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Abstract: We investigate the number of samples required for testing the monotonicity of a distribution with respect to
an arbitrary underlying partially ordered set. Our first result is a nearly linear lower bound for the sample complexity
of testing monotonicity with respect to the poset consisting of a directed perfect matching. This is the first nearly
linear lower bound known for a natural non-symmetric property of distributions. Testing monotonicity with respect
to the matching reduces to testing monotonicity with respect to various other natural posets, showing corresponding
lower bounds for these posets also. Next, we show that whenever a poset has a linear-sized matching in the transitive
closure of its Hasse digraph, testing monotonicity with respect to it requires Ω(

√
n) samples. Previous such lower

bounds applied only to the total order. We also give upper bounds to the sample complexity in terms of the chain
decomposition of the poset. Our results simplify the known tester for the two dimensional grid and give the first
sublinear bounds for higher dimensional grids and the Boolean cube.
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1 Introduction

We study the complexity of testing the monotonicity of
a distribution over the elements of a partially ordered set.
Given a poset P = (V,�), a probability distribution p on
the elements of V is said to be monotone with respect to P
if x � y implies p(x) ≤ p(y). Monotonicity is a natural
property of functions on posets and has been extensively
studied in the context of property testing (see [EKK+00,
GGL+00, DGL+99, BRW99, AKNS99, FN01, Fis01]).
Here, we examine the testability of the monotonicity of
distributions, where access to the distribution is given only
via samples independently generated according to the dis-
tribution. We would like to construct efficient algorithms
that take as input a poset P , samples of a distribution p
and a parameter ε ∈ (0, 1), and determine correctly with
high probability whether p is monotone with respect to P
or is ε-far away in L1 distance from any such monotone
distribution.
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Monotonicity as a property of probability distributions
is interesting for several reasons. First, many naturally
arising distributions are monotone or hold motivation for
monotonicity testing. For example, it may be hypothe-
sized that the probability for suffering from back prob-
lems is monotone increasing with the patient’s height.
As another example, one might expect sales of expen-
sive cars to be monotone on wealth and anti-monotone
on the buyer’s age; in this case, the distribution is mono-
tone on the poset consisting of the product of two total
orders rather on a single total order. Second, monotone
distributions have proven to be quite useful algorithmi-
cally. Devroye [Dev91] used monotone distributions to
more efficiently generate random variables. In terms of
testability, it is known that the testing of several distribu-
tion properties becomes provably easier if the distribution
is promised to be monotone; see Section 1.1 for more de-
tails. Thus, monotonicity is often a desirable property for
a distribution to have, and it would be valuable to have
efficient algorithms to distinguish the case in which a dis-
tribution is monotone from the case in which it is far from
monotone.

Here, we investigate how the sample complexity of test-
ing monotonicity depends on the structure of the underly-
ing poset. Our results fall into two classes. The first set of
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results addresses the question of whether sublinear sample
complexity is sufficient for testing monotonicity of dis-
tributions over any poset. Unfortunately, this question is
answered in the negative. Thus, the second set of results
investigates the existence of sublinear sample complexity
monotonicity testers for restricted classes of posets.

1.1 Previous Work

While classical statistical tests, such as the χ2-test,
seem to require a number of samples at least linear in
the domain size, recent work motivated by property test-
ing has shown that there are many natural properties of
distributions that can be tested with a sublinear sample
complexity. Such properties include testing whether a dis-
tribution is uniform, whether a joint distribution is inde-
pendent, and estimating the entropy [BFR+00, BFF+01,
AAK+07, BDKR02, GMV06, BS07].

In [BKR04], the problem of testing whether a distri-
bution is monotone is considered with respect to totally
ordered domains. It is shown there that testing unifor-
mity can be reduced to testing monotonicity with respect
to the total order. Since testing uniformity is known to
require Ω(

√
n) samples [GR00, BFR+00, Pan08] for do-

mains of size n, [BKR04] thus yields a sample com-
plexity lower bound of Ω(

√
n) for testing monotonicity

over the total order. They also provide an algorithm with
sample complexity Õ(

√
n) for testing monotonicity over

the total order on n elements. This algorithm can be
roughly viewed as a reduction from monotonicity testing
to polylogarithmically many uniformity testing problems.
[BKR04] further shows an Õ(m3/2) sample complexity
algorithm for testing monotonicity over the m × m grid
with the dominance partial order (the product order), and
conjectures that the algorithm can be extended to yield
an Õ(md−1/2) sample complexity algorithm for testing
monotonicity over the grid [m]d with dominance order.

As mentioned previously, monotonicity has also been
studied because of its role as a natural condition on dis-
tributions that makes other properties significantly eas-
ier to test. As an example of this phenomenon, consider
the problem of testing uniformity. Testing uniformity re-
quires Ω(

√
n) samples for arbitrary input distributions on

n elements, as mentioned previously. On the other hand,
[BKR04] shows that O(1) samples suffice for distribu-
tions that are known to be monotone with respect to a
total order. [RS09] investigates distributions on the d-
dimensional boolean cube with the subset order (note that
the domain size here is 2d) and shows that testing the uni-
formity of monotone distributions over the cube requires
only Õ(d) samples. Adamaszek, Czumaj and Sohler in
[ACS10] have recently extended this result to the con-
tinuous [0, 1]d cube with the dominance order. There is
no test with finite sample complexity for testing unifor-

mity of arbitrary distributions on [0, 1]d, but condition-
ing the input distribution to be monotone permits a tester
with O(n) sample complexity. Similar dramatic savings
are also known for testing the closeness of two distribu-
tions [BKR04, Val08], for testing the independence of a
joint distribution [BKR04], and for estimating the entropy
[BDKR02].

Monotonicity, as a property of functions defined on
posets, has been extensively studied in the context of
property testing [EKK+00, BRW99, GGL+00, DGL+99,
FLN+02]. The complexity of the testers in this setting is
naturally quite different, as the value of the function at any
given point in the domain can be queried directly.

1.2 Our Results and Techniques

We address the issue of how sample complexity de-
pends on the structure of the poset with respect to which
monotonicity is defined. Intuitively, one would imagine
that, as the number of edges in the transitive closure of
a poset becomes larger, testing monotonicity with respect
to the poset requires fewer samples since there are more
comparable elements, making it more likely for a tester to
detect violation of monotonicity. Although this intuition
is not strictly true1, our results can be viewed as making
the intuition rigorous in several interesting special cases.

1) Reductions from the matching poset.

The matching poset denotes the poset whose Hasse di-
graph is a perfect matching with directed edges. One of
our main contributions in this paper is to show that test-
ing monotonicity with respect to the matching poset on n
elements requires n1−o(1) samples. This result serves as
a basis for a broad class of nearly linear sample complex-
ity bounds for more general posets. Such posets include
the outward directed binary tree and all bounded degree
connected bipartite digraphs with all edges oriented to-
wards the same color class. More generally, the n1−o(1)

lower bound applies to any poset containing an up-set
(also known as a monotone nondecreasing set; see Sec-
tion 2.2 for the definition) consisting of a linear number
of disjoint bounded-degree outward-directed stars.

Our proof of the lower bound for the matching poset
uses the methods developed in [Val08] for symmetric2

properties and adapts them to the analysis of the non-
symmetric monotonicity property. As far as we know,
this is the first nearly linear lower bound for a non-
symmetric distribution property. Previous known nearly

1The outward-directed star and the matching both have O(n) edges
in the transitive closure, but as we show in this paper, the former has
sample complexity O(1) while the latter requires n1−o(1) samples.

2A distribution property is symmetric if it is preserved under arbitrary
relabelings of the distribution domain.
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linear sample complexity lower bounds were for esti-
mating the L1 norm distance between two distributions
[Val08] and for estimating the support size of a distri-
bution [RRSS07, Val08], both of which can be regarded
as distance estimation problems. Note that in general,
estimating distance to a distribution property can be a
much harder task than distinguishing those distributions
that have the property from those that are far from having
it [Val08] – for the case of testing uniformity, the com-
plexity is nearly linear for the estimation problem but only
O(
√
n) for the standard property testing problem. On the

other hand, our result for monotonicity testing with re-
spect to the matching indicates that even for some natural
property testing problems, a nearly linear number of sam-
ples is necessary.

2) Posets containing a large matching.

The nearly linear lower bound does not hold if the poset
can be partitioned into a small number of long chains. Our
next result applies to such posets. We show that if a poset
P contains a matching of size Ω(n) in its transitive clo-
sure, then for some constant ε ∈ (0, 1), an ε-monotonicity
tester with respect to P requires Ω(

√
n) samples. This

result subsumes the lower bound given in [BKR04] for
testing monotonicity with respect to the total order. Our
lower bound is obtained by constructing two distributions,
one monotone and the other far from being monotone, that
are statistically indistinguishable by a tester using o(

√
n)

samples.

3) Sample complexity in terms of chain decomposi-
tion.

A chain decomposition of a poset is a partitioning of
the poset into disjoint chains. We show that if a poset P
can be decomposed into w disjoint chains each of length
at most `, then for any constant ε ∈ (0, 1) there exists an
ε-monotonicity tester for P requiring only Õ(w

√
`) sam-

ples. This result implies, for instance, that testing mono-
tonicity with respect to the poset [m]d (with the domi-
nance order, where d is fixed and m is growing) requires
Õ(md−1/2) samples, settling a conjecture from [BKR04].
In the case of d = 2, our results greatly simplify, and im-
prove by polylogarithmic factors, the result of [BKR04].
We also obtain the first sublinear sample upper bounds for
testing monotonicity with respect to the hypercube.

1.3 Preliminaries

The notation P = (V,�) denotes the partial order P
obtained by ordering the set V according to a reflexive,
antisymmetric, and transitive binary relation � over V .
Probability distributions p and q are said to be ε-far from
each other if their L1-distance is at least ε, that is, ‖p −

q‖1 =
∑
x |p(x) − q(x)| ≥ ε. Recall that, given a poset

P = (V,�), a distribution p on V is said to be monotone
with respect to P if for all x, y ∈ V , x � y implies p(x) ≤
p(y). p is ε-far from being monotone with respect to P if p
is ε-far from any distribution q on V that is monotone with
respect to P . Formally, our testing problem is defined as
follows:

Definition 1 Given a poset P = (V,�), a positive inte-
ger k, and a constant ε ∈ (0, 1), an algorithm T is said
to be an ε-tester for monotonicity with respect to P with
sample complexity k if for any distribution p on V , the al-
gorithm T , given k independent samples taken from p as
input, (i) accepts with probability at least 2

3 if p is mono-
tone with respect to P , and (ii) accepts with probability
at most 1

3 if p is ε-far from being monotone with respect
to P . The behavior of T is unspecified when p is neither
monotone nor ε-far from monotone.

Most of our mathematical notation is standard. Posets
are often identified with the digraph given by their Hasse
diagram without any comment. In Section 2.1, we use
some concepts from [Val08]. For convenience, we repro-
duce the definition of the moments of a distribution here:

Definition 2 Given positive integers k, a and b, and
distributions p1, p2 over a set V , the k-based (a, b)-
moment of (p1, p2), denoted mk,p1,p2(a, b), equals
kakb

∑
x∈V p1(x)ap2(x)b.

Observe that the k-based (a, b)-moment of (p1, p2) is the
expected outcome of the following “collision statistic” ex-
periment. Get k independent samples x1, . . . , xk from
the distribution p1 and k independent samples y1, . . . , yk
from the distribution p2, and count the number of pairs
of index tuples i1, . . . , ia ∈ [k] and j1, . . . , jb ∈ [k] such
that xi1 = · · · = xia = yj1 = · · · = yjb .

2 Lower Bounds
As discussed in Section 1.1, [BKR04] showed that test-

ing monotonicity over the total order requires Ω(
√
n)

samples, which is known to be tight up to polylogarith-
mic factors. Here, our main result is a nearly linear (and
hence, nearly tight) lower bound for testing monotonicity
with respect to another natural poset, the matching. The
nearly linear lower bound is also extended to other natural
posets. We also generalize the Ω(

√
n) lower bound to a

much larger class of posets.

2.1 Testing monotonicity with respect to the
matching

We begin by defining the matching poset formally.
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Definition 3 For integer n ≥ 1, Mn = (V,�), the
matching poset, is defined as follows. V is a set of 2n
elements, {xi : i ∈ [n]} ∪ {yi : i ∈ [n]}. The order re-
lation � is given by xi ≺ yi for every i ∈ [n]; any other
two non-identical elements of V are incomparable.

A simple reduction from testing the identity of two dis-
tributions gives a Ω(n2/3) lower bound for the sample
complexity of testing monotonicity with respect to Mn.
We provide it here as a warm-up to what follows.

Claim 4 Let p be a probability distribution on the ver-
tices of Mn. To test if p is monotone or ε-far from being
monotone with respect to Mn requires Ω(n2/3) samples.

Proof We show that if there is an ε-tester for mono-
tonicity over Mn that makes o(n2/3) samples, then there
is a tester making o(n2/3) samples that distinguishes iden-
tical distributions from distributions that are Θ(ε) apart in
statistical distance. This contradicts the sample complex-
ity lower bound for the latter problem that was proved in
[Val08], thus showing that a tester as above cannot exist.

Suppose that we have an ε-tester for monotonicity over
Mn using q = o(n2/3) samples, and we want to test
whether a pair of distributions (p1, p2) are identical or
are 4ε-far from each other. Define the distribution p
on Mn as follows: for all i ∈ [n], p(xi) = 1

2 p1(xi)
and p(yi) = 1

2 p2(yi). If p1 = p2, then clearly p is
monotone on Mn. On the other hand, if there is sta-
tistical distance greater than 4ε between p1 and p2, then∑
i:p1(i)≥p2(i) p1(i) − p2(i) > 2ε. Hence, p is ε-far from

being monotone on Mn. Thus, we can use the ε-tester for
monotonicity on Mn, where we sample from p by tossing
a fair coin and then sampling from p1 or p2 accordingly.

Next we prove a much stronger, nearly linear, lower
bound.

Theorem 5 Let p be a probability distribution on V .
There exists a constant ε0 such that for any ε ∈ (0, ε0), ev-
ery ε-tester for monotonicity with respect to Mn requires
n1−o(1) samples.

Proof First, we present a simple structural claim that
characterizes the distributions that are ε-far from mono-
tone with respect to the matching:

Claim 6 A distribution p on V is ε-far from monotone if
and only if ∑

(xi,yi):p(xi)>p(yi)

(p(xi)− p(yi)) > ε

Next, for any constant α ∈ (0, 1), define the following
property on pairs of distributions:

Pα = {(p1, p2) : p1, p2 are distributions on [n] and
∀i ∈ [n], p2(yi) ≥ α · p1(xi)}

Our overall strategy is the following. First, we show that
when ε < 1/6, there is a reduction to ε-testing mono-
tonicity with respect to Mn from the problem of distin-
guishing between distribution pairs that satisfy P1/2 and
distribution pairs that are ε′-far3 from P1/4, where ε′ is
only a function of ε (notice that Pα ⊂ Pβ for α > β, so
that the statement of the reduction makes sense). The rea-
son that the reduction is helpful is that Pα is a symmetric
property: relabeling the elements of [n] does not change
whether (p1, p2) is a member of Pα or not. Therefore, the
technology developed in [Val08] is potentially applicable
to lower bounding the sample complexity of distinguish-
ing between being in P1/2 and being ε′-far from P1/4. But
there is still a problematic feature of the Pα property due
to which we cannot apply the results of [Val08] directly.
Namely, the family of properties Pα is not “continuous”
enough. A distribution pair infinitesimally far from a dis-
tribution pair in Pα might not, in fact, be in Pα′ for any
α′ > 0. In general, for distribution property families that
are not continuous, it is known that the techniques from
[Val08] do not yield tight bounds. However, for the spe-
cial case of Pα, we show that it is still possible to suitably
modify the techniques from [Val08] and get the desired
lower bound.

The precise statement of the reduction is given by the
following lemma:

Lemma 7 For any α ∈ (0, 1), there is a constant c > 1
such that for any ε < α

2(1+α) , if there is an ε-tester
for monotonicity with respect to Mn that makes q(n, ε)
samples, then there is a tester that, given distributions
(p1, p2), makes q(n, ε/c) samples and distinguishes be-
tween the case that (p1, p2) ∈ Pα and the case that
(p1, p2) is ε-far from being in Pβ , where β = ( α

1+α −
ε
2 )/( 1

1+α + ε
2 ) < α.

Proof Given the distribution pair (p1, p2), we define
a map Tα that takes (p1, p2) to a distribution p on V .
Specifically, for every i ∈ [n], p(xi) = α

1+αp1(i) and
p(yi) = 1

1+αp2(i).

• If (p1, p2) ∈ Pα, then p is monotone on Mn because
for every i ∈ [n], p(yi) = 1

1+αp2(i) ≥ α
1+αp1(i) =

p(xi).

3We define the distance between two distribution pairs (p1, p2) and
(q1, q2) as ‖p1 − q1‖1 + ‖p2 − q2‖1. Farness from Pα is measured
using this notion of distance.
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• Assume that p is ε-close to being monotone with re-
spect to Mn. By the definition of Tα,

∑
i p(xi) =

α
1+α and

∑
i p(yi) = 1

1+α . Let p′ be a monotone dis-
tribution on Mn that is closest in statistical distance
to p. We construct our specific p′ along the lines of
Claim 6: for each edge (xi, yi) that was violated by
p, we define p′(xi) = p′(yi) = 1

2 (p(xi) + p(yi)),
and keep the original values of p everywhere else.
Therefore,

∑
i p′(xi) ≥ α

1+α −
ε
2 and

∑
i p′(yi) ≤

1
1+α + ε

2 . Define a new pair of distributions (p′1, p
′
2)

by p′1(i) = p′(xi)∑
i p′(xi)

and p′2(i) = p′(yi)∑
i p′(yi)

for each
i ∈ [n]. Note that

p′2(i)

p′1(i)
=

p′(yi)

p′(xi)

∑
i p′(xi)∑
i p′(yi)

≥
∑
i p′(xi)∑
i p′(yi)

≥
α

1+α −
ε
2

1
1+α + ε

2

so (p′1, p
′
2) ∈ Pβ . Moreover,

|p′1 − p1| =
∑

i:p2(i)≥αp1(i)

(
p(xi)
α

1+α −
ε
2

− p(xi)
α

1+α

)
+

∑
i:p2(i)<αp1(i)

∣∣∣∣∣p(xi)
α

1+α

− p′(xi)
α

1+α −
ε
2

∣∣∣∣∣
≤

ε
2

∑
i p(xi)

( α
1+α −

ε
2 ) α

1+α

+

∑
i:p2(i)<αp1(i)

p(xi)− p′(xi)
α

1+α −
ε
2

≤ 2
ε/2
α

1+α −
ε
2

Similarly,

|p′2 − p2| =
∑

i:p2(i)≥αp1(i)

(
p(yi)

1
1+α

− p(yi)
1

1+α + ε
2

)
+

∑
i:p2(i)<αp1(i)

∣∣∣∣∣p(yi)
1

1+α

− p′(yi)
1

1+α + ε
2

∣∣∣∣∣
≤

ε
2

∑
i p(yi)

( 1
1+α + ε

2 ) 1
1+α

+
∑

i:p2(i)<αp1(i)

p′(yi)− p(yi)
1

1+α

≤ 2
ε/2

1
1+α

Using the condition that ε < α
2(1+α) , we have that

|p1 − p′1| + |p2 − p′2| is cε-close to Pβ where c
depends only on α.

The lemma is now immediate. To sample from p, one can
toss a coin that is biased to be heads with probability α

1+α

and then sample from p1 if the coin comes up heads and
from p2 otherwise.

To prove this lemma, we leverage and extend machin-
ery from [Val08], specifically, the following corollary of
the Wishful Thinking theorem stated in [Val07].

Theorem 8 (Corollary 1 in [Val07]) Suppose we are
given two distribution pairs (p1, p2) and (q1, q2)
where the distributions are over [n], a real number

ρ ∈
(

0, 1
10·2

√
logn

)
, and a positive integer k such that the

maximum probability assigned by any of the distributions
p1, p2, q1, q2 to a single element is at most ρk . If

40ρ+10
∑

a,b:2≤a+b≤
√

logn

|mk,p1,p2(a, b)−mk,q1,q2(a, b)| < .01

then it is impossible to test using k samples any property
that is true for (p1, p2) and false for (q1, q2).

The observation motivating the above theorem is that
for symmetric properties, essentially all that a tester can
do to distinguish a distribution pair satisfying the property
from a distribution pair not satisfying the property, is to
look at the collision statistics of samples from the two dis-
tribution pairs. Although this observation was made ex-
plicitly in earlier work such as [BDKR02], [Val08] made
rigorous the connection between the collision statistics
and the values of the moments for distributions with no
large weight. Thus, in order to show our lower bound,
we need to describe a distribution pair (p1, p2) ∈ P1/2

and a distribution pair (q1, q2) that is far from P1/4, such
that the following two conditions are met: (i) none of the
distributions assigns large weight to any element, and (ii)
|mk,p1,p2(a, b) − mk,q1,q2(a, b)| is small for each (a, b)
with 2 ≤ a + b ≤

√
log n. Our strategy will be to

start from candidate distribution pairs (p1, p2) ∈ P1/2

and (q1, q2) that is far from P1/4, that satisfy condition
(i), and then modify them by a small amount (relative to
the L1 norm) so that condition (ii) is satisfied. Note that
the modification of (p1, p2) needs to be still in P1/2 and
the modification of (q1, q2) needs to be still far from P1/4.
This is where the “delicacy” of monotonicity becomes an
issue: even a small change in the L1 norm to (p1, p2)
could potentially make p2(i) = 0 for some i. However
note that there is already a certain laxity inherent in P1/2;
namely, we can make p1(i) + p2(i) as small or as large
as we want, as long as p2(i) stays at least p1(i)/2. These
issues are at the heart of the following lemma.

Lemma 9 For any positive integer n, integer k ∈
[100

√
logn, n − 1] and weight w ∈ (1/n, 1), there exist
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{ma,b : (a, b) ∈ {0, 1, . . . ,
√

log n}2}, such that given
any distribution pair p = (p1, p2) on n elements such that
pi(j) <

1
k for all i ∈ {1, 2} and j ∈ [n], there is a distri-

bution pair p̄ = (p̄1, p̄2) on n elements with the following
properties:

1. If p ∈ P1/2 then p̄ ∈ P1/2 also.
2. |p1 − p̄1|+ |p2 − p̄2| ≤ w.
3. For any a, b ≤

√
log n, setting k̄ = kw

100·221
√

logn ,
each k̄-based (a, b)-moment

∑
i p̄a1(i)p̄b2(i)k̄a+b is

within a 1
6000 logn difference of ma,b,

4. p̄1(i), p̄2(i) ≤ (214
√

logn · k̄)−1 for all i ∈ [n], for k̄
as defined above

Proof The proof of this lemma is similar to the Match-
ing Moments Theorem of [Val08]. The difference is con-
dition (1) above which requires that the transformation
from p to p̄ preserves membership in P1/2. This condition
introduces more technical difficulties. For completeness,
we will give all the details. Here are the steps of the trans-
formation from p to p̄, along with explanations of why do
they work and why are they well-defined.

1. Set w′ = w
7 . Define I to be the set of bw′nc

columns4 i with the smallest value of p1(i) + p2(i).
For each i ∈ I , set p1(i) and p2(i) to 0. For the
remaining columns, modify p such that:

(i) For each j ∈ {1, 2},
∑
i6∈I pj(i) = 1− w′

(ii) p changes by at most 3w′ in L1 distance
(iii) If p ∈ P1/2 before the modification, then after

the modification also, for i 6∈ I , p2(i) ≥ 1
2 p1(i)

(iv) For each j ∈ {1, 2} and i 6∈ I , pj(i) < 1/k.
We explain how this can be achieved. Assume that
p ∈ P1/2. The columns of p not in I have weight
at least (2 − 2w′) by Markov’s inequality, so each
row has weight at least 1−2w′ (and at most 1) in the
columns not in I . First modify p1 in the following
way. If

∑
i 6∈I p1(i) < 1−w′, then for indices i such

that p1(i) < 1
n , increase their weights, maintaining

p1(i) ≤ 1
n , until

∑
i 6∈I p1(i) = 1 − w′. Otherwise,

if
∑
i 6∈I p1(i) > 1−w′, decrease weights from arbi-

trary columns until
∑
i 6∈I p1(i) = 1−w′. In this pro-

cess, we could have added weight at most w′ to this
row, and it is still true that p1(i) < 1

k for all i ∈ [n].
Now, for each i 6∈ I such that p2(i) < 1

2 p1(i), make
p2(i) = p1(i)/2; this adds weight at most w′/2 to
p2. If

∑
i6∈I p2(i) > 1 − w′, remove weight from

the columns i such that p2(i) > p1(i) subject to the
restriction p2(i) ≥ p1(i), until

∑
i 6∈I p2(i) = 1−w′.

Otherwise, if
∑
i 6∈I p2(i) < 1−w′, for indices i such

that p2(i) < 1
n , increase their weights, maintaining

p2(i) ≤ 1
n , until

∑
i6∈I p2(i) = 1−w′. p1 moves by

4The ith column of p refers to the two-element vector 〈p1(i), p2(i)〉.

at most w′ while p2 moves by at most 2w′ in the L1

distance.
This stage ensures that now there are bw′nc columns
of zeros, corresponding to I , and outside of them
both the entries of p1 and the entries of p2 sum up
to 1− w′.

2. Let µ = 1 + b
√

log nc and λ = kw′

6µ5·60µ . For integers
0 ≤ a, b ≤ µ − 1 such that a + b ≥ 2, let σa,b =∑
i 6∈I pa1(i)pb2(i)λa+b; additionally, set σa,b = 0 for

a+ b < 2.
For an interval in the integers [u, v], let `[u,v] be de-
fined as the matrix with entries ji for columns in-
dexed by j ∈ [u, v] and rows indexed by i ∈ [0, v −
u]. For an integer µ > 1, let Lµ = `[1,µ] ⊗ `[µ+1,2µ],
where ⊗ denotes the tensor product operation5. De-
fine c to be (Lµ)−1σ (note that here we refer to σ
as a vector whose coordinates are indexed by num-
ber pairs, and multiply it by a matrix whose columns
are indexed by pairs). The coordinates of this vec-
tor are indexed by pairs (γ, δ) where γ ∈ [1, µ] and
δ ∈ [µ+ 1, 2µ].

3. Let σ̄a,b have value 0 when a + b < 2 and value
λ2

k otherwise. Note that σ̄a,b is an upper bound on
σa,b for each value of a, b, because each entry of p
is bounded by 1

k , and so σa,b is maximized when k
columns of p equal 1

k 〈1, 1〉. Let L̄µ be an element-
by-element upper bound on the magnitudes of the el-
ements in (Lµ)−1; by the claim below, all its entries
can be 60µ. Let c̄ = L̄µ · σ̄ be a vector that up-
per bounds each entry of c. Each entry of c̄ equals
(µ2 − 3) · 60µ · λ

2

k .
Claim 10 Each element of (Lµ)−1 is at most 60µ in
absolute value.
Proof Matrix inversion and tensor product com-
mute: (Lµ)−1 = (`[1,µ])−1 ⊗ (`[µ+1,2µ])−1. `[1,µ]

and `[µ+1,2µ] are Vandermonde matrices and the en-
tries of their inverses can be bounded by a formula
from [Kli67], cited in [Val08]. Using this, we find
that each entry of (`[1,µ])−1⊗(`[µ+1,2µ])−1 is at most
(2e)µ · (4e)µ ≤ 60µ in magnitude.

4. For each γ ∈ [1, µ] and δ ∈ [µ + 1, 2µ], choose
bc̄γ,δ − cγ,δc many of the zeroed-out columns of p
(those supported by I) and make all of them 〈γλ ,

δ
λ 〉.

Note that p2(i) > p1(i) for any such column i, and
hence membership in P1/2 is not affected.
For this modification to make sense, we need to make
sure that the total number of columns changed is less
than |I| = bw′nc and the total weight added to each

5Given a real matrix X with rows and columns indexed respectively
by i and j, and a real matrix Y indexed by k and l, the tensor product
X ⊗ Y is defined to be the matrix with rows indexed by pairs (i, k),
columns indexed by pairs (j, l), and the entry at ((i, k), (j, l)) given by
X(i, j) · Y (k, l).
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of the two rows is less than w′. The total weight
added to the p1 row is

∑
γ,δbc̄γ,δ − cγ,δcγλ . Note

that
∑
γ,δ cγ,δγ = (Lµc)1,0 = σ1,0 = 0. Therefore:∑

γ,δ

bc̄γ,δ − cγ,δc
γ

λ
≤
∑
γ,δ

c̄γ,δ
γ

λ

≤ (µ2 − 3)60µ
λ2

k

∑
γ,δ

γ

λ

≤ (µ2 − 3)w′

6µ5

µ2(µ+ 1)

2

≤ (µ2 − 3)w′

6µ2
≤ w′

6

Similarly for the p2 row,
∑
γ,δbc̄γ,δ − cγ,δc δλ ≤

(µ2−3)w′

4µ2 ≤ w′

4 . The total number of columns
changed is at most

∑
γ,δ(c̄γ,δ − cγ,δ). Observe

that
∑
γ,δ cγ,δ = (Lµc)0,0 = σ0,0 = 0.

Then,
∑
γ,δ(c̄γ,δ − cγ,δ) =

∑
γ,δ c̄γ,δ = (µ2 −

3)60µ λ
2

k µ
2 = (µ2−3)w′λ

6µ3 = w′ kw′

36µ660µ ≤ w′ n36 ≤
bw′nc.

5. Make
∑
i p1(i) = 1 by filling in the columns that

were not assigned in the previous step with equal
weights. Do the same for p2.
We show that for any column i filled in during this
step, p2(i) > 1

2 p1(i). Let x = µ2−3
µ2 w′. Redoing the

calculations in the above part to take account of the
floors, we find that the weight added to the p1 row in
step 4 is in the interval [x6−

µ3

λ ,
x
6 ] and that the weight

added to the p2 row is in the interval [x4 −
2µ3

λ , x4 ].
So, the weight that the current step adds to p1 is in the
interval [( 5

6 + 3
6µ2 )w′, ( 5

6 + 3
6µ2 )w′+ µ3

λ ], while that

added to p2 is in [( 3
4 + 3

4µ2 )w′, ( 3
4 + 3

4µ2 )w′ + 2µ3

λ ].
Also, the number of columns filled in step 4 is in the
interval [xλ6µ − µ

2, xλ6µ ], and the current step fills the
rest of the bw′nc columns. So, the minimum ratio
between p2(i) and p1(i) for a column i filled during
this step is at least:

( 3
4 + 3

µ2 )w′

( 5
6 + 3

µ2 )w′ + µ3

λ

≥ 9

10
− o(1) >

1

2

We define p̄ to be the distribution pair that results af-
ter these five modification steps to p. It remains to show
that all four claims made in the lemma hold. If originally
p ∈ P1/2, then p̄ ∈ P1/2 also for the reasons explained
above. To bound the distance that p moves during the
modifications, note that p changes by at most 5w′ during
step 1 (2w′ when the columns in I are zeroed-out and 3w′

for making the rest of the columns in each row add up
to 1 − w′) and by 2w′ in the rest of the steps (since that

much weight is added to the zeroed-out columns), making
the total distance moved at most 7w′ = w.

Now, as for the k̄-based moments of p̄, observe that
the (0, 0) moment is exactly n and the (0, 1) and (1, 0)
moments are exactly k̄. There is however some variation
in the k̄-based (a, b) moments for a + b ≥ 2. For ease
of analysis, we first bound the variation in the λ-based
moments and then scale to k̄-based moments.

We define now Lµa,b to be the (a, b)-row of Lµ, and
set ma,b = Lµa,b · c̄. 6 Observe that the (a, b)-
moment contributed by the indices not in I is exactly
σa,b, while the (a, b)-moment contributed by the columns
set in the fourth step is Lµa,b · bc̄ − cc ∈ [Lµa,b ·
(c̄ − 1) − σa,b, L

µ
a,b · c̄ − σa,b].7 To analyze the mo-

ments contributed by the weights added in the fifth
step, recall that in this step, the number of entries allo-
cated is [bw′nc − xλ

6µ , bw
′nc − xλ

6µ + µ2] and the weight

added is [( 3
4 + 3

4µ2 )w′, ( 3
4 + 3

4µ2 )w′ + 2µ3

λ ] for p2 and

[( 5
6 + 3

6µ2 )w′, ( 5
6 + 3

6µ2 )w′ + µ3

λ ] for p1. The ratio be-
tween the minimum and maximum contributions of step 5
to the (a, b) λ-based moment can then be lower-bounded
by 1−(a+b) 6µ3

w′λ .8 On the other hand, the maximum (a, b)
λ-based moment contribution can be upper-bounded by
(0.9w′)a+b

(w
′n
2 )a+b−1

λa+b ≤ 2a+bw′λ
(
λ
n

)a+b−1
. Then, for a+b ∈

[2, µ], the difference between the maximum and minimum
contributions to the (a, b) λ-based moments contributed
by the weights added in step 5 can be upper-bounded by
(a+ b) 6µ3

w′λ · 2
a+bw′λ

(
λ
n

)a+b−1 ≤ 6µ42µ 1
6µ560µ ≤ 1. So

in total, the difference between the maximum and mini-
mum values of

∑
i p̄a1(i)p̄b2(i)k̄a+b is within 1+ |Lµa,b|1 ≤

1 + µ2µa(2µ)b ≤ (3µ)a+b+2. We are interested in k̄-
based moments; since k̄

λ = 6kwµ560µ

kw′·100·221
√

logn ≤
µ560µ

2·221µ ≤
1

20000µ4 , the bound on the variation of
∑
i p̄a1(i)p̄

b

2(i)k̄a+b

is at most (3µ)a+b+2
(

1
20000µ4

)a+b

≤ 1
6000µ2 for a+ b ≥

2.

Finally, for the last claim, note that the largest weight
in p is bounded by 2µ

λ < 12µ626µ

kw′ < .84µ6

215µ · 100·221µ

kw <
1

214µ 1/k̄.

Theorem 8 and Lemma 9 together implies the follow-
ing.

6Note that here again we use vector multiplication where the vectors
are indexed by pairs of numbers.

7bvc, where v is a vector, denotes the vector whose components are
the floors of the components of v. Also, 1 as a vector denotes the vector
with every entry equal 1.

8We use here ( α
α+β

)t = (1− β
α+β

)t ≥ (1− β
α
)t ≥ 1− t β

α
.
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Lemma 11 For constant 0 < α < 1 and constant c > 1,
any tester that distinguishes distribution pairs on [n] that
are in P1/2 from pairs that are 3

8 -far from P1/4 requires
making n1−o(1) samples.

Proof Consider the following two pairs of distributions
p = (p1, p1) and q = (p2, p3) where p1 is the distribu-
tion that is uniform on [n], p2 is the distribution that is
uniform on {1, . . . , n/2} and zero elsewhere, and p3 is
the distribution that is uniform on {n/2 + 1, . . . , n} and
zero elsewhere. Clearly, p ∈ P1/2. But q is 1

2 -far from
P1/4 because the closest distribution to q in P1/4 is the
pair (p4, p3) where p4 is the distribution that has weight
3
4 uniformly on {1, . . . , n/2} and weight 1

4 uniformly on
{n/2 + 1, . . . , n} and this pair of distributions is 1

2 far
from q.

Distributions p1, p2, and p3 all assign each element of
[n] weight at most 2

n . Therefore, we can apply Lemma 9
with k = n/2 and w = 1/8, transforming the distribution
pairs p and q to p̄ and q̄ respectively. From the lemma,
k̄ = kw

100·221
√

logn . By (1) in Lemma 9, p̄ ∈ P1/2. By (2),
q̄ is 3/8-far from P1/4. We know from (3) of Lemma 9
that |mk̄,p̄(a, b) −mk̄,q̄(a, b)| ≤ 1

3000 logn . Then, setting
ρ = 1

214
√

logn and applying Theorem 8 implies that any
tester that distinguishes between P1/2 and 3/8-far from
P1/4 with probability at least 2/3 requires k̄ = n1−o(1)

many samples.

Now, we are nearly done. For ε < 1/6, Lemma 7
shows that an ε-tester for monotonicity with respect toMn

making q(n, ε) queries would result in an algorithm mak-
ing q(n, ε/c) queries that would distinguish between in-
stances in P1/2 and instances ε-far from P1/4 where c > 1
is an absolute constant. But since Lemma 11 rules out
testers with n1−o(1) queries for distinguishing between
being in P1/2 and being 3/8-far from P1/4, there must
be no ε-tester for monotonicity with respect to Mn using
less than n1−o(1) samples when ε < 1/6.

2.2 Applications of the lower bound for the match-
ing

The lower bound for the matching can be used as a
building block for showing lower bounds for several other
natural posets. To do so, the following straightforward
lemma will be useful. An up-set in a poset P = (V,�) is
a subset U ⊆ V which is monotone nondecreasing. That
is, if u ∈ U, v ∈ V and u � v, then v ∈ U . An up-
set itself is a poset with the ordering given by �. The
next lemma shows that if Q is an up-set of P , then testing
monotonicity with respect to Q is not harder than testing
it with respect to P .

Lemma 12 Suppose that a poset P with n elements con-
tains an up-setQ. Then, testing monotonicity with respect
to Q reduces to testing monotonicity with respect to P .

Proof Any distribution p on Q can be viewed as a dis-
tribution on P , by setting q(x) = 0 for all x ∈ P \Q. We
now show that the distance to monotonicity is unchanged.

Suppose that the distance of p from being monotone as
a distribution onQ is ε, and that p′ is a monotone distribu-
tion that is ε-close to p. Then p′ can be extended to P just
as p was extended, and it will still be monotone because
Q is an up-set, showing that the distance to monotonicity
over P is no more than ε.

Now suppose that the distance of p from being mono-
tone as a distribution on P is δ ≤ ε, and let p̄ be the distri-
bution witnessing this. We now construct a distribution p′

over Q. Let α =
∑
x∈P\Q p̄, and first construct p̃ as the

vector that is the truncation of p′ to Q. If α > 0 then this
is not a probability vector, but clearly it is monotone and
its L1 distance from p is δ − α.

To finish the construction, we take a top-most element
z of Q, that is an element of Q for which z � y implies
z = y. Clearly p̃(z) ≤ 1−α, so to construct p′ from p̃ we
just increase the value on z by α. This is now a monotone
distribution, and by the triangle inequality its L1 distance
from p is not more than δ, showing that ε = δ.

Lemma 12 already shows that testing monotonicity
with respect to a poset consisting of a linear number
of disjoint chains requires n1−o(1) samples. The next
corollary substantially generalizes the class of posets to
which the nearly linear lower bounds apply. An outward-
directed star of degree d refers to a directed graph with
vertex set c, v1, . . . , vd and edge set {(c, vi) : i ∈ [d]}.

Corollary 13 Suppose that a poset P on n elements
contains an up-set Q, which consists of n1−o(1) dis-
joint outward-directed stars of constant maximum degree.
Then, testing monotonicity with respect to P requires
n1−o(1) samples.

Proof By Lemma 12, we only need to show the nearly
linear lower bound for testing monotonicity with respect
to Q. We do so by providing a reduction from test-
ing monotonicity with respect to the matching poset Mr,
where r = n1−o(1) is the number of disjoint outward-
directed stars of constant degree that Q is composed of,
and then applying Theorem 5.

Suppose that we have a distribution p on Mr. We
arbitrarily map each edge in Mr to a distinct star in
Q. Now, for an edge (x, y) in Mr mapped to the star
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with edges {(c, v1), . . . , (c, vd)} with d ≥ 1, let q(c) =
p(x)/d, q(v1) = p(y)/d, and for all i ∈ [2, d], let q(vi) =
(p(x) + p(y))/d. q as defined is clearly a probability dis-
tribution on Q. If p is monotone, then q is also monotone.
On the other hand, if p is ε-far from monotone with respect
to Mr, then q is ε/d∗-far from monotone with respect to
Q, where d∗ is the maximum degree of a star in Q. This
is because in any star with edges {(c, v1), . . . , (c, vd)},
the only edge that could have monotonicity violated by q
is (c, v1) and the closest monotone distribution to q will
not change the values of q(v2), . . . , q(vd). Furthermore,
observe that given the ability to sample from p, we can
generate a sample from q as follows. For an edge (x, y)
in Mr mapped to the star {(c, vi) : i ∈ [d]} in Q, if p gen-
erates x, choose uniformly at random among the vertices
{c, v2, v3, . . . , vd} and if p generates y, choose uniformly
at random among the vertices {v1, v2, . . . , vd}.

Corollary 13 implies, for example, that testing mono-
tonicity with respect to the outward directed binary tree,
or the fence poset (given by x1 ≺ x2 � x3 ≺ x4 � x5 ≺
· · · � xn), or, in fact, any poset described by a connected
bipartite graph with bounded degree and all edges directed
left to right, requires n1−o(1) samples. Regarding the last
class of posets described, note that it is perhaps surprising
that other structural properties of the bipartite graph (such
as expansion) do not play any role at all in determining
the sample complexity.

2.3 Testing Monotonicity with Respect to a Poset
Containing a Large Matching

The lower bounds from the previous section do not ap-
ply when the poset contains long chains. Our next result
shows that for such posets, Ω(

√
n) samples are necessary.

Theorem 14 If a poset P contains a matching of size
Ω(n) in its transitive closure, then any monotonicity tester
with respect to P requires Ω(

√
n) samples.

Proof We show two distributions, DP and DN , on
positive (distributions monotone with respect to P ) and
negative (distributions ε-far from being monotone with
respect to P for a constant ε) inputs respectively, such
that any tester making o(

√
n) samples cannot distinguish,

with high probability, between the case where the input is
drawn from DP and the case where it is drawn from DN .
We let DP be always the input which is the uniform dis-
tribution over P (this is clearly a monotone distribution
over P ). To define DN , we use the following lemma:

Lemma 15 A uniformly chosen random boolean function
g : P → {0, 1} is, with high probability, Ω(1)-far (in L1)
from being monotone with respect to P , and furthermore

has Ω(n) violated edges within a fixed in advance match-
ing M of size Ω(n) in P .

Proof Let M be the matching of size cn contained in
the transitive closure of P . A random function g violates
each edge of the matching with probability 1/4, and so
a uniformly chosen random function g has at least cn/10
edges violated with high probability, by Chernoff bounds.
Since these edges are disjoint, g is also c/10-far from
monotone with high probability.

DN will be the distribution space chosen at random as
follows. First, choose a uniformly random boolean func-
tion g : P → {0, 1}. Now define DN to be the distribu-
tion obtained, when with probability 1/3, one of the zeros
of g is uniformly chosen, and with probability 2/3, one of
the ones of g is uniformly chosen.

Note that if g has Ω(n) violated edges inM and has be-
tween 5n/12 and 7n/12 zeros (both of which happen with
high probability), then the resulting DN is indeed Ω(1)-
far (in L1 distance) from being a monotone distribution.
This is because such a number of zeros implies that for
every violated edge ofM we must change the distribution
by at least 2

3 ·
12
7n −

1
3 ·

12
5n = 12

35n .

To finish the proof, note that as long as the samples pro-
vided to the algorithm contain no collision (duplicate ele-
ment), there is no way to distinguishDP from a randomly
chosen DN . This is since, over both DP and DN , the
distribution of the sequence of samples x1, . . . , xq condi-
tioned on the event of having no collision is identical to a
uniformly random choice of a non-repetitive sequence of
q elements from P .

Now let α be the probability that the algorithm accepts
a sample sequence chosen by a uniformly random choice
of a non-repetitive sequence of q elements from P . If we
are only allowed q = o(

√
n) samples, then the probability

for a collision in our sample sequence is o(1), and there-
for over both DP and DN the algorithm will accept with
probability α± o(1). Hence no algorithm can distinguish
DP from DN using this many queries.

3 Monotonicity testers via path decomposi-
tion

In [BKR04], Batu, Kumar and Rubinfeld give a test-
ing algorithm that shows that in the case of the total or-
der on a domain of size n, the lower bound of Ω(

√
n)

samples from Theorem 14 is indeed tight to within poly-
logarithmic factors. They also consider distributions over
the d-dimensional grid poset, which is the set [m]d or-
dered according to the dominance order, i.e., the relation
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(x1, . . . , xd) � (y1, . . . , yd) if and only if xi ≤ yi for all
i ∈ [d]. Our next result gives a general bound that applies
to any poset with a known chain decomposition. We then
use this to settle the conjecture in [BKR04] regarding the
sample complexity for monotonicity testing with respect
to grid posets [m]d, as well as to give sublinear sample
complexity testers for distributions over other posets such
as the Boolean hypercube.

Theorem 16 Given a poset P that can be decomposed
into a union of w disjoint chains of length at most c, there
exists an ε-tester for monotonicity with respect to P with
sample complexity Õ(w

√
c poly(1/ε)).

Proof We use as a blackbox the following result from
[BKR04].

Theorem 17 (Theorem 10 in [BKR04]) There exists a
randomized algorithm ChainPartition that, given a to-
tally ordered set L of size n, parameters ε, δ ∈ (0, 1) and
a random sample S of size Ω(ε−4

√
n log n log 1/δ) from

a probability distribution p on L, acts as follows:

• With probability at least 1 − δ, ChainParti-
tion outputs either FAIL or a distribution q =
ChainPartition(L, ε, δ, S) onL such that ‖q−p‖1 <
ε (probabilities are taken over the internal coin
tosses of ChainPartition and the guaranteed ran-
domness of S as a sample taken from p).
• In particular, if p is ε-far from being monotone with

respect to L, then ChainPartition outputs FAIL with
probability at least 1− δ.
• If p is monotone with respect to L, then ChainPar-

tition does not output FAIL with probability at least
1− δ.

Our tester works as specified below. For a sample set S
from a domain D and a subset R ⊆ D, we denote by S|R
the set of samples that lie in R.

1. Set m = Θ(w
√
c log(w) log(c) poly(1/ε)),

and µ = εm
20w to be the sample size required by

ChainPartition for |L| = w, ε/4 and δ = w
200

2. Draw m samples from p. Call the sample se-
quence S.

3. For each chain C of the chain decomposition do:
(a) Let SC denote the subsequence of S consist-

ing only of members of C. If |SC | < µ, let
qC be the uniform distribution on the ver-
tices of C.

(b) Otherwise, run the algorithm
ChainPartition(C, ε/4, δ, SC), and output
FAIL and terminate if it fails. Otherwise,
let qC be the conditional distribution on C
output by the algorithm.

4. Define a distribution q̃ on P by setting the weight
of a vertex v on a chain C to qC(v)SCm .

5. Output PASS if q̃ is ε/2-close to monotone with
respect to P , and output FAIL otherwise.

The sample complexity claim is immediate. It remains
to show completeness and soundness.

Lemma 18 If p is a monotone distribution on P , then the
above algorithm outputs PASS with probability at least
2/3.

Proof Call a chain C light if
∑
v∈C p(v) < ε

10w ,
and heavy otherwise. We claim first that there are at
least µ samples in S from every heavy chain, with
constant probability. To see this, note that the ex-
pected number of samples in S from some given
heavy chain C is at least εm

10w . Using the Cher-
noff bound, the probability that |SC | < µ = εm

20w
is at most exp(−Ω(log(w)

√
c log(c) poly(1/ε))) <

1
100w . By the union bound, then, with probability
at least 0.99, each heavy chain is hit at least µ =
Ω(
√
c log(c) log(w) poly(1/ε)) many times by the sam-

ples in S.

If p is monotone, then it is monotone on each
chain. Now, if each heavy chain C is sampled
Ω(
√
c log(c) log(w) poly(1/ε)) many times, one can

apply Theorem 17 to say that, with probability at least
1 − 1

100w , the algorithm ChainPartition finds a distribu-
tion qC that is within ε/4 in L1-distance of p|C (the condi-
tional distribution of p on the vertices of C). Also, for each
light chain C, with probability at least 1− 1

100w , |SC|m < ε
5w

by another application of the Chernoff bound. So, by the
union bound and the triangle inequality, with probability
at least 0.98, the distribution q̃ is within ε/2 inL1-distance
of p.

Taking the union bound with the event that the heavy
chains are sampled sufficiently many times, we see that
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the algorithm outputs PASS in the last step, with proba-
bility at least 2/3.

Lemma 19 If p is a distribution on P such that the algo-
rithm outputs PASS with probability at least 1

3 , then p is
ε-close to a monotone distribution on P .

Proof Let X be the event that there exists a chain C
sampled at least µ times by the algorithm such that the
distribution qC output by ChainPartition is ε/4-far from
p|C . Let Y be the event that there exists a chainD sampled
less than µ times by the algorithm such that

∑
v∈D p(v) >

3ε
20w . Let us upper-bound Pr[X|algorithm outputs PASS]
and Pr[Y ], where the probabilities are over the random-
ness of the algorithm and the sample. For the first, no-
tice that since the event is conditioned on the algorithm
passing, step (3b) never fails; hence, using Theorem 17
and the union bound, Pr[X|algorithm outputs PASS] ≤
w · 1

100w = 0.01. For the second, observe that the prob-
ability that a chain D is hit less than µ times by S while
having over 3ε

20w weight under p is at most 1
100w by Cher-

noff bounds; so, by the union bound, Pr[Y ] < 0.01.

Now, using the union bound again, we have:

Pr[Algorithm outputs PASS ∧ ¬X ∧ ¬Y ]

≥ Pr[Algorithm outputs PASS]−
Pr[X ∧ Algorithm outputs PASS]− Pr[Y ]

≥ Pr[Algorithm outputs PASS]−
Pr[X|Algorithm outputs PASS]− Pr[Y ]

≥ 1

3
− 0.01− 0.01 > 0 (1)

So, there exists a distribution q̃ on P such that q̃ is
ε/2-close to a monotone distribution (because the algo-
rithm accepts). Furthermore, ‖q̃ − p‖1 ≤ ε/2, because
‖q̃ − p‖1 ≤ ε

4 + w( ε
10w + 3ε

20w ), where the first term is
the contribution of chains with at least µ samples and the
second term is from the rest of the chains. By the triangle
inequality, p is ε-close to a monotone distribution on P .

The above concludes the proof of Theorem 16.

The following corollary is immediate:

Corollary 20 For any finite poset P on n elements with
width w, there exists a monotonicity tester with respect to
P with sample complexity Õ(w

√
n poly(1/ε).

Proof Dilworth’s theorem states that if w is the width
of P (i.e., size of the longest antichain), then P can be
decomposed into a union of w disjoint chains. Each chain
is clearly of length at most n.

The next corollary gives a sublinear sample tester for
monotonicity with respect to the d-dimensional cube, re-
solving the conjecture in [BKR04]. In the following, note
that the size of the domain is n = md.

Corollary 21 Let Cm,d be the d-dimensional grid poset
with elements [m]d. Then, there exists an ε-monotonicity
tester with respect to Cd with sample complexity
Õ(md−1/2poly(1/ε)), where the asymptotic notation
refers to a fixed d where m is growing.

Proof Consider the following chain decomposition of
Cm,d. For σ ∈ [m]d−1, let Cσ = {(σ1, . . . , σd−1, i) :
i ∈ [m]}. It is clear that each Cσ is a chain and that
they partition Cm,d. Moreover, each chain is of length m.
So, applying Theorem 16 yields the sample complexity
bound.

The next result achieves the first sublinear time mono-
tonicity tester for the Boolean hypercube. In the following
note that the size of the domain is n = 2d.

Corollary 22 Let Hd denote the poset on {0, 1}d in-
duced by the usual subset order. Then, there exists an
ε-monotonicity tester with respect toHd with sample com-
plexity Õ

(
2d

(d/ log d)1/4
poly(1/ε)

)
.

Proof We use the main result of [HLST03] that states
that Hd can be decomposed into

(
d
bd/2c

)
chains, each

of size O(
√
d log d). Using the Stirling approximation,

and applying Theorem 16, immediately gives the desired
bound.

3.1 About the optimality of the tester.

Theorem 16 is not tight. For example, consider the
outward-directed star graph on n vertices. There is a sim-
pleO(1/ε) sample monotonicity tester with respect to this
poset. To see this, observe that any monotone distribution
places weight at most 1/n at the center vertex, and any
distribution ε-far from monotone places weight at least ε
on the center vertex. Hence, checking whether the cen-
ter vertex appears in a random sample of O(1/ε) samples
suffices to distinguish between the two cases, with high
probability. However, for the chain decomposition of the
outward-directed star, the antichain size is linear in n, and
hence, the resulting tester from Theorem 16 is far from
optimal. Another example of a poset with a large chain-
antichain decomposition but requiring only a small num-
ber of samples for monotonicity testing is given by the
inward-directed star.
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Theorem 23 There exists a monotonicity tester with re-
spect to the inward-directed star with sample complexity
Õ(1/ε2).

Proof Here is our tester. Given an input distribution p
on the inward-directed star:

1. Assume that ε is smaller than some global con-
stant ε̂. Otherwise, perform the rest of the algo-
rithm for ε̂ instead of ε.

2. Sample m = O(1/ε2 log 1/ε) samples from p.
3. Let u denote the center vertex of the poset, and for

every v let count(v) denote the number of times
that v appeared in the sample sequence.

4. Accept if and only if count(u) ≥
maxv 6=u count(v)− εm/4.

For the analysis, let u denote the center vertex of the
star, while v1, . . . , vn denote the outside vertices. For a
vertex x, we will call the fraction of times that x is sam-
pled among the m samples as the algorithm’s estimate of
the probability weight of x.

We first observe that with probability at least 5
6 , for

each vertex x whose actual weight is at least ε5, the al-
gorithm estimates the probability weight of x to within
an additive error of ε/8. This is because for any given
vertex, the probability that the algorithm’s estimate of its
weight differs from its actual weight by more than ε/8
is at most O(ε5) by Chernoff bounds. Since there are at
most O(1/ε5) vertices with such weights, we can ensure
that the probability of being off by more than ε/8 in the
estimate of any such vertex is at most 5

6 .

After we set the coefficient in the number of samples to
be used as per the above paragraph, we take care of set-
ting ε̂. Let U be the set of vertices whose weight is at most
ε5, and m = C · (1/ε2 log 1/ε) be the number of samples
(with C the constant fixed by the above). The probabil-
ity of any of the vertices from U to appear more than
once in the sample is bounded by

∑
x∈U

(
m
2

)
(p(x))2 ≤(

m
2

)
maxx∈U p(x) ≤ 1

2C
2(1/ε2 log 1/ε)2ε5. A proper

choice of ε̂makes this smaller than 1
6 , and so with proabil-

ity at least 5
6 none of the elements with weight less than ε5

will appear in more than one sample. We also make sure
that ε5 ≤ ε/8.

From now on we suppose that both of the above events
occur (which they do with probability at least 2

3 ). In par-
ticular they mean that no vertex received an estimation
that is more than ε/8 away from its actual weight in any
direction.

Now, suppose that p is a monotone distribution. This
means that the weight of u is at least the maximum weight

of any other vertex in the poset. At the most, the algorithm
has mis-estimated both the weight of u and the maximum
weight of the other vertices by at most ε/8. This means
that the algorithm accepts, since the estimated weight of
u will be not less than the maximum estimated weight of
the other vertices minus ε/4.

On the other hand, suppose now that p is ε-far from
monotone. In particular this means that the weight of
u is less than the maximum weight of the other vertices
minus ε/2, as otherwise we just decrease the weight of
u by ε/2 at the expense of the other vertices and obtain
a monotone ε-close distribution. As both count(u) and
maxv 6=u count(v) reflect the actual weights with up on
an ε/8 error, the algorithm rejects.
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