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2 · Georg Gottlob et al.

1. INTRODUCTION

In this paper we consider the general question of how large and how intricate the
result of a conjunctive query can be relative to the input relations. We derive
worst-case bounds for the size of the query result, which depend only on structural
properties of the query itself. We also derive bounds for the treewidth of the query
result—a natural measure of the intricacy of the database—and characterize those
conjunctive queries that are treewidth-preserving.
Conjunctive queries are the most fundamental and most widely used database

queries [Chandra and Merlin 1977; Levy et al. 1995; Abiteboul et al. 1995] . They
correspond to project-select-join queries in the relational algebra, and to SQL
queries of the form SELECT . . . FROM . . . WHERE . . ., whose where-clause equates
pairs of attributes of the relations contained in the from-clause. Conjunctive queries
also correspond to nonrecursive datalog rules of the form

R0(u0)← Ri1(u1) ∧Ri2(u2) . . . ∧Rim(um),

where Rij is a relation name of the underlying database (which we will frequently
refer to as D), R0 is the output relation, and where each argument uj is a list
of |uj | variables, (where |uj| is the arity of the corresponding relation Rij ). Note
that each variable can occur multiple times in one or more argument lists. Also,
i1, . . . , im are not necessarily distinct, and thus we allow a single relation Ri to
appear several times in the query. Throughout this paper we adopt this datalog
rule representation for conjunctive queries.
In general, it is clear that the result of a conjunctive query can be exponentially

large in the input size. Even in the case of bounded arities, the result can be
substantially larger than the input relations. In fact, in the worst case, the output
size is rk, where r is the number of tuples in the largest input relation and k is the
arity of the output relation.
Queries with very large outputs are sometimes unavoidable, but in most cases

they are either ill-posed or anyway undesirable, as they can be disruptive to a
multi-user DBMS. It is thus useful to recognize such queries, whenever possible.
Further, obtaining good worst-case bounds for conjunctive queries is relevant to
view management [Levy et al. 1995] and data integration [Lenzerini 2002; Levy
et al. 1995], as well as to data exchange [Fagin et al. 2003; Kolaitis 2005], where
data is transferred from a source database to a target database according to schema
mappings that are specified via conjunctive queries. In this latter context, good
bounds on the result size of a conjunctive query may be used for estimating the
amount of data that needs to be materialized at the target site.
In the area of query optimization, models for predicting the size of the output of

a conjunctive query based on selectivity indices for relational operators have been
developed [Swami and Schiefer 1994; Jarke and Koch 1984; Chaudhuri 1998]. The
selectivity indices are obtained via sampling techniques (see, e.g. Olken and Rotem
[1990] and Haas et al. [1996]) from existing database instances. Worst case bounds
may be obtained by setting each selectivity index to 1, thus assuming the maximum
selectivity for each operator. Unfortunately, the resulting bounds are then often
trivial (akin to the above rk bound).
A new and very interesting characterization of the worst-case output size of join
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queries was developed by Atserias et al. [2008]. The join queries form a proper
subclass of the conjunctive queries, and correspond to those conjunctive queries in
which all query variables appear in the head atom R0(u0). Their result is based
on the notion of fractional edge cover [Grohe and Marx 2006], and the associated
concept of fractional edge-cover number ρ∗(Q) of a join query Q. In particular,
in Grohe and Marx [2006] it was shown that

|Q(D)| ≤ rmax(D)ρ
∗(Q), (1)

where rmax(D) represents the number of tuples in the largest input relation among
R1, . . . , Rn in D. In Atserias et al. [2008] it was shown that this bound is essentially
tight.
A substantial part of the present paper deals with the question of whether it is

possible to find similar tight worst-case bounds for the output of general conjunctive
queries. In particular, we asked this question in three different settings:

(1) for general conjunctive queries without functional dependencies (integrity con-
straints);

(2) for general conjunctive queries where simple functional dependencies (keys)
have been specified on the underlying database D; and

(3) for general conjunctive queries in the setting where arbitrary functional depen-
dencies have been specified on D.

We derive tight bounds similar to those in Equation 1 for settings 1 and 2, and we
give both lower and upper bounds for the third (most general) setting. Moreover,
for the third setting, we give a precise characterization of the queries for which no
size increase is possible.
A crucial step towards our results is the introduction of a new coloring scheme

for query variables, and, accordingly, the association of a color number C(Q) with
each query Q. Roughly, a valid coloring assigns a set L(X) of colors to each query
variable X , such that for each functional dependency R[i]R[j]→ R[k], if variables
X,Y, Z occur in the ith, jth, and kth positions, respectively, of an atom R(u) in
the body of query Q, then L(Z) ⊆ L(X) ∪ L(Y ). The color number C(Q) of Q is
the maximum over all valid colorings of Q of the quotient of the number of colors
appearing in the output (i.e., head) variables of Q by the maximum number of
colors appearing in the variables of any input (i.e., body) atom of Q. Intuitively,
each color used represents some possible entropy of that variable.
In the case that functional dependencies are given (settings 2 and 3), rather than

coloring the original query Q, we color chase(Q), which is the result of chasing the
keys over the query. The chase [Aho et al. 1979; Maier et al. 1979; Beeri and Vardi
1984; Deutsch et al. 2006; Fagin et al. 2003] is a well-known procedure for enforcing
functional dependencies, and, in particular, keys. For example, given the query
Q = R(X,Y, Z)← S(X,Y )∧S(X,Z), where the first attribute of the relation S is
a key for S, or equivalently, where the functional dependency S[1]→ S[2] has been
specified, then chase(Q) is the query R(X,Y, Y )← S(X,Y ).
We prove the following essentially tight worst-case bounds for the case without

functional dependencies, and with simple functional dependencies (or keys):

|Q(D)| ≤ rmax(D)C(chase(Q)).
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In these settings, the color number C(chase(Q)) can be computed in polynomial
time via a polynomial-time chase followed by the solution of a polynomially sized
linear program. As a corollary, we show that when C(chase(Q)) is bounded, and
when each query variable occurs in the output variables u0, we obtain a polynomial
algorithm for query evaluation.
For composite keys and arbitrary functional dependencies (Setting 3), while our

lower bound given by the color number holds, we illustrate that the color number
no longer provides an upper bound on the worst-case size increase. Nevertheless,
we precisely characterize the set of queries that admit no size increase:1

Given a conjunctive query Q and set of arbitrary functional dependen-
cies, there exists a database D compatible with Q and the functional
dependencies with |Q(D)| > rmax(D), if and only if C(chase(Q)) > 1.

Beyond this characterization of queries that admit no size increase, in order to
provide size bounds in this general setting we require machinery beyond the color
number. We use tools from information theory developed to analyze the precise
interactions of multivariate distributions, and construct a linear program with en-
tropies as the variables and the exponent of the worst-case size increase as the
solution. Functional dependencies can be encoded as constraints in the linear pro-
grams. The difficulty is determining which additional constraints must be added
to the linear program to ensure that the solution is realizable as a database in-
stance. This question, as it turns out, is crucially related to an old and ongoing
investigation at the heart of information theory: “which entropy structures can
be instantiated in multivariate distributions?” [Pippenger 1986; Zhang and Ye-
ung 1997; 1998; Matúš 2007b; 2007a; Dougherty et al. 2007]. We cannot show
that our upper bound is tight in this general setting, and believe that an explicit
(even exponential-sized) characterization of the worst-case size increase is unlikely
without significant advances in information theory.
The remainder of our results analyze how much more intricate the results of

a query can be than the input database. An important measure for describing
the inherent intricacy of a graph or finite structure (in our case, a database)
is treewidth [Robertson and Seymour 1986a]. The treewidth tw(D) of a struc-
ture D corresponds in a precise sense to its degree of cyclicity. For example, each
tree has treewidth 1, each cycle has treewidth 2, the clique Kk of k elements has
treewidth k − 1.
By Courcelle’s theorem [Courcelle 1990], all Boolean queries that can be ex-

pressed in terms of monadic second-order logic can be answered in linear time on
structures (databases) of bounded treewidth. This result was generalized to a large
class of queries based on monadic optimization problems [Arnborg et al. 1991]. By
these results, interesting queries that cannot be formulated in SQL or first order
logic, and that are NP-hard on arbitrary structures, can be answered in linear
time on structures of bounded treewidth. Queries in this class include, for exam-

1This characterization of queries that admit no size increase was referred to as a characterization
of “sparsity preserving” queries in our conference paper [Gottlob et al. 2009]; since the term
“sparsity” is somewhat misleading, in this version we reframed the results of Gottlob et al. [2009]
that pertained to database sparsity in terms of size bounds.
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ple, questions related to network multicuts [Gottlob and Lee 2007], program flow
graphs [Thorup 1998], or logic-based diagnosis [Gottlob et al. 2007]. One may not
always issue such queries directly to the original database, but in some cases to a
view that has been defined via a conjunctive query.
In this context, we consider the following questions:

—Given a set of relations D of bounded treewidth and a conjunctive query Q, how
large is the treewidth of Q(D)?

—Is it possible to characterize the queries that preserve bounded treewidth in the
sense that tw(Q(D)) = O(tw(D))?

We begin by considering a simple class of queries: keyed joins. A join expression
R 1A=B S is a keyed join if B is a key for S. (Here B may be a composite
attribute.) We derive the following bound on the treewidth of the result of a keyed
join R 1A=B S where S has arity j, tw(〈R,S〉) = ω and B is a key of S:

tw(R 1A=B S) ≤ j(ω + 1)− 1.

Via a nontrivial example we show that this bound is tight up to a constant factor.
We also extend this bound to sequences of keyed joins and to conjunctive queries
whose bodies consist of such sequences.
For the case of (fixed) queries Q over (variable) input databases D without keys,

we use colorings to precisely characterize the treewith-preserving queries:

tw(Q(D)) = O(tw(D)) if, and only if tw(Q(D)) ≤ tw(D) if, and only if,
there exists no valid coloring of Q with two colors having color number
two. (See Definition 3.2 for the definition of color number.)

In the setting with arbitrary (simple) keys that are not necessarily part of the
join attributes, we also characterize the queries that are treewidth-preserving. The
proof uses a reduction to the case without keys, leveraging both the bounds on the
increase in treewidth after a sequence of keyed joins, and the above characterization
of treewidth-preserving queries in the setting without keys.

This paper is organized as follows. In Section 2 we state some useful definitions.
In Section 3 we define the basic coloring scheme and the color number of a query,
and discuss the connection between these concepts and the size bounds of Grohe
and Marx [2006] and Atserias et al. [2008]. Section 4 proves our main size-bounds
in the case without functional dependencies, and with simple keys or functional
dependencies. Section 5 presents all our results on treewidth. Section 6 considers
the setting where arbitrary functional dependencies are specified on the underlying
database, and frames size bounds and the coloring scheme in terms of the entropy
structures that are realizable in a distribution over the tuples of a query’s output
relation. Section 7 deals with the question of the complexity of computing the
size bounds and of deciding whether the treewidth is bounded. Finally, some open
problems and directions for future research are discussed in Section 8.

2. PRELIMINARIES AND BASIC DEFINITIONS

We assume familiarity with the theory of relational database systems, relational
algebra, and conjunctive queries, and provide a cursory overview of the main notions
mainly to clarify notation.
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A finite structure or database D = (UD, R1, . . . , Rn) consists of a finite universe
UD and relations R1, . . . , Rn over UD. As already mentioned in the introduction,
a conjunctive query has the form Q = R(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um), where
each uj is a list of (not necessarily distinct) variables of length |uj|. Each variable
occurring in the query head R0(u0) must also occur in the body of the query. The
set of all variables occurring in Q is denoted by var(Q). It is important to recall
that a single relation Ri might appear several times in the query, and thus it may
happen that ij = ik for some pairs of indices j, k. The query Q may be applied to D
provided that for all j ∈ [m], index ij ∈ [n] and arity(Rij ) = |uj |. The answer Q(D)
of query Q over databaseD consists of the structure (UD, R0) whose unique relation
R0 contains precisely all tuples θ(u0) where θ : var(Q)→ UD is a substitution such
that for each atom Rij (uj) appearing in the query body, θ(uj) ∈ Rij . For ease
of notation, we define rmax(D) to be the number of tuples in the largest relation
among Ri1 , . . . , Rim in D, and define |Q(D)| to be the number of tuples in the
output relation.
A (simple) attribute of a relation R identifies a column of R. We refer to the

attribute in the ith position of relation R by R[i]. An attribute list consists of a
list (without repetition) of attributes of a relation R. A compound attribute is an
attribute list with at least two attributes. A list consisting of a unique attribute A
is identified with A. The list of all attributes of R is denoted by attr(R). If V is
a list of attributes of R and t ∈ R a tuple of R, then the V -value of t, denoted by
t[V ] consists of the tuple obtained as the ordered list of all values in V -positions of
t.
If A and B are (possibly compound) attributes ofR, then a functional dependency

A → B on relation R expresses that for each pair of tuples t, t′ ∈ R, t[A] = t′[A]
implies that t[B] = t′[B]. If A and B are single attributes, then the functional de-
pencency A→ B is called a simple functional dependency. A (possibly compound)
attribute K of R is a key iff K → attr(R) holds. Such a key is called a simple key
if K is a simple attribute, otherwise it is called a compound key.2 An argument
position in an atom that corresponds to a simple key attribute is referred to as a
keyed position.
Throughout, for clarity and succinctness of exposition, when given a query and set

of relations, we admit the slight abuse of notation and also refer to functional depen-
dencies between query variables : that is, given a functional dependency R[i]→ R[j],
if the query in question has an atom R(u) in the body of the query with variables
X and Y occurring in positions i and j, respectively, we may refer to the functional
dependency as X → Y . This interpretation is consistent, in the sense that in any
output tuple, the value in a position corresponding to X uniquely determines the
value in a position corresponding to Y . Note that this representation of functional
dependencies as dependencies between query variables does not contain the full
information of the actual set of function dependencies; for example, given a query
body R(X,Y ) ∧ S(X,Y ), the functional dependency between variables, X → Y,
means that either R[1] → R[2], or S[1] → S[2], or both. Nevertheless, it is the
structure of the dependencies between the query variables which will be relevant to
our size bounds, and it will be convenient to refer to and reason about these de-

2Note: We do not require compound keys to be minimal.
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pendencies between query variables using the notation of functional dependencies.

Let D = (UD, R1, . . . , Rn) be a structure. The Gaifman graph G(D) of D is the
graph (UD, E), where {a, b} ∈ E iff a and b are two distinct elements from UD
which appear jointly in some tuple of a relation of D.
Given a graph G = (V,E), a tree decomposition [Robertson and Seymour 1986a]

of G is a pair (T, λ), where T = (V ′, E′) is a tree, and λ a labeling function
λ : V ′ → 2V such that: (i) for all v ∈ V , there exists b ∈ V ′ such that v ∈ λ(b); (ii)
for all edges e ∈ E, there exists b ∈ V ′ such that λ(b) ⊇ e; (iii) for every v ∈ V , the
set {b ∈ V ′ | v ∈ λ(b)} induces a connected subtree in T . So as to avoid possible
confusion between the vertex set of G and the vertices of the tree T , we will refer
to the vertices of the tree as bags, and will say that a bag b ∈ V ′ contains the set
λ(b) of vertices of G.
The width of a tree decomposition (T, λ) with T = (V ′, E′) is the integer value

max{|λ(b)| − 1 | b ∈ V ′}. The treewidth of a graph G = (V,E), denoted tw(G),
is the minimum width of all tree decompositions. Given a finite structure D =
(UD, R1, . . . , Rn), the treewidth of D is defined to be the treewidth of its Gaifman
graph, formally tw(D) = tw(G(D)).
In some proofs, it will be more convenient to work with the equivalent defini-

tion of treewidth in terms of elimination orderings. Given graph G = (V,E), an
elimination ordering π = v1, . . . , vn, of the vertex set induces a sequence of graphs
G = G0,G1, . . . ,Gn, where Gi is obtained from Gi−1 by adding edges so as to make
the neighbor set of vi in Gi−1 a clique, and then removing vertex vi from the graph
(thus Gi is a graph on {vi+1, . . . , vn} and Gn is the empty graph). The elimi-
nation width of an ordering π is the largest clique present in one of the graphs,
G0,G1, . . . ,Gn, and the treewidth of G is one less than the minimum elimination
width achieved by any elimination ordering.

The following motivating example illustrates the treewidth of a database, and
shows that the size and treewidth of the result of a conjunctive query can be
significantly larger that of the input database.

Example 2.1. Consider the relation

R(A,B) = {〈1, 1〉, 〈1, 2〉, . . . , 〈1, n〉}

that has treewidth 1. The relation R′ = R 1A=A R, which is equivalently obtained
as the result of the conjunctive query

R′(X,Y, Z)← R(X,Y ) ∧ R(X,Z),

has n2 tuples where each of the n elements appears in a tuple with each of the other
elements. Thus the Gaifman graph is the complete graph on n vertices, which has
treewidth n − 1. Thus we see that the treewidth of R′ can be arbitrarily large,
while the treewidth of R is still 1.

In the case where a given relation appears more than once in the query, there
may be some additional implied dependencies, beyond those that can be derived
from the set of functional dependencies. The following example illustrates such an
instance, and motivates the chase operation which we define below.
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Example 2.2. Consider the query

R0(WXY Z)← R1(WXY ) ∧R1(WWW ) ∧R2(Y Z),

together with the first position of R1 being a key for R1.
The information that the first position of R1 is a key for R1, and the atom

R1(WWW ) imply that in any output tuple, the values in positions corresponding
to W,X, and Y must all be equal. Thus in addition to the key information, there
is also the further restriction on the output tuples that the values in positions X
and Y must be the same as the value in position W , and thus there can be at most
|R2| tuples in the output.

The above example motivates the chase procedure which reduces the set of vari-
ables so as to eliminate any implied dependencies on the values taken by the vari-
ables beyond those implied by the given set of functional dependencies. [Maier et al.
1979]

Definition 2.3. Given a conjunctive query

Q = R0(u0)← Ri1(u1) ∧ . . . ∧Rim(um),

we define chase(Q) to be the result of iteratively performing the following replace-
ments:

—Given two atoms Rij (uj) and Rik(uk) where ij = ik and a simple functional
dependency for that relation, Rij [q]→ Rij [r], if the variables in the qth positions
of uj and uk are identical, then for every instance (anywhere in the query) of the
variable occurring in the rth position of uk, we replace that variable with the
variable occurring in the rth position of uj .

The above definition extends naturally to compound functional dependencies:
for a dependency R[i]R[j]→ R[k], if the relation R occurs twice in the query with
the same variable list in positions i and j in both atoms, then all occurrences of
the variable in position k of one of the atoms are replaced by the variable occurring
in position k of the other atom. The analogous definition applies to functional
dependencies involving more than two positions.
The query obtained by performing the chase operation is dependent on the order

in which atoms are selected for the above replacement procedure—throughout, so
as to make chase(Q) well-defined we assume that the chase is performed according
to some (arbitrary) fixed ordering. The following fact confirms the intuition that
the substitutions in Definition 2.3 do not affect the result of the query.

Fact 2.4. [Maier et al. 1979; Aho et al. 1979; Beeri and Vardi 1984] Let Q be
a conjunctive query and Q′ = chase(Q). For every D to which Q may be applied,
we have Q(D) = Q′(D).

The algorithm for computing chase(Q) runs in polynomial time, even in the
case of arbitrary functional dependencies, see, e.g. Aho et al. [1979] for an O(n4)
algorithm, where n is the total size of the input consisting of the conjunctive query
Q together with a set of functional dependencies.
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3. THE COLORING

In this section we define a coloring scheme for assigning colors to the variables
appearing in a conjunctive query. This coloring underlies both our bounds on
the size of the results of the query, and our characterizations of queries that have
bounded treewidth.

Definition 3.1. Given a conjunctive query Q = R0(u0) ← Ri1(u1) ∧ . . . ∧
Rim(um), and set of functional dependencies, a valid coloring of Q with c col-
ors assigns to each variable X ∈ var(Q) a label L(X) ⊆ {1, . . . , c} consisting of
zero or more colors, that satisfies the following properties:

—For each functional dependency X1 . . . Xk → Y,

L(Y ) ⊆
⋃

i=1,...,k

L(Xi).

—There exists a variables X ∈ var(Q) with L(X) 6= ∅.

Definition 3.2. The color number of a coloring L for query Q = R0(u0) ←
Ri1(u1)∧ . . .∧Rim(um), is the ratio of the total number of colors appearing in the
output variables u0, to the maximum number of colors appearing in any given uj ,
for j ≥ 1; and the color number of query Q, denoted C(Q), is the maximum color
number attained by any valid coloring of Q. Formally:

C(Q) := max
L

| ∪X∈u0 L(X)|

maxi≥1 | ∪X∈ui L(X)|
,

where L ranges over valid colorings of Q.

The following two examples illustrate the definition of color number.

Example 3.3. Let Q be the query

S(X,Y, Z)← R(X,Y ) ∧ R(X,Z) ∧ R(Y, Z).

Assume no keys are asserted. Then C(Q) = 3/2, which is attained with three
different colors, one for each L(X),L(Y ), and L(Z).

Example 3.4. Consider the query of Example 2.2: Let

Q = R0(WXY Z)← R1(WXY ) ∧R1(WWW ) ∧R2(Y Z),

with the functional dependencies implied by the first position of R1 being a key for
R1, thus W → X and W → Y. The labeling

L(W ) = {1}, L(X) = L(Y ) = ∅, L(Z) = {2},

is a valid coloring, with color number 2, and in fact C(Q) = 2.
Now consider Q′ = chase(Q) = R0(WWWZ) ← R1(WWW ) ∧ R2(WZ), and

note that since all the variables appearing in the output relation also appear to-
gether in one of the atoms of the query body, C(Q′) = 1 < C(Q). In general,
C(chase(Q)) ≤ C(Q), because, trivially, any valid coloring of chase(Q) is also a
valid coloring of Q.
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3.1 Color Number and Fractional Edge Coverings

The color number of a query seems to be a new concept; nevertheless, in the
special case of a query Q = R0(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um) without any keys
or functional dependencies, colorings of a specific form are related to fractional
edge covering of the hypergraph associated to query Q (see Definition 3.5 below)
via linear programming duality. Our main size bounds of Section 4 build upon
the results of Grohe and Marx [2006] and Atserias et al. [2008], in which the size
increase for join queries (queries without functional dependencies (or keys), where
all variables appear in the output atom) is bounded by the minimal fractional
edge cover number; thus it will be useful to establish this connection between the
color number and the minimal fractional edge cover number. Demonstrating this
connection relies on observing that the lack of functional dependencies implies that
there is always a maximal coloring with an especially simple structure, and then
leveraging this structure to show that the color number of such queries is given as
the solution to a linear program, whose dual describes the minimal fractional edge
covering. We now make this high-level overview rigorous.

Definition 3.5. Given queryQ = R0(u0)← Ri1 (u1)∧. . .∧Rim(um), theminimal
fractional edge cover number of Q, denoted by ρ∗(Q), is given by the following linear
program:

minimize
∑m

j=1 yj

subject to
∑

j:X∈uj
yj ≥ 1 ∀X ∈ var(Q),

yj ≥ 0.

The above definition should be interpreted as the linear program relaxation of
the minimal edge covering of the hypergraph corresponding to Q in which var(Q)
are the graph nodes, and each uj defines a hyperedge.
The following proposition shows that for queries with no functional dependencies,

the color number is given by the solution to a simple linear program.

Proposition 3.6. Given query Q = R0(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um) with
no functional dependencies, the color number, C(Q), is given as the solution to the
following linear program:
Assume without loss of generality that var(Q) = {X1, . . . , Xn},

maximize
∑

i:Xi∈u0
xi

subject to
∑

i:Xi∈uj
xi ≤ 1 ∀j ≥ 1

xi ≥ 0.

While colorings are combinatorial objects, it is worth stressing that the above
linear program is not a proper relaxation of the quantity in question; the linear
program will have a rational solution (whose bit–length is polynomial in |Q|), and
any rational solution p/q to the above linear program with xi=ri/q can be trans-
formed into a valid coloring L with p colors such that |L(Xi)| = ri. The constraints
of the linear program then imply maxj | ∪X∈uj L(X)| ≤ q.

Proof of Proposition 3.6. First, note that there is always an optimal color-
ing with the property that for all X 6∈ u0,L(X) = ∅. Next, observe that it suffices
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to assume that no color appears in the label of more than a single variable. To
see this, if a color appears in the labels of at least two variables, by removing it
from the label of one of the labels, the numerator of the expression for the color
number remains unchanged whereas the denominator can only decrease. Thus the
color number of such a query is given by the following expression, where xi ∈ N

denotes the number of colors assigned to variable Xi ∈ u0 in an optimal coloring:

max
xi∈N

∑

i:Xi∈u0
xi

maxj≥1

∑

i:Xi∈uj
xi

.

Pushing the normalization factor into constraints on the xi’s, the above expression
is equivalent to the following linear program (which is maximized over xi ∈ R):

maximize
∑

i:Xi∈u0
xi

subject to
∑

i:Xi∈uj
xi ≤ 1 ∀j ≥ 1

xi ≥ 0.

From Proposition 3.6 and linear programming duality, for a query Q with no
functional dependencies, the color number C(Q) is also given by the following linear
program, which is dual to that of Proposition 3.6:

minimize
∑

j yj

subject to
∑

j:X∈uj
yj ≥ 1 ∀X ∈ u0

yj ≥ 0.

This linear program can be recognized as expressing the minimal fractional edge
cover of the hypergraph associated to query Q′, which is obtained from Q by simply
removing all variables that don’t appear in u0 from all atoms.

4. SIZE BOUNDS

In this section we present our main size bounds. We consider conjunctive queries
without functional dependencies, and with simple keys (or simple functional de-
pendencies). Whenever we use the word “key” in this section we mean “simple
key”. Essentially, the color number of a query will be a tight bound on the expo-
nent relating the sizes of the input and the output database. We start this section
by considering the special case in which the given query has no keyed relations,
and use the connection between color number and minimal fractional edge cover
number described in the previous section to relate our characterization to previous
results regarding size bounds. We will then reduce the general case with keys to
this special case.

4.1 Size Bounds Without Keys

We begin by considering the case when no functional dependencies are specified.
While this case has essentially been considered [Grohe and Marx 2006; Atserias
et al. 2008], our approach will allow us to extend the results to the case with
specified output variables and keys.
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Proposition 4.1. Given a query Q = R0(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um)
without specification of functional dependencies or keys, for any database D,

|Q(D)| ≤ rmax(D)C(Q),

where rmax(D) is the size of the largest relation among R1, . . . , Rn in D. Further-
more, this bound is essentially tight: for any integer N > 0, there exists a database
D with rmax(D) ≤ rep(Q) ·N , and |Q(D)| = NC(Q), where rep(Q) is defined to be
the maximum number of times any specific relation Ri appears in Q.

Corollary 4.2. Given a query Q, as in Proposition 4.1, without functional
dependencies or keys, if, for all databases D compatible with Q, the number of
tuples in the result Q(D) is at most the number of tuples in the input relations,
then there exists an i ∈ [m] such that the variables in u0 are a (not necessarily
proper) subset of the variables of ui.

Our proof of Proposition 4.1 will follow easily from the connection between the
color number C(Q) and the minimal fractional edge cover number ρ∗(Q) demon-
strated in Section 3.1, together with the following proposition given in Grohe and
Marx [2006; Atserias et al. [2008].

Proposition 4.3 (Lemmas 2 and 3 of Atserias et al. [2008]). Given a query
Q = R0(u0)← R1(u1) ∧ . . . ∧ Rm(um) without specification of FDs or keys, where
u0 contains all variables in var(Q), then for any database D,

|Q(D)| ≤ rmax(D)ρ
∗(Q),

where rmax(D) is the size of the largest relation among R1, . . . , Rn in D.
Furthermore, this bound is tight: for any integer N > 0, there exists a database

D with rmax(D) = N , and |Q(D)| = Nρ∗(Q).

The upper bound is proved in Grohe and Marx [2006], using a clever argument
in which Shearer’s Lemma is employed to exploit the submodularity of the entropy
function to yield a combinatorial statement. The tightness of the bound is via a
simple construction, and we give a generalization of this construction in the proof
of Proposition 4.5 in the following section.

Proof of Proposition 4.1. For the upper bound, first note that the exponent
of the size increase of Q(D) is at most that of the query Q′ = R0(u0) ← S1(u1) ∧
. . . ∧ Sm(um), which is identical to Q except that each relation is distinct, because
for any database D compatible with Q, there is a database D′ compatible with Q′

with rmax(D) = rmax(D′), and Q(D) = Q′(D′). Such a database D′ is obtained
from D by simply making multiple copies of the relations that occur multiple times
in query Q. Next, given a query Q′ in which each relation occurs at most once,
we claim that the size increase affected by Q′ is at most that of the related query
Q′′ which is identical to Q′ except that all variables not appearing in the head
u0 have been removed. To see why this is the case, given any database D′ with
relations S1, . . . , Sm that is compatible with Q′, consider the database D′′ with
relations T1, . . . , Tm where Ti(D

′′) consists of projecting Si(D
′) onto the attributes

that occur in positions corresponding to the variables in ui that also occur in u0.
Thus Q′(D′) = Q′′(D′′), and rmax(D′′) ≤ rmax(D′). Proposition 4.3 applies to Q′′,
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since it consists of a total join (no projections), and each relation occurs exactly
once, and thus by Proposition 3.6 and the comments at the end of Section 3.1 that
show that for such queries C(Q) = ρ∗(Q), we have

|Q′′(D′′)| ≤ rmax(D′′)ρ
∗(Q′′) = rmax(D′′)C(Q′′).

To conclude the argument, note that trivially, C(Q) = C(Q′), and as was mentioned
at the end of Section 3.1, there is always a maximal coloring (of a query without
any FDs) in which variables not appearing in u0 are not assigned any colors, and
thus C(Q′) = C(Q′′).
The lower bound follows by noting that if relation Ri appears ji times in Q,

then given a database D′ consistent with the query Q′ as defined above, one can
construct a database D by letting each Ri(D) consist of the union of the ji sets of
tuples of the ji corresponding relations in D′, in which case Q(D) = Q′(D′), and
rmax(D) ≤ rep(Q)rmax(D′).

While Proposition 4.1 is similar to the size bounds based on the fractional edge
cover number, and coincides with it in case all query variables occur in the head’s
atom, our characterization in terms of colorings provides a more concrete and intu-
itive connection with database instances; each color represents a degree of freedom
of the output. This more intuitive characterization of the fractional edge cover in
terms of colorings allows us to extend Proposition 4.1 to the case with simple keys
and general conjunctive queries that include a projection. Furthermore, while the
color number will not be directly applicable to bounding the possible increase in
treewidth, a related property of the colorings will allow us to characterize those
queries with bounded blowup in treewidth.

4.2 Size Bounds with Simple Functional Dependencies

We apply the intuition of the color number provided in the previous section with
the hope of yielding a generalization of Proposition 4.1.

Theorem 4.4. Given a query Q = R(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um) and set
of simple keys,

|Q(D)| ≤ rmax(D)C(chase(Q)).

Furthermore, this bound is essentially tight: for any N > 0, there exists a database

D with rmax(D)
rep(Q) > N, and

|Q(D)| ≥

(

rmax(D)

rep(Q)

)C(chase(Q))

,

where rep(Q) is the maximum number of times any single relation appears in Q.

The upper bound does not follow trivially from Proposition 4.1 because the color
number in the presence of functional dependency information may be significantly
smaller than if the key information is ignored.
We start by proving the tightness of the bound via a construction, which applies

to the case that we are given an arbitrary set of functional dependencies (not just
simple dependencies). This construction is an extension of that given in Atserias
et al. [2008], and provides some insight into the connections between colorings of
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variables and the entropy of different sets of variables (under the uniform distri-
bution over the output tuples). This insight will be useful in the remainder of the
paper.

Proposition 4.5. Given a query Q = R0(u0)← Ri1(u1)∧. . .∧Rim (um) with a
set of arbitrary functional dependencies, and any valid coloring L of chase(Q) with
color number C(chase(Q)), for any M ∈ N there exists a database D satisfying:

—|Q(D)| = M |∪X∈u0L(X)|,

—rmax(D) ≤ rep(Q) ·M
|∪X∈u0

L(X)|

C(chase(Q)) .

Proof. We first give the construction in the case that rep(Q) = 1, in which case
Q = chase(Q). Let d be the total number of colors used in the coloring defined by
labeling L. Consider a table T of arity d, with attributes C1, . . . , Cd, corresponding
to each of the d colors. We construct the table T so that each attribute Ci takes M
values, vi,1, . . . , vi,M , and T consists of the total join (cartesian product) of these
attribute values, and thus has Md d-tuples, and the projection πCi1 ,...,Cik

(T ) of T

onto any k attributes Ci1 , . . . , Cik has size Mk.
We now use T to construct the desired database D. For a given relation R,

where the atom R(u) occurs in the body of Q, assume without loss of generality
that the variables X1, . . . , Xℓ occur in u, and that in the given coloring of chase(Q),
⋃

i=1,...,ℓ L(Xi) = {1, . . . , q}. We populate R(D) with M q tuples, which will be de-
rived from the M q tuples in πC1,...,Cq(T ) as follows: the attribute[s] corresponding

to variable Xi with colors L(Xi) = {i1, . . . , i|L(Xi)|} will take M |L(Xi)| values of
the form v(i1,h1),...,(i|L(Xi)|

,h|L(Xi)|
) for hk ∈ [M ]. For each tuple 〈v1,j1 , . . . , vq,jq 〉 of

πC1,...,Cq (T ), we add the tuple to R(D) where the position in the tuple correspond-
ing to variable Xi takes the value v(i1,ji1),(i2,ji2 ),...,(i|L(Xi)|

,ji|L(Xi)|
). In the case that

L(Xi) = ∅, in every tuple, the corresponding position takes a special null symbol,
v∅, and if there are no colors assigned to any variable in atom u, we add the single
tuple, all of whose positions take value v∅.
By construction, for each atomR(u) occurring inQ, we have |R(D)| = M |

⋃
X∈u L(X)|.

Additionally, because D is formed from the table T that is the complete product

table, for each of the |Q(D)| = M |
⋃

X∈u0
L(X)| tuples in T that correspond to pos-

sible assignments to the attributes of T corresponding to colors in
⋃

X∈u0
L(X),

there will be the associated tuple in Q(D), and since this association between such

tuples in T and in Q(D) is bijective, |Q(D)| = M |
⋃

X∈u0
L(X)|, as claimed.

To see that the constructed database D obeys all functional dependencies, con-
sider a dependency X1 . . . Xi → Xj, and let relation R have positions corresponding
to X1, . . . , Xi and Xj . Since L is a valid coloring, L(Xj) ⊆

⋃

h∈[i] L(Xh), and thus

by construction, in any tuple of R(D) the subscripts of the values in positions
X1, . . . , Xi uniquely determine the values in the associated tuple of T taken by
attributes (of T ) corresponding to the colors in

⋃

h∈[i] L(Xh) and thus uniquely
determine the subscripts of the value in position Xj .
To conclude, we consider the case where rep(Q) > 1. In this case, given chase(Q) =

R0(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um), we populate a database D′ in the fashion de-
scribed above, corresponding to the query Q′ = R0(u0)← R′

1(u1) ∧ . . . ∧R′
m(um),

which is identical to chase(Q), except each relation is assumed to be distinct. If
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relation R in Q was replaced by relations R′
1, . . . , R

′
k in Q′, we simply let the tuples

of R(D) be the union
⋃

j=1,...,k R
′
j(D

′). Note that all functional dependencies will
be preserved, since the coloring of Q′, by assumption respects all the dependencies
of chase(Q). This concatenation increases the size of rmax(D) by at most a factor
of rep(Q), from which the claim follows.

To complete our proof of Theorem 4.4, we now show that the upper bound
holds. To prove the upper bound, we will transform chase(Q) and the set of
simple functional dependencies into a query Q′ over a modified set of relations that
has no functional dependencies. This transformation will have the property that
C(chase(Q)) = C(Q′), and the transformation preserves the relationship between
the size of the original structure and the size of the output. To obtain Q′, we
first let the query Q∗ be the same as chase(Q), except have each atom refer to a
unique relation. Thus Q∗ can be written as R0(u0)← R′

1(u1) ∧ . . . ∧R′
m(um). To

obtain Q′ from Q∗, we fix some ordering of the variables var(Q), X1, . . . , X|var(Q)|,
and ‘remove’ the functional dependencies in |var(Q)| ‘rounds’, where the ith round
consists of applying the following procedure (at most |var(Q)− 1| times), resulting
in removing all functional dependencies with Xi on the left side:
For each functional dependency with Xi on the left side, Xi → Xj ,

—replace each occurrence of Xi in any of the query atoms that does not already
contain variable Xj , with the list Xi, Xj .

—For every functional dependency with Xi on the right side: Xk → Xi, we add
the dependency Xk → Xj ,

—we remove the functional dependency Xi → Xj .

Although any given round might increase the total number of functional depen-
dencies remaining, when the functional dependency Xi → Xj is ‘removed’, the only
dependencies that can be added are of the form Xi′ → Xj′ with i′ > i, and thus
after i rounds, all remaining functional dependencies will be of the form Xj → Xk,
with j > i.
The following example illustrates this procedure:

Example 4.6. Consider chase(Q) = Q∗ = R0(X1)← R1(X1X2X3)∧R2(X1X4)∧
R3(X5X1), where the first attribute of each relation is a key. VariableX1 is a key for
X2, X3, in R1, and thus applying the procedure to the functional dependency X1 →
X2 yields the query R0(X1X2)← R1(X1X2X3)∧R2(X1X2X4)∧R3(X5X1X2), with
the additional functional dependency X5 → X2.
Performing the procedure to the dependencies X1 → X3 and then to X1 → X4

yields the queryR0(X1X4X3X2)← R1(X1X2X3)∧R2(X1X3X2X4)∧R3(X5X1X4X3X2),
with the new additional functional dependencies X5 → X3, X4.
Performing the procedure to the remaining four functional dependencies, X5 →

X1, X2, X3, X4 has no effect, and thus the resulting query isQ′ = R′
0(X1X4X3X2)←

R′
1(X1X4X2X3)∧R′

2(X1X3X2X4)∧R′
3(X5X1X4X3X2), with no functional depen-

dencies.

We now argue that the above transformation does not alter the color number;
that is, C(chase(Q)) = C(Q′), where Q′ is obtained from chase(Q) by the above
procedure:
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Lemma 4.7. C(chase(Q)) = C(Q′), where Q′ is obtained from chase(Q) be
removing all functional dependencies as prescribed in the above procedure.

Proof. We first show that C(chase(Q)) ≥ C(Q′). Since the initial transforma-
tion to Q∗ does not change the color number, it suffices to consider the effect of a
single application of the procedure. Given a query Q1 and set of simple functional
dependencies, let Q2 denote the query resulting from applying the prescribed pro-
cedure to remove the functional dependency X → Y. Given a valid coloring of Q2

defined by labeling L2, we define the coloring L1 of Q1 as follows:

L1(X) := L2(X) ∪ L2(Y ),

and for all other variables W ∈ var(Q1), L1(W ) := L2(W ). L1 is clearly a valid
coloring because it respects the functional dependency X → Y by construction,
and all other functional dependencies associated to Q1 are also present in Q2, and
are thus respected by the labelling L1. To see that the color number of L1 for Q1

is the same as that of L2 for Q2, note that in any atom R(u) of Q2, either variable
X is not present, or both X and Y are present: in either case, the total number of
colors used in the coloring of variables in u in L2 is identical to that used by L1 to
color the associated atom in Q1. Thus we conclude that C(Q1) ≥ C(Q2), and thus
C(chase(Q)) ≥ C(Q′).
For the other direction, let Q1 and Q2 be the query, and associated set of func-

tional dependencies before, and after all functional dependencies with X on the left
hand side have been removed. That is, let Q2 be obtained from Q1 by applying the
above procedure for all functional dependencies X → Y1, . . . , Yj . Given a valid col-
oring L1 of Q1, consider the coloring L2 defined by L2(X) := L1(X)\

⋃

i∈[j] L1(Yi),

and L2(W ) := L1(W ), for all variables W 6= X . To see that L2 is a valid coloring,
note that the functional dependencies in Q2 that were not present in Q1 are of
the form Z → Yi, where the functional dependency Z → X was present in Q1;
these functional dependencies are clearly respected by L2, since L2(Z) = L1(Z) ⊇
L1(X) ⊇ L1(Yi) = L2(Yi). Additionally, any functional dependency of Q1 that
remains in Q2 must have a variable W 6= X on the left hand side, and thus since
L2(W ) = L1(W ), it will be respected by coloring L2. Finally, we argue that the
color number of L2 is equal to that of L1. Since L1(X) ⊇

⋃

i∈[j] L1(Yi), we have

that L1(X) = L2(X) ∪
(

⋃

i∈[j] L2(Yi)
)

; together with the fact that for any atom

of Q1 that contained variable X , the corresponding atom of Q2 will contain the
variables X,Y1, . . . , Yj , we have that the color numbers of L1 and L2 are equal,
from which it follows that C(Q′) ≥ C(chase(Q)), as desired.

We are now ready to complete our proof of Theorem 4.4.

Proof of Theorem 4.4. Proposition 4.5 establishes that the possible blowup
is at least the color number. From Lemma 4.7, together with the size bound of
Proposition 4.1 which applies to queries with no functional dependencies, such as
the query Q′ (yielded from chase(Q) by removing all functional dependencies ac-
cording to the procedure described above), we have established that C(chase(Q)) =
C(Q′), and that the exponent of the maximum possible size increase of query Q′

is at most C(Q′). To establish our theorem, all that remains is to show that the
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potential size increase of query Q, together with its set of simple functional depen-
dencies is at most that of Q′. To this end, it suffices to prove that this maximum
size increase does not decrease for a single application of the procedure to remove
the functional dependency X → Y.
Given query Q1 and its associated set of functional dependencies, let Q2, and

an associated set of functional dependencies be obtained from Q1 by applying the
prescribed procedure to remove the dependency X → Y. Given a database D1 upon
which Q1 can be evaluated, we shall construct database D2 for Q2 such that for
every relation in D1, the size of the corresponding relation in D2 is identical, and
additionally, |Q1(D1)| = |Q2(D2)|.
Since X → Y in Q1, in database D1, for each possible value x in a position

corresponding to variable X, one can define a unique value yx in positions corre-
sponding to variable Y. To construct D2, we start with D1, and for every tuple
of the relations of D2 that has a position corresponding to variable X, we add an
extra attribute corresponding to variable Y , and then for each tuple, we uniquely
populate the extra attribute with the value y(x) corresponding to the value x that
the tuple has in a position corresponding to variable X . This generates a database
compatible with Q2, preserves the number of input tuples in each relation, and
clearly has the property that |Q2(D2)| = |Q1(D1)|, as claimed.

Finally, the following corollary to Theorem 4.4 captures the fact that if C(chase(Q))
is bounded, not only is the size of |Q(D)| at most polynomial in |D|, but, in the
case that all variables are output variables, Q(D) can be computed in polynomial
time via a join-project plan.

Corollary 4.8. Given a conjunctive query

Q = R0(u0)← Ri1(u1) ∧ . . . ∧Rim(um),

with simple functional dependencies, such that u0 contains all the variables in
var(Q), for any database D compatible with Q, there exists a join-project plan
for calculating Q(D) in time

O
(

|var(Q)|2 · |Q|2 · rmax(D)C(chase(Q))+1
)

.

Furthermore, such a plan can be calculated in time O(|Q|3 + |Q|2|var(Q)|2), plus
the O(|Q|4) time to compute chase(Q), where |Q| denotes the total length of query
Q together with the associated set of functional dependencies.

The proof will follow easily from the proof of Theorem 4.4 together with Theorem
15 of Atserias et al. [2008], which we restate below for convenience.

Theorem. [Atserias et al. 2008] For every join query Q of m relations, and
database D, there is a join-project plan for Q(D) that can be evaluated in time
O(|Q|2rmax(D)ρ

∗(Q)+1). Additionally, such a join-project plan can be computed in
time |Q|2.

The following fact from Flum et al. [2002] is also helpful:

Fact 4.10. Let ||R(D)|| denote |R(D)| · arity(R). The join R ⊲⊳ S can be
computed in time O(||R(D)|| + ||S(D)||+ ||R(D) ⊲⊳ S(D)||).
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Proof of Corollary 4.8. Given Q and D, from the comment after Fact 2.4,
chase(Q) can be computed in time O(|Q|4). The iterative procedure to remove func-
tional dependencies described in the proof of Theorem 4.4 runs in time O(|Q|3),
yielding a query Q′ that is a join-project query without any functional dependen-
cies, with |Q′| ≤ |Q| · |var(Q)|. Furthermore, a database D′ is yielded via at most
m|var(Q)| keyed joins, which, by Fact 4.10, takes time at mostO(m|var(Q)|2rmax(D)).
Since u0 contains all variables, from the proof of Theorem 4.4 it follows that
Q(D) = Q′(D′), and rmax(D) = rmax(D′). The corollary now follows from the
above theorem.

It is worth noting that the condition that all variables appear in the output is
necessary in the above corollary; in the absence of this condition, it is easy to
construct examples of databases and queries for which C(Q) = 1 but for which
evaluating the query is equivalent to solving an NP-hard problem.

5. TREEWIDTH

In this section we consider the problem of deciding whether the result of a general
conjunctive query together with a set of simple functional dependencies (or simple
keys) can have treewidth unbounded by any function of the treewidth of the inputs
and the query. While the characterization for bounded treewidth queries will be
different than our characterization of queries that preserve the number of tuples,
the characterization will still be based on properties of the set of valid colorings of
the query.
We begin this section by providing a tight bound on the possible increase in

treewidth after a single keyed join operation. Note that while the number of tu-
ples in the result of a single keyed join operation can be no more than the num-
ber of input tuples, it still might be the case that the treewidth of the result is
larger—nevertheless, we provide a bound on the possible increase. We then give our
characterization of queries without functional dependencies that induce a bounded
increase in treewidth. Finally, we leverage our results on the effect of keyed joins
on the treewidth to give a characterization of queries with simple functional depen-
dencies that induce a bounded increase in treewidth.
Throughout this section, when referring to join operations we will use the query

notation R ⊲⊳A=B S, as opposed to the more general datalog representation used
elsewhere in this paper.

5.1 Treewidth of Keyed Joins

We present tight bounds on the blowup of the treewidth of the result of a single
keyed join operation. The bound follows easily from the definition of treewidth,
and the example illustrating the tightness of the bound is a nontrivial construction
in which the Gaifman graphs of the initial relations are grids with some extra nodes
and edges, and the Gaifman graph of the result contains a quadratically larger grid.
We begin with the construction.
The following standard fact will be useful, and follows immediately from the fact

that the treewidth of an n × n rectangular grid is n, for n ≥ 2 (see, for example,
Result 1.4 in Robertson and Seymour [1986b]).

Fact 5.1. For positive integers m,n with m+n ≥ 3, the treewidth of an n×m
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Fig. 1. The structure of G in the case m = 4, with the partitions into Si,j indicated: the set
outlined with the solid line corresponds to the ordered set S1,1 := (α1, v1,1, v1,2, v1,3, v1,4, v1,5).

rectangular grid is min(n,m).

Proposition 5.2. For any positive n,m with m ≤ n−2, there exists a relation
R of arity m + 2 whose Gaifman graph has treewidth n, such that after a single
keyed join operation, R ⊲⊳ R, the resulting treewidth is at least nm.

Proof. Consider an (nm+1)×nm rectangular lattice, together with n additional
vertices {α1, . . . , αn}. We partition the O(n2m2) vertices into ordered sets Si,j of
size m+ 2, for 1 ≤ i ≤ nm, and 1 ≤ j ≤ n as follows. For i = 1, let Si,j consist of
vertices αj , v1,m(j−1)+1, v1,m(j−1)+2, . . . , v1,mj+1. For i ≥ 2, let Si,j consist of the
m+ 2 vertices

vi−1,m(j−1)+1, vi,m(j−1)+1, vi,m(j−1)+2, . . . , vi,m(j−1)+m+1.

For each (i, j) pair, we add
(

m+2
2

)

edges so as to make Si,j a complete graph. Let
G denote the resulting graph. The structure of G is suggested in Figure 1, in which
the partition of the nodes into the groups Si,j is depicted.
The validity of the construction is now intuitively clear: from the point of view of

treewidth, G behaves like an n×nm grid and thus (from Fact 5.1) has treewidth n;
after a single keyed join operation, all edges between vertices in the set Si,j ∪Si−1,j

will be present, and thus the resulting graph will contain the nm × nm grid, and
will thus have treewidth at least nm. The following lemmas make this intuition
rigorous.

Lemma 5.3. The treewidth of G is n.

Proof. The treewidth of G is at least n, since G contains the n × nm grid
as a subgraph. To see that the treewidth of G is also bounded by n, we will
exhibit a (partial) elimination ordering that reduces G to an n×nm graph without
creating any cliques of size more than m+ 2 ≤ n. Define the set V = {vi,j : i, j ∈
{1, . . . ,mn} and j 6= 1 + km}, for any integer k. Every vertex in V has degree
m+ 2, with all its neighbors forming a clique. Thus, by iteratively eliminating all
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vertices in V (in any ordering), we preserve the invariant that each remaining node
has degree at most m + 2, with a neighbor set that is a clique. After eliminating
all nodes in V , we then remove the nodes vi,mn+1, and αi (which all have a single
neighbor), leaving us with the n× nm grid, as desired.

We now define the database instance associated with the graph G and sets Si,j .
Define the relation R, with attributes A1, . . . , Am+2, and populate a database D as
follows: for each ordered set Si,j include the (m+ 2)-tuple whose ℓth attribute Aℓ

has value equal to the vertex label of the ℓth vertex in Si,j .

Lemma 5.4. The treewidth of R(D) is n, and the treewidth of the result of the
keyed join R(D) ⊲⊳A1=A2 R(D), is at least nm.

Proof. R(D) consists of the n2m tuples
(αj , v1,m(j−1)+1, v1,m(j−1)+2, . . . , v1,mj+1), and

(vi−1,m(j−1)+1, vi,m(j−1)+1, vi,m(j−1)+2, . . . , vi,mj+1),

for 2 ≤ i ≤ nm, 1 ≤ j ≤ n, and thus has Gaifman graph G. From Lemma 5.3,
tw(R(D)) = n.
Let GG be the Gaifman graph of R(D) ⊲⊳A1=A2 R(D). For all i, k, 1 ≤ i ≤ nm,

1 ≤ k ≤ nm, the edge (vi,k, vi,k+1) is in G, and thus is also in GG. Furthermore,
for 1 ≤ i ≤ nm− 1, 1 ≤ k ≤ nm+1, the edge (vi,k, vi+1,k) is also in GG as a result
of the join operation. Thus GG contains the grid on nm + 1 × nm vertices as a
subgraph, and thus has treewidth at least nm.

The following theorem shows that the construction of Figure 1 yields the worst-
case increase in treewidth.

Theorem 5.5. Let R,S be relations, over a database D where S has arity j,
and tw(〈R(D), S(D)〉) = ω. If B is a key in S(D), then,

tw (R(D) 1A=B S(D)) ≤ j(ω + 1)− 1.

Furthermore, this bound is tight to a constant factor, assuming ω ≥ j ≥ 1.

The tightness of the bound follows from Proposition 5.2. The proof of the bound
depends on the following observation that follows immediately from the definition
of tree decomposition:

Observation 5.6. Let G = (V,E) be a graph with tree decomposition T = (T =
(V ′, E′), λ), with λ : V ′ → 2V . Fix v, w ∈ V ′ and consider the path pv,w between
them in T . Let W ⊆ λ(v) and for each v′ ∈ V ′, define the associated set Sv′ as
follows:

Sv′ =

{

λ(v′) ∪W if v′ lies on pv,w
λ(v′) otherwise.

Then T ′ := (T, λ′), where for all v′ ∈ V ′, we define λ′(v′) := Sv′ is also valid tree
decomposition of graph G.

Proof of Theorem 5.5. The proof is by explicitly constructing a tree decom-
position for R(D) 1A=B S(D), from a tree decomposition of 〈R(D), S(D)〉. We
start by considering a tree decomposition T0 = (T = (V ′, E′), λ0) of 〈R(D), S(D)〉,
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and iteratively construct tree decompositions T1 = (T = (V ′, E′), λ1), . . . , Tk =
(T = (V ′, E′), λk), for k ≤ |R(D)| · |S(D)|, with one decomposition corresponding
to each of the k ≤ |R(D)|·|S(D)| pairs of tuples ti, ui with ti ∈ R(D) and ui ∈ S(D)
satisfying ti(A) = ui(B).
To obtain λi from λi−1, note that there are vertices in the tree, v, v′ ∈ V ′ such

that λ0(v) contains all the attribute values that occur in tuple ti, and λ0(v
′) contains

all values that occur in ui. Let v = v0, v1, . . . , vm = v′ be the (unique) path in T
connecting v and v′, and let W consist of the set of all values that occur in tuple
ui other than the value ui(B). We define λi(vℓ) := λi−1(vℓ) ∪W for i ∈ [m], and
for all other nodes w ∈ V ′, set λi(w) := λi−1(w).
By Observation 5.6, each Ti is a valid tree decomposition. Additionally, Tk is a

tree decomposition for R(D) 1A=B S(D), since by construction, for every output
tuple, there is some v ∈ V ′ such that λk(v) contains all values that appear in the
tuple.
We now analyze maxv∈V ′ |λk(v)|. Let T0 be a minimal tree decomposition in that

maxw∈V ′ |λ0(w)| = ω + 1. If Ti−1 is a valid tree decomposition, when Ti is formed
by augmenting the ‘bags’ along path v = v0, v1, . . . , vm = v′, corresponding to
the tuples ti, ui, it must be the case that for ℓ ∈ [m], λi−1(vℓ) contains the value
ui(B), and thus |λi(vℓ)| ≤ |λi−1(vℓ)| + j − 1. Finally, since B is a key for S(D),
for each value c, there is at most one tuple t ∈ S(D) such that t(B) = c, and thus
in our construction, for each node w ∈ V ′, the values in at most |λ0(w)| ≤ ω + 1
tuples t ∈ S(D) will be added to yield λk(w), and since each such tuple of arity j
contributes at most j − 1 new values that were not present in λ0(w), we have that
|λk(w)| ≤ (j − 1)(ω + 1) + (ω + 1), as desired.

The following proposition extends the above bounds to a sequence of keyed joins.
While the proposition is intuitively clear, the proof involves some bookkeeping.

Proposition 5.7. Consider a query Q of the form
(

. . . ((R1 ⊲⊳B1=A2 R2) ⊲⊳B2=A3 R3) ⊲⊳ . . . ⊲⊳Bn−1=An Rn

)

,

such that for i ≥ 2 the attribute Ai occurs in a keyed position of Ri and let ℓ =
maxi(arity(Ri)).

tw(Q(D)) ≤ ℓn−1 (1 + max (tw(〈R1(D), . . . , Rn(D)〉), 2))− 1.

The proof of the above proposition follows from n−1 applications of the following
lemma:

Lemma 5.8. For relations S1, S2, S3, and a join query S1 ⊲⊳B1=A2 S2, where A2

is in a keyed position of S2, let ℓ = arity(S2). Then for any database D consistent
with the query,

tw (〈S1(D) ⊲⊳B1=A2 S2(D), S3(D)〉) ≤ ℓ (1 + max (tw(〈S1(D), S2(D), S3(D)〉), 2))−1

Proof. Let S1, S2, S3 have respective arities s1, s2, s3, and let B1 refer to the
ith position of S1, and A2 the jth position of S2. We now construct a database D′,
and populate relations S′

1(D
′), S′

2(D
′) so as to contain all tuples of S1(D), S2(D),

respectively, and have the additional property that

G (〈S′
1(D

′) ⊲⊳B1=A2 S′
2(D

′), S3(D)〉) = G (〈S′
1(D

′) ⊲⊳B1=A2 S′
2(D

′)〉) .
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Assume that s1 ≥ 3, (otherwise we simply add dummy attributes to each tuple,
and set their values to be the same as the value taken by the last attribute of S1

in each tuple, and note that this does not affect the treewidths). Also, assume
without loss of generality that i ≥ 3. Let S′

1(D
′) consist of all the tuples of S1(D).

Additionally, for every pair of values c, c′ that appear together in the same tuple of
S3(D), we add the tuple (c, c′, α{c,c′}, . . . , α{c,c′}) to S′

1(D
′), where the value α{c,c′}

appears only in that one tuple of S′
1(D

′), and does not appear anywhere else in any
of the relations. Thus arity(S′

1) = arity(S1). Let S
′
2(D

′) consist of all the tuples of
S2(D), and, as above, for every pair of values c, c′ that appear together in a tuple
of S3(D), add the tuple (α{c,c′}, . . . , α{c,c′}) to S′

2(D
′).

From the construction, it is clear that the jth position of S′
2(D

′) is a key for
S′
2(D

′), and that the Gaifman graphs satisfy

G (〈S′
1(D

′) ⊲⊳B1=A2 S′
2(D

′), S3(D)〉) = G (〈S′
1(D

′) ⊲⊳B1=A2 S′
2(D

′)〉) .

Furthermore, for each pair c, c′, because the value α{c,c′} only appears in the
same tuple as two other values (namely c and c′) a valid tree decomposition of
G(〈S′

1(D
′), S′

2(D
′)〉) can be made from any tree decomposition T = ((V ′, E′), λ) of

G(〈S1(D), S2(D), S3(D)〉) by adding adding a new vertex vc,c′ to V ′ for each pair
c, c′, defining the label λ(vc,c′) := {c, c

′, α{c,c′}}, and adding a single edge between
node vc,c′ and a node w ∈ V ′ satisfying λ(w) ⊇ {c, c′}. Note that such a node w
must exist because T is a valid tree decomposition, and values c, c′ appear together
in a tuple of S3(D). To conclude, note that in the process of modifying T to create
a tree decomposition for G(〈S′

1(D
′), S′

2(D
′)〉), each new vertex has a label of size

at most 3, and thus

tw(〈S′
1(D

′), S′
2(D

′)〉) ≤ max (tw(〈S1(D), S2(D), S3(D)〉), 2) .

Combining this with Theorem 5.5 we have the following:

tw (〈S1(D) ⊲⊳B1=A2 S2(D), S3(D)〉) ≤ tw(S′
1(D

′) ⊲⊳B1=A2 S′
2(D

′))

≤ ℓ (1 + tw(〈S′
1(D

′), S′
2(D

′)〉)) − 1

(from Theorem 5.5)

≤ ℓ (1 + max (tw(〈S1(D), S2(D), S3(D)〉), 2))− 1.

5.2 Bounding Treewidth Without Functional Dependencies

In this section, we present a necessary and sufficient condition for the results of a
general conjunctive query without key information to have treewidth bounded by
some function of the input treewidth.

Proposition 5.9. Given a conjunctive query

Q = R0(u0)← Ri1(u1) ∧ . . . ∧Rim(um),

with ij ∈ [n] and no functional dependencies, tw(Q(D)) can not be bounded as any
function of tw (〈R1(D), . . . , Rn(D)〉) ,m, and |ui| if there exists a valid coloring of
Q with 2 colors and color number 2. Furthermore, if there is no such coloring, then

tw(Q(D)) ≤ tw (〈R1(D), . . . , Rn(D)〉) .
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Proof. We first argue that given a valid coloring defined by L with 2 colors
and color number 2, for any M ∈ N, the method of populating the relations given
in the proof of Proposition 4.5 yields a database D with |Ri(D)| ≤ M , such that
tw (〈R1(D), . . . , Rn(D)〉) ≤ 1, and tw(Q(D)) ≥M . Indeed, for each uj with j ≥ 1,
since the color number is 2 and there are at most 2 colors, | ∪X∈uj L(X)| ≤ 1; thus
the Gaifman graph G (〈R1(D), . . . , Rn(D)〉) consists of a tree, with all values other
than the null value v∅ either having no neighbors, or having a single neighbor v∅.
In the result of the query, each of the M values taken by a variable X with
L(X) = {1} appears together with each of the M values taken by variables Y with
L(Y ) = {2} (since |∪X∈u0L(X)| = 2), and thus G(Q(D)) will contain the complete
graph on M vertices, and will thus have treewidth at least M−1, and, in particular,
can be made arbitrarily larger than the original treewidth.
For the other direction, if there is no valid coloring with 2 colors and color

number 2, then for each pair of variables X,Y that appear in u0, there must be
some atom containing both X and Y . Thus every edge in the Gaifman graph
G(Q(D)) will exist in the Gaifman graph G(Ri(D)), for some i ∈ [n], and thus
tw(Q(D)) ≤ tw (〈R1(D), . . . , Rn(D)〉), as claimed.

5.3 Treewidth and Simple Functional Dependencies

We now extend the characterization of queries that preserve bounded treewidth to
the setting with simple keys/functional dependencies via a reduction to the results
of the previous section (Proposition 5.9). Our reduction analyzes the iterative pro-
cess of removing simple functional dependencies given in the proof of Theorem 4.4,
together with the bounds of Lemma 5.8 for the increase in treewidth resulting from
a keyed join operation.

Theorem 5.10. Given a conjunctive query

Q = R0(u0)← Ri1(u1) ∧ . . . ∧Rim(um),

with ij ∈ [n], and a set of arbitrary functional dependencies, tw(Q(D)) can not be
bounded as any function of tw (〈R1, . . . , Rn〉) ,m, and |ui| if there exists a valid col-
oring of chase(Q) with 2 colors and color number 2. Furthermore, if all functional
dependencies are simple, and there is no such coloring, then for any database D,

tw(Q(D)) ≤ 2m|var(Q)|2 (1 + max (tw(〈R1(D), . . . , Rn(D)〉), 2))− 1.

Proof. First observe that if there is a valid coloring with 2 colors and color
number 2, the proof in the case without functional dependencies (Proposition 5.9)
is still valid, and yields an instance with unbounded blowup in treewidth.
To show that the upper bound holds in the case that all functional dependencies

are simple, and there is no coloring with 2 colors and color number 2, we will
analyze the transformation of query Q into Q′ given in the proof of Theorem 4.4.
By Lemma 4.7, there is a coloring of chase(Q) with 2 colors and color number 2 if,
and only if there is such a coloring of Q′.
Let Qi be some intermediate query obtained in the process of eliminating func-

tional dependencies, and Qi+1 derived from Qi by eliminating the dependency
X → Y . Additionally, let Di be a database compatible with Qi, with relations
Ri

1(Di), . . . , R
i
n(Di). We construct Di+1 as was done in the proof of Theorem 4.4,
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by appending an extra attribute to each relation Ri
j for which the corresponding

atom contains variable X , and populating that atom via the uniquely determined
value y(x), determined by the functional dependency X → Y and the value x in a
position corresponding to variable X . Now, define the relation S(Di), consisting of
all tuples of the form (x, y(x)), with one tuple for each distinct value x that occurs
in a position corresponding to variable X in any relation of Di. For each j, either
Ri+1

j (Di+1) = Ri
j(Di), or Ri+1

j (Di+1) = Ri
j(Di) ⊲⊳X=X S(Di), where the join is

keyed. By Lemma 5.8 we have the following:

tw
(

〈Ri+1
1 (Di+1), . . . , Ri+1

m (Di+1)〉
)

= tw
(

〈Ri
1(Di) ⊲⊳X=X S(Di), . . . , R

i
m(Di) ⊲⊳X=X S(Di))〉

)

,

≤ 2m
(

1 + max
(

tw
(

〈Ri
1(Di), . . . , R

i
m(Di), S(Di)〉

)

, 2
))

− 1.

Finally, noting that tw(Qi+1(Di+1)) ≥ tw(Qi(Di)), because the Gaifman graph
of Qi+1(Di+1) contains that of Qi(Di), from repeated application of the above
bounds for each of the at most |var(Q)2| functional dependencies that might occur,
and Proposition 5.9, we have:

tw(Q(D)) ≤ tw(Q′(D′))

≤ tw(〈R′
1(D

′), . . . , R′
n(D

′)) by Proposition 5.9,

≤ 2m|var(Q)|2 (1 + max (tw(〈R1(D), . . . , Rn(Q)〉), 2))− 1.

6. EXTENSIONS TO GENERAL FUNCTIONAL DEPENDENCIES

In this section, we attempt to extend the size bounds of Section 4 to conjunctive
queries with arbitrary functional dependencies. Proposition 4.5 proves that, even
for arbitrary functional dependencies, the color number gives a lower-bound on
the exponent of the maximum possible size increase of the results of a conjunctive
query. Unfortunately, the matching upper bound does not hold in the setting with
general functional dependencies; as we will show, however, even in this most general
setting, the color number provides a characterization of those conjunctive queries
that admit no size increase. Specifically, the number of tuples in the result of
a query (with a set of arbitrary functional dependencies) can be larger than the
number of tuples in the input relations if, and only if C(chase(Q)) > 1.
Beyond this characterization, in order to provide size bounds in this general

setting we shall require some further machinery. The tools we have introduced
thus-far have enabled us to analyze settings in which the worst-case size increase
is realizable via databases that have particularly simple structures (in a manner
which we will precisely characterize in Section 6.4). However, to establish size
bounds for queries together with general functional dependencies, we must develop a
more intimate understanding of the constraints that functional dependencies impose
on database instances. Specifically, we shall use tools from information theory
developed to analyze the precise interactions of multivariate distributions.
Our general size bound will take the form of a linear program with entropies

as the variables, and the exponent of the worst-case size increase as the solution.
It will be clear how functional dependencies can be encoded as constraints in the
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linear program. The difficulty is determining which additional constraints must be
added to the linear program to ensure that the solution is realizable as a database
instance. This question, as it turns out, is crucially related to an old and ongoing
investigation at the heart of information theory: which entropy structures can be
instantiated in multivariate distributions?
While we believe that providing an explicit characterization of the worst-case

size increase is impossible without significant advances in information theory, in
this section we provide an explicit upper bound, to go with the lower bound of
C(chase(Q)) proven in Proposition 4.5. The upper bound can be viewed as a
natural complement to the color-number bound, but as we exhibit, is not tight, and
in fact has a super-constant gap. Finally, we provide an alternative characterization
of the color number in terms of the solution to a linear program. This alternative
characterization provides some insight into the entropy structure of the worst-case
database instances in the settings without functional dependencies, and with simple
functional dependencies.
We start this section by proving that the results of a conjunctive query with an

arbitrary set of functional dependencies can be larger than those of the inputs if, and
only if C(chase(Q)) > 1. In Section 6.2 we establish the connection between entropy
and worst-case size increases. In Section 6.3 we provide definitions of the basic
information theory quantities, and define the Shannon information inequalities. In
Section 6.4 we prove our linear program size bound, provide an alternative definition
for the color number in terms of entropies, and exhibit a construction showing a
super-constant gap between our upper and lower bounds.

6.1 Characterization of Size-Preserving Queries

Theorem 6.1. Given a query Q = R0(u0) ← Ri1(u1) ∧ . . . ∧ Rim(um) with
arbitrary functional dependencies, there exists a database D such that |Q(D)| >
rmax(D) if and only if C (chase(Q)) > 1. Furthermore, C(chase(Q)) > 1 implies
that C(chase(Q)) ≥ m

m−1 .

Proof. By Proposition 4.5, if C(chase(Q)) > 1, then there exists a database D
with |Q(D)| > rmax(D), thus it suffices to prove the other direction.
Consider a query Q and set of functional dependencies for which there is an

instance with |Q(D)| > rmax(D). For the remainder of the proof, for ease of no-
tation, assume that Q = chase(Q) (otherwise we simply apply these arguments to
chase(Q)). Given such an instance, we will explicitly construct a valid coloring with
color number greater than 1. First, letQ′ = R0(var(Q))← Ri1(u1)∧, . . . ,∧Rim (um)
be the query identical to Q except whose output relation contains all the vari-
ables. Define the table T of arity |var(Q)|, such that each tuple in T is contained
in Q′(D), and such that there is a bijection between tuples of T and tuples of
Q(D); thus |T | = |Q(D)|. Table T is simply the extension of Q(D) to include
attributes corresponding to the variables in var(Q) that are not in u0. Note that
rmax(D) ≥ maxi∈[m] |πui(T )|, where πui (T ) denotes the projection of T onto the
positions corresponding to variables in ui.
We will now use table T to construct a coloring L with color number at least

m
m−1 . The construction of the coloring proceeds as follows: for each i ∈ [m], by
the pigeon-hole principle there must be some subset of the tuples, Si ⊂ T , with
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|Si| = 2 such that |πui(Si)| = 1. For each variable X ∈ var(Q), we “mark” it with
an i if |πX(Si)| = 2. (Note that no X ∈ ui will be marked with an i, since, by
definition, |πui(Si)| = 1.) After completing these markings for all X ∈ var(Q), we
simply assign colors according to the markings: if variable X has not been marked,
then L(X) := ∅. Otherwise, if X has been marked with indices j1, . . . , jℓ, we set
L(X) := {j1, . . . , jℓ}.
We now argue that the above coloring is valid. Consider a functional dependency

X1 . . . Xh → Y . If j ∈ L(Y ), then |πY (Sj)| = 2, and thus in the two tuples of Sj ,
position Y takes on two distinct values. The functional dependency implies that
at least one of X1, . . . , Xh must also take on two distinct values in these tuples,
and thus at least one of these variables will also be marked with a j, and therefore
j ∈

⋃

i∈[h] L(Xi), and the functional dependency is obeyed by the coloring defined
by L.
Finally, since for all i ∈ [m], |πu0(T )| = |T | > |πui (T )|, for each i ∈ [m], i will

mark at least one of the variables X in u0, and thus |
⋃

X∈u0
L(X)| = m. As noted

above, for each i ∈ [m], i 6∈
⋃

X∈ui
L(X), and thus L is a valid coloring with m

colors appearing in the final projection variables, with at most m − 1 appearing
together in any ui, thus C(Q) ≥ m

m−1 , as desired.

6.2 Entropy Size Bounds

To see the connection between entropy and worst-case size increases, consider a
conjunctive query Q = R0(u0) ← R1(u1) ∧ . . . ∧ Rn(un), and database D, such
that |Q(D)| = rmax(D)c. Let Q′ = R′

0(var(Q)) ← R1(u1) ∧ . . . ∧ Rn(un), and
define the distribution D over the tuples of Q′(D) to be such that the marginal
distribution Du0 over the values of the |u0|-tuples corresponding to variables in u0

is the uniform distribution. Note that such a choice for D is not necessarily unique,
unless u0 = var(Q). Let HD(ui) denote the entropy of the marginal distribution
of the values in positions labeled by the variables of ui. Observe that for any
i ∈ {1, . . . , n},

HD(u0)

HD(ui)
≥

HD(u0)

Hunifi (ui)
=

log(|Q(D)|)

log(|Ri(D)|)
≥ c, (2)

where unifi is the uniform distribution over the tuples of Ri(D). This provides the
motivation for the form that our linear programs will take: maximizing the entropy
HD(u0) while bounding the entropies of each HD(ui).

6.3 Conditional Entropy and Information Measures

In this section we state the basic definitions of conditional entropy and information
measures, and then state some facts about Shannon and non-Shannon information
inequalities, which we will use in the following sections.

Definition 6.2. For discrete random variables X,Y with respective supports
X ,Y, the conditional entropy of X given Y , denoted by H(X |Y ) is given by

H(X |Y ) :=
∑

y∈Y

p(y)H(X |Y = y) = −
∑

x∈X

∑

y∈Y

p(x, y) log (p(x|y)) .

The following fact follows from the above definition:
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Fact 6.3. For discrete random variables X,Y with respective supports X ,Y,

H(X,Y ) = H(X) +H(Y |X).

Definition 6.4. For discrete random variables X,Y , as above, the mutual infor-
mation between X and Y is

I(X ;Y ) :=
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

The following fact follows from the above definition:

Fact 6.5. For discrete random variables X,Y as above,

I(X ;Y ) = I(Y ;X) = H(X)+H(Y )−H(X,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X).

Definition 6.6. For discrete random variables X1, . . . , Xn with respective sup-
ports X1, . . . ,Xn, and n ≥ 3, we recursively define their mutual information as

I(X1; . . . ;Xn) = I(X1; . . . ;Xn−1)− I(X1; . . . ;Xn−1|Xn),

where the conditional mutual information is defined as

I(X1; . . . ;Xn−1|Xn) =
∑

xn∈Xn

p(xn) I(X1; . . . ;Xn−1|Xn = xn),

and for n = 2 the mutual information is as defined in Definition 6.4.

Unsurprisingly, the above information measures have a set-theoretic structure,
and can be represented in an information diagram, from which basic relations be-
tween information measures can be easily read off. Figure 2 illustrates a general
information diagram for three variables. The following basic facts follow from the
previous definitions, and can easily be seen by considering the associated infor-
mation diagram. (We refer the reader to Chapter 3 of Yeung [2008] for proofs of
these facts and a rigorous definition of the set-theoretic structure of information
measures.)

Fact 6.7. For discrete random variables X1, . . . , Xn, and any disjoint sets
K,K ′ ⊆ [n],:

H(XK |XK′) =
∑

S:S∩K 6=∅,S∩K′=∅

I(S|X[n]−S),

I(K|XK′) =
∑

S:S⊇K,S∩K′=∅

I(S|[n]− S),

where I(S|XS′) denotes I(X1; . . . ;Xj|XS′), for S = [j]. Note that we avoid the no-
tation I(XS |XS′), which has the interpretation of I(X1, . . . , Xj |XS′) = H(XS |XS′).

We now define the basic information inequalities.

Definition 6.8. For discrete random variables X1, . . . , Xn as above, and for a
subset K ⊆ [n], denote the tuple of all Xi for i ∈ K by XK , the Shannon informa-
tion inequalities consist of all inequalities of the form

H(Xi|X[n]−{i}) ≥ 0,
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Fig. 2. The generic information diagram of X,Y, Z. Note that the set-theoretic properties of these
information measures allows various information equalities to be read off from such a diagram; for
example, I(X; Y ) = I(X; Y ;Z) + I(X; Y |Z), and H(Z) = I(X; Y ;Z) + I(X;Z|Y ) + I(Y ;Z|X) +
H(Z|X,Y ).

for all i ∈ [n], and

I(Xi;Xj |XK) ≥ 0,

for all i 6= j ∈ n and K ⊆ [n]− {i, j}.

We note that, as above, the mutual information expressions can be reexpressed
in terms of entropies. For example, I(Xi;Xj |XK) = H(Xi|XK)−H(Xi|Xj , XK) =
H(Xi, XK) +H(Xj , XK)−H(XK)−H(Xi, Xj , XK). (See Yeung [2008], Chapter
14 for further discussion of the Shannon inequalities.)
The Shannon information inequalities are well-understood and were initially hy-

pothesized to essentially capture the space of valid entropy configurations. However,
in a breakthrough work in 1998, Zhang and Yeung [1998] showed that there are
fundamental constraints on this space that are not captured by the Shannon in-
equalities, even for four random variables. This accounts for the lack of tightness
in our upper bound.

6.4 Size Bounds for General Functional Dependencies

We are now equipped to give our linear programming upper bound for the worst-
case size increase. Throughout this section, we admit a slight abuse of notation, and
refer to the entropy of a set of attributes of a database, interpreted in the natural
way: given a database table with attribute set A = {X1, . . . , Xk}, some fixed prob-
ability distribution D over the tuples of the table, and two subsets S, S′ ⊆ A, we
refer to the conditional entropy HD(S|S′) where S, S′ respectively are interpreted
to be the discrete random variables whose possible values consist of the |S|, respec-
tively |S′|−tuples of values that the corresponding variables have in the tuples of
the database table, with probabilities given according to D.

Proposition 6.9. Given a query Q = chase(Q) = R0(u0) ← Ri1(u1) ∧ . . . ∧
Rim(um), with ij ∈ [n] and var(Q) = {X1, . . . , Xk}, and a set of arbitrary func-
tional dependencies, for any database D,

|Q(D)| ≤ rmax(D)s(Q),
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where rmax(D) := maxi∈n |Ri(D)|, and s(Q) is the solution to the following linear
program:

maximize h(u0)

subject to h(uj) ≤ 1 ∀j ∈ [m]

h(xt|xj1 , . . . , xjℓ) = 0 for each f.d. Xj1 . . .Xjℓ → Xt

h(xj |x[k]−{j}) ≥ 0 ∀j ∈ [k]

I(xj ;xℓ|xS) ≥ 0 ∀j, ℓ ∈ [k] and S ⊆ [k]− {j, ℓ},

where the variables of the linear program are the (unconditional) entropies h(xS)
for all S ⊆ [k], and the expressions involving mutual information or conditional
entropies appearing in the constraints are implicitly considered to stand in for the
corresponding linear expressions of these variables (as described in Section 6.3).

Proof. Let D denote the distribution over |var(Q)|-tuples whose marginal dis-
tribution Du0 over the variables in u0 is uniform, as defined in Section 6.2. To see

that the value of the above linear program provides an upper bound on log(|Q(D)|)
log(|Ri(D)|) ,

note that for any set S ⊆ [k], the quantity HD(S)
maxi∈[m] HD(ui)

must satisfy the analogs

of all the constraints that the corresponding variable h(S) is subject to in the linear
program, including the last two sets of constraints that represent the Shannon in-

formation inequalities. Thus the assignments h(S) := HD(S)
maxi∈[m] HD(ui)

yields a point

in the feasible region of the linear program, and thus by Equation (2) the value of

the solution to the linear program must be at least log(|Q(D)|)
log(|Ri(D)|) .

In order to make the size bound given by the solution to the linear program
of Proposition 6.9 tight, we would need to add additional constraints so as to
enforce the non-Shannon information inequalities. Unfortunately, it was recently
shown that even for just four variables, there are infinitely many independent such
inequalities [Matúš 2007a].
We now reexamine the color number in an effort to better understand the types

of entropy structures that it can capture. As the following proposition shows, the
color number can be defined via the linear program of Proposition 6.9 with some
additional constraints on the entropies. In particular, we require extra constraints
that enforce that all mutual information measures be nonnegative. Note that the
Shannon inequalities imply that all mutual information measures of two variables
be nonnegative; however, as Figure 3 depicts, the mutual information of more than
two variables can be negative.

Proposition 6.10. Given a query Q = chase(Q) = R0(u0) ← Ri1(u1) ∧ . . . ∧
Rim(um), with var(Q) = {X1, . . . , Xk}, and a set of arbitrary functional dependen-
cies, C(Q) is equal to the solution to the following linear program:

maximize h(u0)

subject to h(ui) ≤ 1 ∀i ≥ 1

h(xt|xj1 , . . . , xjℓ) = 0 for each f.d. Xj1 . . .Xjℓ → Xt

I(xj1 ; , . . . ;xjℓ |x[k]−{j1,...,jℓ}) ≥ 0 ∀ sets {j1, . . . , jℓ} = S ⊆ [k],
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where the variables of the linear program are the (unconditional) entropies h(xS)
for all S ⊆ [k], and the expressions involving mutual information or conditional
entropies appearing in the constraints are implicitly considered to stand in for the
corresponding linear expressions of these variables (as described in Section 6.3).

Proof. We first show that given any valid coloring achieving color number C(Q),
we can find a feasible point for the linear program with value C(Q). Given a valid
coloring defined by L, such that maxi∈[m] |

⋃

X∈ui
L(X)| ≤ r, for every set S ⊆ [k],

we set

I(S|x[k]−S) =
|
⋂

i∈S L(Xi)−
⋃

i6∈S L(Xi)|

r
,

where I(S|x[k]−S) denotes I(xj1 ; . . . ;xjℓ |x[k]−S), with S = {j1, . . . , jℓ}. Note that

these 2k mutual information values are sufficient to determine the values of all
variables in the linear program. In particular, these 2k mutual information mea-
sures are the values that would appear in an information diagram. From Fact 6.7,
for any disjoint sets T, T ′ ⊆ [k], we will now express I(T |xT ′) in terms of the
color labels. We note that for distinct sets S1, S2, the corresponding sets of labels
⋂

i∈Sj
L(Xi) −

⋃

i6∈Sj
L(Xi) will be disjoint, because these sets consist of exactly

those colors appearing in the labels of each element of Sj and not in any of the
labels of elements not in Sj . Thus the sum in Fact 6.7 may be expressed in terms
of the size of the union of these sets for S containing T and disjoint from T ′. This
union consists of exactly those colors appearing in the labels of each element of T
and not in any of the labels of elements of T ′, yielding:

I(T |xT ′) =
|
⋂

i∈T L(Xi)−
⋃

i∈T ′ L(Xi)|

r
.

It is now easy to see that this construction yields a feasible point for the linear
program. First observe that all the information inequalities are trivially satisfied,
since for every set S ⊆ [k], I(S|x[k]−S) ≥ 0 in our construction. To see that the
equality constraints given by the functional dependencies are observed, note that the
dependency X1, . . . , Xj → Xj+1 implies that L(Xj+1)−

⋃

i∈[j] L(Xi) = ∅, and thus

in the above assignment, I(xj+1|x[j]) = 0, as desired. (Note that, by definition,
h(xj+1|x[j]) = I(xj+1|x[j]).) Finally, to see that the first set of constraints are
observed, note that for any j ≤ k, h(x[j]) =

∑

S s.t. S∩[j] 6=∅ I(S|x[j]−S), which, by

our construction, is precisely
|
⋃

i∈[j] L(Xi)|

r , which is bounded by 1 whenever S is
the index set of an atom occurring in the query body, and which will equal C(Q)
when S is the index set of u0 by the definition of the color number.
For the other direction, given a rational feasible point for the linear program

with objective function value v, where all variables have values ri/q, for integers
ri, q, with q being the common denominator, we will construct a coloring with color
number C(Q). The final set of constraints of the linear program imply that for any
set S ⊆ [k], I(S|x[k]−S) =

rS
q ≥ 0. Furthermore, since our feasible point is rational,

rS ∈ N. To populate our coloring, we begin with the empty coloring, and then for
each S ⊆ [k], we add q · I(S|x[k]−S) unique colors to the labels of all Xi for which
i ∈ S. To see that this coloring obeys the functional dependencies, note that for
X1 . . . Xj → Xj+1, we have that I(xj+1|X[j]) = 0, and thus by Fact 6.7, for any
S ⊆ [k] − [j] such that j + 1 ∈ S, I(S|X[k]−S) = 0, from which it follows that in
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our construction L(Xj+1) ⊆
⋃

i∈[j] L(Xi). Finally, to see that the color number is
at least the value v, of the linear program, note that by Fact 6.7, a total of

∑

S⊆[k] s.t. S∩K 6=∅

q · I(S|X[k]−S) = q · h(XS)

unique colors is assigned to each set XS, and thus the color number is at least
h(u0), as desired.

Leveraging the understanding of the entropy structures that are compatible with
the color number given by the previous proposition, we now show that there is a
super-constant gap between the true worst-case size increase, and the color number
(in the case of general functional dependencies). We show this by exhibiting a
family of queries, and associated databases whose color numbers fall short of their
true size increase by a superconstant factor (in the exponent). This family is a
generalization of a construction suggested to us by Daniel Marx.

Proposition 6.11. For any constant α ∈ R, there exists a conjunctive query Q
and set of functional dependencies, and database D such that

|Q(D)| > rmax(D)α C(chase(Q)).

Proof. We shall construct a family of queries, and associated databases whose
color numbers fall short of the true size increase by a superconstant factor. In
particular, for any even integer k, and prime number N > k, we will construct a
queryQ with a set of functional dependencies, and databaseD such that rmax(D) =

Nk/2, |Q(D)| = Nk2/4, yet C(chase(Q)) = 2.
Fix an even integer k, and consider the following query Q over k2/2 variables

Xi,j , for i ∈ {1, . . . , k}, and j ∈ {1, . . . , k/2}:

Q = R(X1,1, . . . , Xi,j , . . . , Xk,k/2)←

k/2
∧

j=1

Ri(X1,j , . . . , Xk,j)∧
k
∧

i=1

Ti(Xi,1, . . . , Xi,k/2).

Additionally, for each j ∈ {1, . . . , k/2} we impose the following functional depen-
dencies: given any set S ⊆ {X1,j, . . . , Xk,j}, with |S| ≥ k/2, for any i ∈ [k],

S → Xi,j .

Intuitively, the above construction has k/2 groups of k variables (indexed by j ∈
[k/2], above), such that amongst any group, any set of k/2 of those variables suffice
to recover the remaining k/2 variables in that group. The information diagram of
one group of the construction in the case k = 4 is depicted in Figure 3.
Given any prime integer N > k, we will construct a database D such that for all

i ∈ [k], j ∈ [k/2], |Rj(D)| = Nk/2 = |Ti(D)|. Additionally, the values assigned to
positions labeled by Xi,j and Xi′,j′ will be disjoint whenever j 6= j′; i.e. the values
assigned to each of the k/2 groups are disjoint. Each of the Nk/2 tuples of Rj(D)
will be constructed so as to be Shamir (k/2, k) secret shares [Shamir 1979]. That is,
given the values of any k/2 attributes X1,j, . . . , Xk/2,j , the values of the remaining
k/2 attributes can be uniquely determined, and for S ⊆ {X1,j, . . . , Xk,j},

|πS(Ri(D))| = Nmin(|S|,k2 ).
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Fig. 3. The information diagram of X1,1, . . . ,X4,1 in our construction for k = 4. Note that any set
of size 2 or more contains all the entropy of all four variables. The negative mutual information
I(X1,1;X1,2;X1,3;X1,4) = −2 suggests that no valid coloring can closely approximate the entropy
structure; this intuition is leveraged in our construction to yield a super-constant gap between the
color number and the exponent of the worst-case size increase.

Explicitly, let {p1, . . . , pNk/2} be the set of all Nk/2 polynomials of degree at most
k
2 − 1 over the finite field of N elements. We populate the mth tuple of Rj(D) by,
for each i ∈ [k], letting the ith position (corresponding to variable Xi,j) take value
pm(i − 1), namely the evaluation of the mth polynomial at the value x = i − 1.
Additionally, we add a marker j to each value, so that the set of symbols used to
populate Rj(D) and Rj′(D) are disjoint for j 6= j′; for example, whenever we want
to put a “7” in a tuple of Rj(D), we instead put the symbol “7j”, and if we want
to put a “7” in a tuple of Rℓ(D), we put the symbol “7ℓ”.
Since each polynomial pm is uniquely defined by its evaluation on any k/2 distinct

points, the constructed relations Rj(D) satisfy the functional dependencies, and

additionally, for any S ⊆ {X1,j, . . . , Xk,j}, |πS(Rj(D))| = Nmin(|S|,k2 ).
We now define the Ti(D). Let

Q′ = R′(X1,1, . . . , Xi,j , . . . , Xk,k/2)←

k/2
∧

j=1

Rj(X1,j , . . . , Xk,j),

and for each i ∈ [k], let Ti(D) := πXi,1,...,Xi,k/2
(Q′(D)) be the projection of the

total join (the complete cartesian product) of the Rj(D)s onto the attribute list
(Xi,1, ..., Xi,k/2). Thus |Ti(D)| = Nk/2. We remark that given the above construc-
tion, the addition of the Tis to the query does not affect the result of the query. The
sole purpose of the Tis in the query is to allow us to bound the color number—as
we will argue, at least one of the Tis must have attributes that have “lots” of colors,
thereby ensuring that C(Q) is small.
Since Q(D) consists of the complete join (the complete cartesian product) of each

Rj , |Q(D)| =
(

Nk/2
)k/2

= Nk2/4, whereas the size of the largest input relation is
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rmax(D) = Nk/2.We now show that C(chase(Q)) = C(Q) ≤ 2, which will complete
our proof of the proposition.
First observe that it suffices to consider the case that for j 6= j′, L(Xi,j) ∩
L(Xi′,j′) = ∅, because, assuming otherwise, for any color c that lies in the intersec-
tion, by removing the color c from the labels L(Xi′′,j) for all i

′′ ∈ [k], we still have
a valid coloring (since there are no functional dependencies involving both Xi,j and
Xi′,j′ for j 6= j′), and the new color number can only have increased or remained

the same. Let rj = |
⋃k

i=1 L(Xi,j)|, and ti = |
⋃k/2

j=1 L(Xi,j)| =
∑k/2

j=1 |L(Xi,j)| de-
note the number of colors assigned to the variables of each atom occurring in the
query body. Thus in an optimal coloring defined by such a labeling L, we have

|
⋃

i,j

L(Xi,j)| =

k/2
∑

i=1

|
k
⋃

j=1

L(Xj,i)| =

k/2
∑

i=1

ri.

Next, observe that each element of L(Xi,j), must occur in the labels of at least
k/2 other variables Xi′,j ; if this were not the case, then there would exist a set
S ⊆ {X1,j, . . . , Xk,j} of size |S| ≥ k/2, such that L(Xi,j) 6⊆

⋃

Xi′,j∈S L(Xi′,j),

which violates one of the functional dependencies. Thus it follows that

k
∑

i=1

|L(Xi,j)| ≥
k

2
rj .

To conclude, putting the above equations together, we have

k
∑

i=1

ti =
∑

i,j

|L(Xi,j)| ≥
k

2

k/2
∑

j=1

rj ,

and thus there must be at least one i ∈ [k] such that ti ≥
(k/2)

∑k/2
j=1 rj

k = 1
2

∑k/2
j=1 rj ,

and thus C(Q) ≤ 2.

As a final remark, we note that the jump in difficulty of establishing tight size
bounds occurs when the left-hand sides of functional dependencies go from having
single variables, to having 2 variables. It is not hard to show that any size bounds
for the case where functional dependencies have left-hand sides with at most two
variables can be extended to work for arbitrary functional dependencies, via the
following fact.

Fact 6.12. Given a query Q = chase(Q) and set of functional dependencies,
there exists a query Q′ with the following properties:

—each functional dependency of Q′ has at most two variables on its left-hand side,

—Q′ = chase(Q′),

—the set of functional dependencies of Q′ is at most polynomially larger than that
of Q,

—the description of Q′ is at most polynomially larger than that of Q,

—the worst-case size increase of Q and Q′ are identical.

—C(Q) = C(Q′).
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Proof. We shall iteratively remove functional dependencies from Q that have
3 or more variables occurring on their left-hand sides, via the addition of a (poly-
nomial number) of additional variables, relations, and functional dependencies.
Given a functional dependency X1 . . . Xk → Y, we add a relation R(X1, X2, Z),

with the new variable Z, together with the functional dependencies X1X2 →
Z, Z → X1, Z → X2. We then add the relation R′(Z,X3, . . . Xk, Y ), together
with the functional dependency ZX3 . . .Xk → Y. Finally, we remove the functional
dependency X1 . . . Xk → Y from the set of functional dependencies.
Iteratively applying the above procedure until there are no more functional depen-

dencies (other than implied ones) with more than two variables on their left-hand
sides clearly results in a query Q′ with at most a polynomially longer description,
and polynomially more functional dependencies. Additionally, since all new rela-
tions are distinct, and all original functional dependencies are implied by the new
set of functional dependencies, chase(Q′) = Q′. To see that the size increase of Q′

is the same as that of Q, note after each single iteration of the above procedure,
the size increase must remain unchanged, as the values taken by variables X1, X2

dictate that taken by Z, and vice versa, defining a 1 : 1 mapping between tuples of
Q(D) and tuples of the result of the query generated after one step of the proce-
dure. To conclude, there is a natural mapping between valid colorings of Q, and the
query obtained after one step of the above procedure, namely for the step described
above, L(Z)↔ L(X1) ∪ L(X2).

7. COMPLEXITY CONSIDERATIONS

In this section, we consider the computational complexity of computing the bounds
on the size increase, and deciding whether the treewidth must have a bounded
blowup.

Proposition 7.1. Given a conjunctive query Q with a set of simple functional
dependencies, the maximum size increase, C(chase(Q)), can be computed in time
polynomial in |Q|. Additionally, whether or not the treewidth is bounded (whether
chase(Q) has a coloring with 2 colors achieving color number 2) can be decided in
polynomial time.

Proof. First note that chase(Q) can be computed in polynomial [Aho et al.
1979]. The proof of Theorem 4.4 gives a polynomial-time reduction from chase(Q)
to Q′, a query without functional dependencies and the property that there is a
coloring of Q′ with k colors achieving color number r if, and only if there is such
a coloring of chase(Q). Our claim follows from noting that C(Q′) is given as the
solution to a polynomial-sized LP, and from noting that deciding whether there
is a coloring with 2 colors and color number 2 is equivalent to deciding whether
every pair of output variables occurs together in some atom, which can be checked
efficiently.

As our next theorem shows, even for queries Q with arbitrary functional depen-
dencies, it is possible to efficiently decide whether C(Q) > 1. The proof reduces the
question at hand to the satisfiability of a sequence of tractable SAT instances—one
for relation in the query body.

Theorem 7.2. Given a conjunctive query Q with an arbitrary set of functional
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dependencies, it can be decided in polynomial time whether the results of Q can be
larger than the input relations, or, equivalently, whether C(chase(Q)) > 1.

Proof. Since chase(Q) can be computed in polynomial time, it suffices to con-
sider the case that Q = chase(Q) = R0(u0)← Ri1 (u1)∧. . .∧Rim(um). First observe
that a necessary and sufficient condition for C(Q) > 1 is the existence of some col-
oring L such that for each i ∈ [m], there is a color c such that c ∈

⋃

Xj∈u0
L(Xj),

but c 6∈
⋃

Xj∈ui
L(Xj). We will represent this condition as a set of m tractable

SAT expressions, one for each atom occurring in the query body, as follows: Our
set of SAT variables will be {x1, . . . , x|var(Q)|}, in natural correspondence with the
set of query variables var(Q) = {X1, . . . , X|var(Q)|}.
From Fact 6.12 it suffices to prove our theorem in the case that all functional

dependencies have at most two variables on their left-hand sides. Given p functional
dependencies Xj1Xk1 → Xh1 , . . . , XjpXkp → Xhp , our SAT expression for atom ui

will have the form

SATi =
∧

Xj∈ui

¬xj ∧





∨

Xj∈u0

xj



 ∧ (xj1 ∨ xk1 ∨ ¬xh1) ∧ . . . ∧ (xjp ∨ xkp ∨ ¬xhp).

Any satisfying assignment of SATi yields a valid coloring of Q that uses exactly
1 color, and has the property that no variable in ui has a color, but at least one
variable in u0 has a color; such a coloring is given by assigning all variables that
are set to FALSE to not have the color, and all variables set to TRUE to have
the color. To see this, note that the first part of SATi ensures that no variable
occurring in ui can be TRUE in a satisfying assignment; the second part of SATi

ensures that at least one variable in the output projection will be colored, and the
third part of SATi ensures that the functional dependencies are respected. Since
any set of valid colorings can be combined to yield a valid coloring (by letting
L1,2(Xi) := L1(Xi) ∪ L2(Xi)), it follows that if, for all i = 1, . . . ,m, SATi is
satisfiable, then there exists a coloring with m colors, yielding C(Q) ≥ m

m−1 > 1.
Conversely, if, for some i, SATi is not satisfiable, then there is no valid coloring of
the variables in which a color appears in the label of some output variable but not
in the label of a variable of ui, in which case C(Q) = 1.
What remains is to verify that SATi can be solved efficiently. Since SATi is a

conjunction of clauses where each clause contains at most one negated literal, it is a
(dual-)Horn formula, whose satisfiability can be decided via a linear-time algorithm
(see, for example, Dowling and Gallier [1984]).

While we do not have a characterization of those queries with arbitrary functional
dependencies that have bounded treewidth, we did show that if such a query has a
coloring with 2 colors achieving color number 2, then its treewidth is not bounded
(Theorem 5.10). We now show that it can be NP-hard to decide whether there
exists such a 2-coloring. The proof is a reduction from 3-SAT , and, intuitively,
constructs disjunctions from dependencies of the form XY → Z.

Proposition 7.3. Given a conjunctive query Q, and set of functional depen-
dencies, it is NP-complete to decide if there is a valid coloring with 2 colors that
achieves color number 2, even if each functional dependency has at most two vari-
ables on its left-hand side.
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Proof. We reduce from 3-SAT. Given a 3-SAT expression E, over the literals
x1, . . . , xn, x̄1, . . . , x̄n, consider the query Q(A,B) ← V1 ∧ . . . Vn ∧ C1 ∧ . . . ∧ Ck,
where, for each variable xi in expression E we have one expression

Vi := Ri,1(Xi, X̄i, A) ∧Ri,2(Yi, Ȳi, B) ∧Ri,3(Xi, Yi) ∧Ri,4(X̄i, Ȳi),

and for each clause in E we have an atom Ci of the form

Ci := Si(Xj , Xk, Xm, A),

with the clause (x1 ∨ x̄2 ∨x3) of E being mapped to S(X1, X̄2, X3, A), for example.
To complete the setup, we define the following functional dependencies that fall
into two types:

—XiX̄i → A, and YiȲi → B,

—and the functional dependencies implies by having the first three attributes of
each Si be a (compound) key for the fourth attribute of Si.

We claim that the 3-SAT expression E is satisfiable if, and only if, the associated
query Q has a coloring with 2 colors and color number greater than 1.
Given a satisfying assignment to the 3-SAT expression E, consider the labeling
L defined as follows: set L(A) = {1}, L(B) = {2}, and for each variable xi, if xi is
TRUE, then set L(Xi) = {1}, L(X̄i) = ∅, L(Yi) = ∅, L(Ȳi) = {2}. If xi is FALSE,
then set L(Xi) = ∅, L(X̄i) = {1}, L(Yi) = {2}, L(Ȳi) = ∅. Such a coloring clearly
satisfies all functional dependencies of the first kind and has color number 2; since
E is satisfied, for every clause, at least one of the variables in the clause must be
TRUE, and thus the corresponding variable will have label {1} = L(A), and thus
all dependencies of the second type will be satisfied.
For the other direction, assume that there is a coloring L with 2 colors and color

number 2. Without loss of generality we can assume that 1 ∈ L(A)\L(B) and
2 ∈ L(B)\L(A). The functional dependencies imply that L(Xi) ∪ L(X̄i) ⊆ L(A)
and L(Yi) ∪ L(Ȳi) ⊆ L(B).
We argue that for all i, we must have exactly one of L(Xi) and L(X̄i) containing 1,

and neither containing 2, and exactly one of L(Yi) and L(Ȳi) with a label containing
2, and neither containing 1. Indeed, from the first type of functional dependencies,
the only other possible option is that both Xi and X̄i have color sets {1}, in which
case in order for the color number to be 2, neither Yi nor Ȳi can be labeled 2, but
this contradicts the functional dependency YiȲi → B.
Note that if we replace each Ci = Si(Xj , Xk, Xm, A) by S′

i(Xj , A
′
i, A)∧ S′′

i (Xk, Xm, A′
i),

and let the first two attributes of each relation be a (compound) key for the third
attribute, we have an equivalent query where all functional dependencies have at
most two variables on the left sides.

8. FUTURE DIRECTIONS

We view the main contributions of this work as establishing tight worst-case
size bounds and characterizing treewidth-preserving queries in the setting in which
either no keys or simple keys are specified, and establishing the connection be-
tween worst-case size bounds and multivariate entropy structures in the setting
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with general functional dependencies, allowing the tools of information theory to
be leveraged towards database analysis. We see three main lines of future work.
The first direction is characterizing the conjunctive queries that have a bounded
increase in treewidth, in the setting with arbitrary functional dependencies.
The other two direction are prompted by the connection between entropy struc-

tures and size bounds. One natural question in the setting of general functional
dependencies is to investigate whether one can explicitly characterize the worst-
case size increase, even if that characterization is exponentially large. It is also
conceivable that, while exactly characterizing the size increase might not be possi-
ble, one can explicitly (and possibly even efficiently) compute an approximation of
the worst-case size increase. This seems like a deep and challenging question, and
such a result would likely involve a significant advance in the understanding of the
structure of non-Shannon type information inequalities.
The final direction is investigating which types of entropy structures arise from

databases and their associated queries in practice. Such an investigation would help
determine where practical instances lie on the spectrum between the basic color
number bounds and the more intricate bounds of Proposition 6.9. Such database
measures as treewidth were introduced with corresponding goals in mind, and have
proved effective at succinctly capturing the ease with which certain database op-
erations can be done. We propose the following measure of the entropy structure
of a database and associated query, in the hope that it will succinctly capture this
new facet of database complexity, as suggested by the results of Section 6.4.

Definition 8.1. The knitted complexity of a database with respect to a query is
the ratio of the sum of the absolute values of the mutual informations of all subsets
of the query variables, to the sum of the (signed) mutual informations of all subsets
of the query variables.

ACKNOWLEDGMENTS

We are deeply grateful to Daniel Marx, who first pointed out to us that the color
number does not provide an upper bound on the worst-case size increase in the
setting in which general functional dependencies are specified.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Aho, A. V., Beeri, C., and Ullman, J. D. 1979. The theory of joins in relational databases.
ACM Transactions on Database Systems 4, 3, 297–314.

Aho, A. V., Sagiv, Y., and Ullman, J. D. May 1979. Equivalence of relational expressions.
SIAM Journal of Computing 8, 2, 218–246.

Arnborg, S., Lagergren, J., and Seese, D. 1991. Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 2, 308–340.

Atserias, A., Grohe, M., and Marx, D. 2008. Size bounds and query plans for relational joins.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS).

Beeri, C. and Vardi, M. Y. 1984. A proof procedure for data dependencies. Journal of the
ACM 31, 4, 718–741.

Chandra, A. K. and Merlin, P. M. 1977. Optimal implementation of conjunctive queries
in relational databases. In Proceedings of the 9th Annual ACM Symposium on Theory of
Computing (STOC).

Journal of the ACM, Vol. ?, No. ?, ? 20?.



38 · Georg Gottlob et al.

Chaudhuri, S. 1998. An overview of query optimization in relational systems. In Proceedings

of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS).

Courcelle, B. 1990. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and Computation 85, 1, 12–75.

Deutsch, A., Popa, L., and Tannen, V. 2006. Query reformulation with constraints. ACM
SIGMOD Record 35, 1, 65–73.

Dougherty, R., Freiling, C., and Zeger, K. 2007. Networks, matroids, and non-shannon
information inequalities. IEEE Transactions on Information Theory 53, 6, 1949–1969.

Dowling, W. F. and Gallier, J. H. 1984. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. The Journal of Logic Programming 3, 1, 267–284.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. 2003. Data exchange: Semantics
and query answering. In Proceedings of the 9th International Conference on Database Theory
(ICDT).

Flum, J., Frick, M., and Grohe, M. 2002. Query evaluation via tree-decompositions. Journal
of the ACM 49, 6, 716–752.

Gottlob, G. and Lee, S. T. 2007. A logical approach to multicut problems. Information
Processing Letters 103, 4, 136 – 141.

Gottlob, G., Lee, S. T., and Valiant, G. 2009. Size and treewidth bounds for conjunctive
queries. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS).

Gottlob, G., Pichler, R., and Wei, F. 2007. Efficient datalog abduction through bounded
treewidth. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence.
AAAI Press, 1626–1631.

Grohe, M. and Marx, D. 2006. Constraint solving via fractional edge covers. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA).

Haas, P. J., Naughton, J. F., Seshadri, S., and Swami, A. N. 1996. Selectivity and cost esti-
mation for joins based on random sampling. Journal of Computer and System Sciences 52, 3,
550–569.

Jarke, M. and Koch, J. 1984. Query optimization in database systems. ACM Computing
Surveys 16, 2, 111–152.

Kolaitis, P. 2005. Schema mappings, data exchange, and metadata management. In Proceedings
of the Twenty-fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS).

Lenzerini, M. 2002. Data integration: a theoretical perspective. In Proceedings of the Twenty-first
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS).

Levy, A. Y., Mendelzon, A. O., and Sagiv, Y. 1995. Answering queries using views. In
Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS).

Maier, D., Mendelzon, A. O., and Sagiv, Y. 1979. Testing implications of data dependencies.
ACM Transactions on Database Systems 4, 4, 455–469.
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