finite representation, resulting in an
approximation. The first L bits c0, ..., cL−1 give us an
L-bit approximation c̃ of c. We can similarly “express”
a Nash equilibrium (x,y) by the finite binary represen-
tation of its entries.

In this discrete representation of equilibria, we can
define the computational problem of bimatrix games as:
given a bimatrix game (U,V) and an integer L, find two
n×L binary matrices (X,Y) such that for each i, X[i, ∗]
and Y[i, ∗] are the first L binary bits, respectively,
of the ith-entry of x and y in a Nash equilibrium
(x,y) of (U,V). We refer to this computational
problem as L-BIT BIMATRIX. We use L-BIT RATIONAL
BIMATRIX to refer to the computational problem when
the input instances are rational games. When the
input instances are win-lose games, we call it L-BIT
WIN-LOSE BIMATRIX.

In this section, we prove the main result of this
paper.

Theorem 6.1. (All-or-Nothing in Approximat-
ing Nash for Win-Lose Games) For any constant
c > 0, the problem of finding a 1/nc-approximate Nash
equilibrium of WIN-LOSE BIMATRIX is exactly as hard
as RATIONAL BIMATRIX. Therefore, (1 + c) log n-BIT
WIN-LOSE BIMATRIX is exactly as hard as RATIONAL
BIMATRIX.

Before proving this theorem, we briefly review
previous results along these lines. We use P ≡ Q to

denote that two problems P and Q are polynomial-time
reducible to each other.

• Abbott, Kane, and Valiant [1] proved WIN-LOSE
BIMATRIX ≡ RATIONAL BIMATRIX.

• Chen and Deng [4], building on the work of Daska-
lakis, Goldberg and Papadimitriou [12, 9], proved
RATIONAL BIMATRIX is PPAD-complete2. This
result implies that general two-player games are
as hard as general r-players games, for any fixed
integer r.

– Proposition 6.1 below implies that Θ(n)-BIT
RATIONAL BIMATRIX ≡ RATIONAL BIMATRIX.

• Chen, Deng, and Teng [5] established that, for any
constant c > 0, computing a 1/nc-approximate
Nash equilibrium of INTEGER BIMATRIX remains
PPAD-complete [5], where in an instance (U,V)
of INTEGER BIMATRIX with n strategies, each entry
of (U,V) is an integer of magnitude poly(n).

– Proposition 6.1 implies that (1 + c) log n-BIT
INTEGER BIMATRIX ≡ RATIONAL BIMATRIX.

6.1 Proof of Theorem 6.1. We first observe the
following simple fact: suppose (x,y) is a Nash equi-
librium of game (U,V) where all payoff entries are
between 0 and 1 and there are n row and n column
strategies; let (x̃, ỹ) be the vectors generated by the
first L-bits of entries in (x,y); then 1 − n2−L+1 ≤
‖x̃‖1 , ‖ỹ‖1 ≤ 1 and

xT Uy − n2−L+1 ≤ x̃T Uỹ ≤ xT Uy,

xT Vy − n2−L ≤ x̃T Vỹ ≤ xT Vy.

Therefore we have immediately from the definition of
ε-approximate Nash equilibria,

Proposition 6.1. From a solution (x̃, ỹ) of an in-
stance (U,V) of L-BIT BIMATRIX, we can obtain an
(n2−L+1)-approximate Nash equilibrium (x̄, ȳ) of the
bimatrix game (U,V).

2PPAD is a complexity class introduced by Papadimitriou

[20]. Informally, a problem is PPAD-complete if it is exactly
as hard as general discrete fixed-point problems. As the results

of our paper do not directly need the definition of PPAD, we
refer interested readers to the original paper of Papadimitriou.

The only fact we will need in this paper is that a problem is

PPAD-complete if it is exactly as hard as RATIONAL BIMATRIX.
We note that because the complexity class PPAD might not be

closed under Karp reductions – reductions given by polynomial-

time computable transformation functions – we carefully state
our main result in the form: problem A is exactly as hard as

problem B. In particular, we have evidence that (1+ c) log n-BIT

WIN-LOSE BIMATRIX is not in PPAD even though it is exactly as
hard as RATIONAL BIMATRIX according to Karp reductions.



We now prove our main result.

Proof. [Theorem 6.1] By Proposition 6.1, the second
statement of the theorem follows directly from the first
statement of the theorem. We first prove the statement
for some constant c > 0 and then show how to reduce
the constant. In [5], the following problem is proved to
be PPAD-complete, and hence as hard as RATIONAL
BIMATRIX: Given a game H = (U,V), where U and V
are n × n matrices with integer entries between 0 and
n1/2, find an n−1-well-supported Nash equilibrium.

Let H = (U,V) be such a bimatrix game with
n strategies. Let k be the largest integer such that
K = 3(2k − 1) ≤ n, where for large enough n we have
2n1/2 < K = Θ(n). We construct a K-well-scaled game
(U′,V′) by setting ∀ i, j : 1 ≤ i, j ≤ n,

U′
i,j =

(K + 1) + 2Ui,j

2K
and V′

i,j =
(K + 1) + 2Vi,j

2K
.

Since K ≤ n, every n−2-well-supported Nash equilib-
rium of H ′ is also an n−1-well-supported Nash equi-
librium of H. By Theorem 5.1, we can construct a
0-1 game H ′′ of dimensions n′′ = Θ(nk2) in polyno-
mial time such that, from every n−27-well-supported
Nash equilibrium of the 0-1 game H ′′, one can com-
pute an n−2-well-supported equilibrium of H ′, and
hence an n−1-well-supported equilibrium of H in poly-
nomial time. We have thus shown that finding an n−27-
well-supported Nash equilibrium in an n × n win-lose
game is PPAD-complete. Using the polynomial equiv-
alence between ε-well-supported Nash equilibrium and
ε-approximate Nash equilibrium of [5], we know that
there exists a constant c > 2 such that, the problem of
finding an n−c-approximate Nash equilibrium in a win-
lose game of dimensions n×n is also PPAD-complete.
Following an idea from [5], we show in Lemma 7.1 of
Section 7 that we can extend the PPAD-completeness
to any constant c > 0.

7 PPAD-Completeness for Any Constant c > 0
Lemma 7.1. If there exists a constant c > 0 such
that, the problem of finding an n−c-approximate Nash
equilibrium in an n × n win-lose bimatrix game is
PPAD-complete, then it remains PPAD-complete for
any constant c′ > 0.

We prove this with a padding argument, showing how
to pad the game from size n× n to size n′′ × n′′

with large uniform blocks of zeros and ones without
significantly changing the equilibrium structure.

Proof. If c < 2, then finding an n−2-approximate Nash
equilibrium in 0-1 games is harder, and thus it is also
complete in PPAD. Therefore, we can always assume
that c ≥ 2.

We need to prove the lemma for constant 0 <
c′ < c. Let H = (A,B) be an n × n win-lose game,
then we transform it into a new game H ′ = (A′,B′)
as follows. Here we use Ai and Bi to denote the ith

column and ith row of A and B, respectively. For each
i : 1 ≤ i ≤ n, if Ai = 0, then A′

i = 1, otherwise,
A′

i = Ai. For each i : 1 ≤ i ≤ n, if Bi = 0, then
B′i = 1, otherwise, B′i = Bi. One can verify that
any ε-approximate Nash equilibrium of H ′ is also an
ε-approximate Nash equilibrium of H. Further, every
row of A′ and every column of B′ has at least one entry
with value 1.

Next we construct a n′′ × n′′ game H ′′ = (A′′,B′′)
where n′′ = n

2c
c′ as follows. Here A′′ and B′′ are

both 2 × 2 block matrices with A′′
1,1 = A′, B′′1,1 =

B′, A′′
1,2 = B′′2,1 = 1 and A′′

2,1 = A′′
2,2 = B′′1,2 =

B′′2,2 = 0. By definitio H ′′ is a 0-1 game. Now

let (x′′,y′′) be a 1/n′′
c′

= 1/n2c-approximate Nash
equilibrium of H ′′ = (A′′,B′′). By the definition
of ε-approximate Nash equilibria, one can show that
0 ≤

∑
n<n≤n′′ x′′i ,

∑
n<n≤n′′ y′′i ≤ n1−2c � 1/2, since

we assumed that c ≥ 2. Letting a =
∑

1≤i≤n x′′i
and b =

∑
1≤i≤n y′′i , we construct a profile of mixed

strategies (x′,y′) of H ′ as follows: x′i = x′′i /a and
y′i = y′′i /b for all i : 1 ≤ i ≤ n. Since a, b > 1/2,
(x′,y′) is a 2/n2c-approximate Nash equilibrium of H ′,
which is also a 1/nc-approximate Nash equilibrium of
H.

The reduction above shows that the problem of
computing an n−c′

-approximate Nash equilibrium in
a n × n win-lose game is PPAD-complete for any
constant c′ > 0.
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