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Abstract

We consider networks, trained via stochastic gradient descent to minimize `2 loss, with
the training labels perturbed by independent noise at each iteration. We characterize the
behavior of the training dynamics near any parameter vector that achieves zero training
error, in terms of an implicit regularization term corresponding to the sum over the data
points, of the squared `2 norm of the gradient of the model with respect to the parameter
vector, evaluated at each data point. This holds for networks of any connectivity, width,
depth, and choice of activation function. We interpret this implicit regularization term for
three simple settings: matrix sensing, two layer ReLU networks trained on one-dimensional
data, and two layer networks with sigmoid activations trained on a single datapoint. For
these settings, we show why this new and general implicit regularization effect drives the
networks towards “simple” models.

1. Introduction

This work is motivated by the grand challenge of explaining—in a rigorous way—why deep
learning performs as well as it does. Despite the explosion of interest in deep learning,
driven by many practical successes across numerous domains, there are many basic mysteries
regarding why it works so well. Why do networks with orders of magnitude more parameters
than the dataset size, trained via stochastic gradient descent (SGD), often yield trained
networks with small generalization error, despite the fact that such networks and training
procedures are capable of fitting even randomly labeled training points (Zhang et al., 2016)?
Why do deeper networks tend to generalize better, as opposed to worse, as one might expect
given their increased expressivity? Why does the test performance of deep networks often
continue to improve after their training loss plateaus or reaches zero?

In this paper, we introduce a framework that sheds light on the above questions. Our
analysis focuses on deep networks, trained via SGD, but where the gradient updates are
computed with respect to noisy training labels. Specifically, for a stochastic gradient descent
update for training data point x and corresponding label y, the gradient is computed for
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Implicit regularization for deep networks

the point (x, y+Z) for some zero-mean, bounded random variable Z, chosen independently
at each step of SGD. We analyze this specific form of SGD with independent label noise
because such training dynamics seem to reliably produce “simple” models, independent of
network initialization, even when trained on a small number of data points. This is not true
for SGD without label noise, which has perhaps hindered attempts to rigorously formalize
the sense in which training dynamics leads to “simple” models. In Section 1.2, however,
we discuss the possibility that a variant of our analysis might apply to SGD without label
noise, provided the training set is sufficiently large and complex that the randomness of
SGD mimics the effects of the explicit label noise that we consider.

Our main result, summarized below, characterizes the zero-training-error attractive fixed
points of the dynamics of SGD with label noise and `2 loss, in terms of the local optima of
an implicit regularization term.

Theorem 1 (informal) Given training data (x1, y1), . . . , (xn, yn), consider a model h(x, θ)
with bounded derivatives up to 3rd order, and consider the dynamics of SGD, with indepen-
dent bounded label noise of constant variance, and `2 loss function 1

n

∑n
i=1(h(xi, θ) − yi)2.

A parameter vector θ∗ with 0 training error will be an attractive fixed point of the dynamics
if and only if θ∗ is a local minimizer of the “implicit regularizer”

reg(θ) =
1

n

n∑
i=1

‖∇θh(xi, θ)‖22, (1)

when restricted to the manifold of 0 training error.

While the exact dynamics are hard to rigorously describe, the results here are all consis-
tent with the following nonrigorous caricature: SGD with label noise proceeds as though it
is optimizing not the loss function, but rather the loss function plus the implicit regularizer
times the product of the learning rate (η) and the standard deviation of the label noise.
Thus, for small learning rate, SGD with label noise proceeds in an initial phase where the
training loss is optimized to 0, followed by a second phase where the implicit regularizer is
optimized within the manifold of training error 0.

1.1. Implications and Interpretations

We illustrate the implications of our general characterization in three basic settings for which
the implicit regularization term can be analyzed: matrix sensing as in Li et al. (2018), two-
layer ReLU networks trained on one-dimensional data, and 2-layer networks with logistic
or tanh activations trained on a single labeled datapoint. In all three cases, empirically,
training via SGD with label noise yields “simple” models, where training without label noise
results in models that are not simple and that depend on the initialization. The intuitive
explanation for this second point is clear: there is a large space of models that result in zero
training error. Once optimization nears its first 0-training-error hypothesis, optimization
halts, and the resulting model depends significantly on the network initialization. In the
following three examples, we argue that the combination of zero training error and being at
a local optima of the implicit regularizer reduces the set of models to only “simple” ones.
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Matrix sensing: Convergence to ground truth from any initialization. Li et al.
(2018) consider the problem of “matrix sensing”: given a set of linear “measurements” of
an unknown matrix X∗—namely, inner products with randomly chosen matrices Ai, can
one find the lowest-rank matrix X consistent with the data? They found, quite surpris-
ingly, that gradient descent when initialized to an overcomplete orthogonal matrix of small
Frobenius norm implicitly regularizes by, essentially, the rank of X, so that the lowest-rank
X consistent with the data will be recovered provided the optimization is not allowed to
run for too many steps.

Intriguingly, our implicit regularizer allows SGD with label noise to reproduce this
behavior for arbitrary initialization, and further, without eventually overfitting the data.
We outline the main ingredients here and illustrate with empirical results. As in Li et al.
(2018), we take our objective function to be minimizing the squared distance between each
label yi and the (Frobenius) inner product between the data matrix Ai and the symmetrized
hypothesis X = UU>:

min
U

∑
i

(
yi − 〈Ai, UU>〉

)2

In our notation, this corresponds to having a hypothesis—as a function of the parameters
U and the data Ai—of h(Ai, U) = 〈Ai, UU>〉. Thus, taking data drawn from the i.i.d.
normal distribution, the implicit regularizer, Equation 1, is seen to be

reg(U) = E
A:Aj,k←N (0,1)

[ ||(A+A>)U)||2F ] (2)

Because A has mean 0 and covariance equal to the identity matrix, for d × d matrices
this expectation is calculated to be 2(d + 1)||U ||2F . Further, expressed in terms of the
overall matrix X = UU>, the squared Frobenius norm of U equals the nuclear norm of
X, ||U ||2F = ||X||∗, where the nuclear norm may be alternatively defined as the convex
envelope of the rank function on matrices of bounded norm. See e.g. Candès and Recht
(2009); Recht et al. (2010) for discussion of conditions under which minimizing the nuclear
norm under affine constraints guarantees finding the minimum rank solution to the affine
system. In our setting, each data point (Ai, yi) induces an affine constraint on UU> that
must be satisfied for the training error to be 0, and thus the implicit regularizer will tend to
find the minimum of Equation 2 subject to the constraints, and hence the minimum rank
solution subject to the data, as desired. We note that the above intuitive analysis is only in
expectation over the Ai’s, and we omit an analysis of the concentration. However, empirical
results, in Figure 1, illustrate the success of this regularizing force, in the natural regime
where n = 5 · rank · dimension.

2-Layer ReLU networks, 1-d data: Convergence to piecewise linear interpo-
lations. Consider a 2-layer ReLU network of arbitrary width, trained on a set of 1-
dimensional real-valued datapoints, (x1, y1), . . . , (xn, yn). Such models are not differentiable
everywhere, and hence Theorem 1 does not directly apply. Nevertheless, we show that, if
one treats the derivative at the “kink” in the ReLU function as being 0, then local optima
of the implicit regularization term correspond to “simple” functions that have the minimum
number of convexity changes necessary to fit the training points. The proof of the following
theorem is given in Appendix B.
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Figure 1: Illustration of the implicit regularization of SGD with label noise in the matrix
sensing setting (see Li et al. (2018)). Here, we are trying to recover a rank r d× d matrix
X∗ = U∗U∗> from n = 5dr linear measurements A1, 〈A1, X

∗〉, . . . , An, 〈An, X∗〉, via SGD
both with and without label noise, with r = 5 and d = 100, and entries of Ai chosen i.i.d.
from the standard Gaussian. Plots depict the test and training error for training with and
without i.i.d. N(0, 0.1) label noise, initializing U0 = Id. (Similar results hold when U0 is
chosen with i.i.d. Gaussian entries.) For both training dynamics, the training error quickly
converges to zero. The test error without label noise plateaus with large error, whereas the
test error with label noise converges to zero, at a longer timescale, inversely proportional
to the square of the learning rate, which is consistent with the theory.

Theorem 2 Consider a dataset of 1-dimensional data, corresponding to
(x1, y1), . . . , (xn, yn) with xi < xi+1. Let θ denote the parameters of a 2-layer ReLU
network (i.e. with two layers of trainable weights) and where there is an additional constant
and linear unit leading to the output. Let θ correspond to a function with zero training
error. If the function, restricted to the interval (x1, xn), has more than the minimum
number of changes of convexity necessary to fit the data, then there exists an infinitesimal
perturbation to θ that 1) will preserve the function value at all training points, and 2) will
decrease the implicit regularization term of Equation 1, provided we interpret the derivative
of a ReLU at its kink to be 0 (rather than undefined).

The above theorem, together with the general characterization of attractive fixed points
of the dynamics of training with label noise (Theorem 1), suggest that we should expect
this noisy SGD training to lead to “simple” interpolations of the datapoints; specifically, for
any three co-linear points, the interpolation should be linear. This behavior is supported by
the experiments depicted in Figure 2, which also illustrates the fact that training without
label noise produces models that are not simple, and that vary significantly depending on
the network initialization.

2-Layer sigmoid networks, trained on one datapoint: Convergence to sparse
models. Finally, we consider the implicit regularizer in the case of a two layer network
(with arbitrary width) with logistic or hyperbolic tangent activations, when trained on a
dataset that consists of a single labeled d-dimensional point. The proof of this result is
given in Appendix C.

Theorem 3 Consider a dataset consisting of a single d-dimensional labeled point, (x, y).
Let θ = ({ci}, {wi}) denote the parameters of a 2-layer network with arbitrary width, repre-
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Figure 2: Both plots depict 2-layer ReLU networks, randomly initialized and trained on the set of
12 points depicted. The left plot shows the final models resulting from training via SGD, for five
random initializations. In all cases, the training error is 0, and the models have converged. The right
plot shows the models resulting from training via SGD with independent label noise, for 10 random
initializations. Theorem 2 explains this behavior as a consequence of our general characterization
of the implicit regularization effect that occurs when training via SGD with label noise, given in
Theorem 1. Interestingly, this implicit regularization does not occur (either in theory or in practice)
for ReLU networks with only a single layer of trainable weights.

Figure 3: Plots depicting the training loss (red) and length of the curve corresponding to the trained
model (blue) as a function of the number of iterations of training for 2-layer ReLU trained on one-
dimensional labeled data. The left plot corresponds to SGD without the addition of label noise, and
converges to a trained model with curve length ≈ 5.2. The right plot depicts the training dynamics
of SGD with independent label noise, illustrating that training first finds a model with close to zero
training error, and then—at a much longer timescale—moves within the zero training error manifold
to a “simpler” model with significantly smaller curve length of ≈ 4.3. Our analysis of the implicit
regularization of these dynamics explains why SGD with label noise favors simpler solutions, as well
as why this “simplification” occurs at a longer timescale than the initial loss minimization.

senting the function fθ(x) =
∑n

i=1 ciσ(wtix), where the activation function σ is either tanh
or the logistic activation. If θ corresponds to a model with zero training error for which
the implicit regularizer of Equation 1 is at a local minimum in the zero training error man-
ifold, then there exists α1, α2 and β1, β2 such that for each hidden unit i, either ci = α1

and σ(wtix) = β1, or ci = α2 and σ(wtix) = β2, or ci = σ(wtix) = 0. In the case of tanh
activations, α1 = −α2 and β1 = −β2.

The above theorem captures the sense that, despite having arbitrarily many hidden units,
when trained on an extremely simple dataset consisting of a single training point, the stable
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parameters under the training dynamics with label noise correspond to simple models that
do not leverage the full expressive power of the class of networks of the given size.

1.2. Future Directions

There are a number of tantalizing directions for future research, building off the results
of this work. One natural aim is to better understand what types of stochasticity in the
training dynamics lead to similar implicit regularization. In our work, we consider SGD
with independently perturbed labels. These training dynamics are equivalent to standard
SGD, performed over a dataset where each original datapoint (x, y) has two “copies”, cor-
responding to (x, y + δ) and (x, y − δ). In this setting with two perturbed copies of each
data point, the implicit regularization can be viewed as arising from the stochasticity of
the choice of datapoint in SGD, together with the fact that no model can perfectly fit the
data (since each x-value has two, distinct, y values). Motivated by this view, one natural
direction would be to rigorously codify the sense in which implicit regularization arises from
performing SGD (without any additional noise) over “difficult-to-fit” data. Figure 2 illus-
trates the importance of having difficult-to-fit data, in the sense that if the training loss can
be driven close to zero too quickly, then training converges before the model has a chance
to forget its initialization or “simplify”. One hope would be to show that, on any dataset
for which the magnitude of each SGD update remains large for a sufficiently large number
of iterations, a similar characterization to the implicit regularization we describe, applies.

In a different direction, it seems worthwhile characterizing the implications of Theorem 1
beyond the matrix sensing setting, or the 1-dimensional data, 2-layer ReLU activation
setting, or the single datapoint tanh and sigmoid settings we consider. For example, even in
the setting of 1-dimensional data, it seems plausible that the characterization of Theorem 1
can yield a result analogous to Theorem 2 for ReLU networks of any depth greater than
2 (and any width), as opposed to just the 2-layer networks we consider (and empirically,
the analogous claim seems to hold). For 2-layer networks with tanh or sigmoid activations,
it seems likely that our proof could be generalized to argue that: any non-repellent set of
parameters for a dataset of at most k points has the property that there are only O(k)
classes of activations.

The question of generalizing the characterization of non-repellent parameters from the
1-dimensional data setting of Theorem 2 to higher dimensional data seems particularly
curious. In such a higher dimensional setting, it is not even clear what the right notion of
a “simple” function should be. Specifically, the characterization that the trained model has
as few changes in convexity as is required to fit the data does not seem to generalize in the
most natural way beyond one dimension.

Finally, it may also be fruitful to convert an understanding of how “implicit regular-
ization drives generalization” into the development of improved algorithms. Figure 3 and
our results suggest that the implicit regulization which drives generalization occurs at a
significantly longer time scale than the minimization of the objective function: the training
dynamics rapidly approach the zero training error manifold, and then very slowly traverse
this manifold to find a simpler model (with better generalization). It seems natural to try
to accelerate this second phase, for example, by making the regularization explicit. More
speculatively, if we understand why certain implicit (or explicit) regularizations yield mod-
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els with good generalization, perhaps we can directly leverage a geometric understanding of
the properties of such models to directly construct functions that interpolate the training
set while having those desirable properties, entirely circumventing SGD and deep learn-
ing: for example, Theorem 2 and Figure 2 show a setting where SGD becomes essentially
nearest-neighbor linear interpolation of the input data (where the distance metric can be
viewed as a kernel analogous to the “neural tangent kernel” of Jacot et al. (2018) ), a simple
model that can be both justified and computed without reference to SGD.

1.3. Related Work

There has been much recent interest in characterizing which aspects of deep learning are
associated with robust performance. We largely restrict our discussion to those works with
provable results, though the flavor of those results is rather different in each case.

An influential paper providing a rigorous example of how gradient descent can be ef-
fective despite more trainable parameters than training examples is the work of Li et al.
on matrix sensing (Li et al., 2018). In their setting (which is closely related to 2-layer
neural networks with 1 out of the 2 layers of weights being trainable), they optimize the
coefficients of an n× n matrix, subject to training data that is consistent with a low-rank
matrix. What they show is that, for sufficiently small initial data, the coefficients essentially
stay within the space of (approximately) low-rank matrices. And thus, while the number
of trainable parameters is large (n×n), gradient descent can effectively only access a space
of dimension k × n, where k � n is the rank of the training data. This paper marks a key
example of provable “algorithmic regularization”: the gradient descent algorithm leads to
more felicitous optima than are typical, given the parameterization of the model. A few
high-level differences between these results and ours include: 1) their results show that the
high number of parameters in their setting is essentially an illusion, behind which their
model behaves essentially like a low-parameter model, while evolution in our model is a
high-dimensional phenomenon; 2) their model is closely related to a neural network with
one layer of trainable weights, while we cover much deeper networks, revealing and relying
on a type of regularization that cannot occur with only one trainable layer.

As in the above work of Li et al., Maennel et al. (2018) also proceeds by showing that,
when initialized to a parameter vector of small norm, the training dynamics of “simple” data
converge to a simple hypothesis. They empirically observe that the final function learned
by a 2-layer ReLU network on 1-dimensional data, with parameters initialized to have small
norm, is a piecewise linear interpolation. For the special case when the n datapoints lie in
a line, they prove that the resulting trained functions would have at most 2n + 1 changes
in the derivative.

Several recent papers have shown generalization bounds for neural networks by first
describing how different settings lead to an implicit or explicit maximization of the margin
separating correct predictions from mispredictions. These papers are in a rather different
setting from our current work, where data is typically labeled by discrete categories, and
the neural network is trained to rate the correct category highly for each training example,
while rating all incorrect categories lower by a margin that should be as large as possible.
The paper by Soudry et al. (2018) showed that, under any of several conditions, when the
categories are linearly separable, gradient descent will converge to the max-margin clas-
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sifier. More generally, Wei et al. (2018) showed that optimizing the cross-entropy loss is
extremely similar to optimizing the maximum margin, in that, after adding an additional
weak regularization term, the global optimum of their loss function provably maximizes the
margin. This line of work both leverages and expands the many recent results providing
generalization bounds in terms of the margin. We caution, however, that the margin is still
essentially a loss function on the training data, and so this alone cannot defend against
over-parameterization and the often related problems of overfitting. (Our regularizer, by
contrast, depends on a derivative of the hypothesis, and thus unlike the margin, can dis-
criminate between parameter vectors expressing identical functions on the training data.)

There are also quite different efforts to establish provable generalization, for exam-
ple Hardt et al. (2016); Kuzborskij and Lampert (2017), which argue that if networks are
trained for few epochs, then the final model is “stable” in that it does not depend signif-
icantly on any single data point, and hence it generalizes. Such analyses seem unlikely to
extend to the realistic regimes in which networks are trained for large numbers of iterations
over the training set. There is also the very recent work tightening this connection between
stable algorithms and generalization (Feldman and Vondrák, 2019). In a different vein,
recent work (Brutzkus et al., 2017) establishes generalizability under strong (separability)
assumptions on the data for overcomplete networks; this analysis, however, only trains one
of the layers of weights (while keeping the other fixed to a carefully crafted initialization).

There has been a long line of work, since the late 1980’s, studying the dynamics of
neural network training in the presence of different types of noise (see, e.g. Sietsma and
Dow (1988); Hanson (1990); Clay and Sequin (1992); Murray and Edwards (1994); An
(1996); Rifai et al. (2011)). This line of work has considered many types of noise, including
adding noise to the inputs, adding noise to the labels (outputs), adding noise to the gradient
updates (“Langevin” noise), and computing gradients based on perturbed parameters. Most
closely related to our work is the paper of An (1996), which explicitly analyzes label noise,
but did not analyze it in enough detail to notice the subtle 2nd-order regularization effect
we study here, and thus also did not consider its consequences.

There have also been several efforts to rigorously analyze the apparent ability of adding
noise in the training to avoid bad local optima. For example, in Zhang et al. (2017), they
consider Langevin noise—noise added to the gradient updates themselves—and show that
the addition of this noise (provably) results in the model escaping from local optima of the
empirical risk that do not correspond to local optima of the population-risk. In a slightly
different direction, there is also a significant effort to understand the type of noise induced by
the stochasticity of SGD itself. This includes the recent work (Chaudhari and Soatto, 2017)
which empirically observes a peculiar non-stationary behavior induced by SGD, and Zhu
et al. (2018) which describes how this stochasticity allows the model to tend towards more
“flat” local minima.

2. Formal statement of general characterization

Our general result, Theorem 1, applies to any network structure—any width, any depth, any
set of (smooth) activation functions. The characterization establishes a simple condition
for whether the training dynamics of SGD with label noise, trained under the `2 loss, will
drive the parameters away from a given zero training error solution θ. Our characterization
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is in terms of an implicit regularization term, proportional to the sum over the data points,
of the squared `2 norm of the gradient of the model with respect to the parameter vector,
evaluated at each data point. Specifically, letting h(xi, θ) denote the prediction at point xi
corresponding to parameters θ, the implicit regularizer is defined as

reg(θ) =
1

n

n∑
i=1

‖∇θh(xi, θ)‖22. (3)

We show that for a zero training error set of parameters, θ0, if there is a data point xi and
a direction (within the subspace that, to first order, preserves zero training error) where
the regularizer has a nonzero gradient, then for any sufficiently small learning rate η, if the
network is initialized near θ0 (or passes near θ0 during the training dynamics), then with
probability 1−exp(−1/poly(η)), the dynamics will drive the parameters at least distance Dη

from θ0 after some time Tη, and the value of the implicit regularization term will decrease
by at least Θ(poly(η)). On the other hand, if θ0 has zero gradient of the regularizer in
these directions, then with probability 1 − exp(−1/poly(η)), when initialized near θ0, the
network will stay within distance dη = o(Dη) up through time Tη. This characterization
corresponds to saying that the training dynamics will be expected to stay in the vicinity
of a zero training error point, θ0, only if θ0 has zero gradient of the implicit regularizer
within the zero training error manifold about θ0; for the particular time window Tη, this
characterization is strengthened to “if and only if”.

To quantify the above characterization, we begin by formally defining the sense in which
training dynamics are “repelled” from points, θ, which are not local optima of the implicit
regularizer within the manifold of zero training error, and defining the sense in which the
dynamics are not repelled in the case where the implicit regularizer has zero gradient in
these directions.

Definition 4 Let θ(t) denote the set of parameters of a learning model, trained via t steps
of SGD under squared `2 loss with independent label noise of unit variance. We say that
θ∗, is a “strongly-repellent” point, if there is a constant c > 0 such that for any sufficiently
small learning rate, η > 0, for a network initialized to θ(0) satisfying ‖θ(0) − θ∗‖ ≤ η0.5,
then with probability at least 1− exp(−1/poly(η)), for t = η−1.6 :

• ‖θ(t)− θ∗‖ ≥ cη0.4, namely the training dynamics lead away from θ∗.

• reg(θ(0))− reg(θ(t)) = cη0.4 + o(η0.4), namely, the value of the implicit regularization
term decreases significantly.

Definition 5 Given the setup above, we say that θ∗, is a “non-repellent” point, if, for any
sufficiently small learning rate, η > 0, for a network initialized to θ(0) satisfying ‖θ(0) −
θ∗‖ ≤ η0.5, then with probability at least 1 − exp(−1/poly(η)), for any t ≤ η−1.6, it holds
that ‖θ(t)− θ∗‖ ≤ η0.44.

The following theorem quantifies the sense in which the implicit regularizer characterizes
the dynamics of training, in the vicinity of parameters with zero training error.
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Theorem 1 Consider the dynamics of the parameters, θ, of a deep network, trained
via SGD to minimize `2 loss, with independent bounded label noise of unit variance. Let
parameters θ∗ correspond to a model f(θ∗, x) with zero training error, namely f(θ∗, xi) = yi
for all i = 1, . . . , n. If the implicit regularizer has zero gradient in the span of directions
where f(θ∗, xi) has zero gradient, for all i, then θ∗ is “non-repellent” in the sense of Defi-
nition 5 (meaning the dynamics will remain near θ∗ with high probability for a sufficiently
long time). Otherwise, if the implicit regularizer has non-zero gradient in the directions
spanned by the zero error manifold about θ∗, then θ∗ is “strongly-repellent” in the sense of
Definition 4 (implying that with high probability, the dynamics will lead away from θ∗ and
the value of the implicit regularizer will decrease significantly).

3. Intuition of the implicit regularizer, via an Ornstein-Uhlenbeck like
analysis

The intuition for the implicit regularizer arises from viewing the SGD with label noise
updates as an Ornstein-Uhlenbeck like process. To explain this intuition, we begin by
defining the notation and setup that will be used throughout the proof of Theorem 1, given
in Section A.

3.1. Preliminaries and Notation

We consider training a model under stochastic gradient descent, with a quadratic loss func-
tion. Explicitly, we fit a parameter vector θ given training data consisting of pairs (xi, yi)
where xi is the ith input and yi ∈ R is the corresponding label; a hypothesis function h(xi, θ)
describes our hypothesis at the ith training point. The resulting objective function, under
`2 loss, is ∑

i

(h(xi, θ)− yi)2 (4)

For convenience, we define the error on the ith training point to be ei(xi, θ) = h(xi, θ)− yi.
We consider stochastic gradient descent on the objective function expressed by Equa-

tion 4, with training rate η, yielding the following update rule, evaluated on a randomly
chosen data point i:

θ ← θ − η∇θ(ei(xi, θ)2) (5)

Our analysis will examine a power series expansion of this SGD update rule with respect
to θ, centered around some point of interest, θ∗. Without loss of generality, and to simplify
notation, we will assume θ∗ = 0 and hence the power series expansions we consider will
be centered at the origin. For notational convenience, we use hi to denote h(xi, 0) and ei
to denote e(xi, 0). To denote derivatives along coordinate directions, we use superscript
letters, separated by commas for multiple derivatives: hji denotes the derivative of hi with

respect to changing the jth parameter of θ, and hj,ki represents the analogous 2nd derivative
along coordinates j and k. (All derivatives in this paper are with respect to θ, the second
argument of h, since the input data, {xi} never changes.) As a final notational convenience
for derivatives, we represent a directional derivative in the direction of vector v with a super-
script v, so thus hvi =

∑
j vjh

j
i , where vj denotes the jth coordinate of v; analogously, hv,v,ji
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is a 3rd derivative along directions v, v, and coordinate j, defined to equal
∑

k,` vkv`h
j,k,`
i .

In our proof of Theorem 1, we will only ever be considering directional derivatives in the
direction of parameter vector θ.

Our proof of Theorem 1 will rely on an expansion of the SGD update rule (Equation 5)
expanded to 3rd order about the origin. Explicitly, the jth coordinate of θj updates ac-
cording to this equation by η times the derivative in the jth direction of ei(xi, θ)

2. The
kth order term in the power series expansion of this expression will additionally have a
kth order directional derivative in the direction θ, and a factor of 1

k! . Thus the kth order
term will have one j derivative and k θ derivatives distributed across two copies of ei; since
ei(xi, θ) = h(xi, θ)− yi and yi has no θ dependence, any derivatives of ei will show up as a
corresponding derivative of hi. Combining these observations yields the 3rd order expansion
of the gradient descent update rule:

θj ← θj − 2ηeih
j
i − 2η(hθih

j
i + eih

j,θ
i )− η(hjih

θ,θ
i + 2hj,θi hθi + eih

j,θ,θ
i ) +O(ηθ3), (6)

where the final big-O term bounds all terms of 4th order and higher. Throughout, we
consider the asymptotics in terms of only the learning rate, η < 1, and hence regard θ, the
number and dimension of the datapoints, the size of the network, and all derivatives of h at
the origin as being bounded by Oη(1). We are concerned with the setting where the label
error, ei, has an i.i.d. random component, and assume that this error is also bounded by
O(1). Additionally, since we are restricting our attention to the neighborhood of a point
with zero training error, we have that for each i, the expectation of ei is 0.

3.2. Diagonalizing the exponential decay term

The 2nd term after θj on the right hand side of the update rule in Equation 6 is −2ηhθih
j
i =

−2η
∑

k θkh
k
i h

j
i . Ignoring the −2η multiplier, this expression equals the vector product of

the θ vector with the jth column of the (symmetric) positive semidefinite matrix whose (j, k)
or (k, j) entry equals hjih

k
i . The expectation of this term, over a random choice of i and the

randomness of the label noise, can be expressed as the positive semidefinite matrix Ei[h
j
ih
k
i ],

which will show up repeatedly in our analysis. Since this matrix is positive semidefinite,
we choose an orthonormal coordinate system whose axes diagonalize this matrix. Namely,
without loss of generality, we take Ei[h

j
ih
k
i ] to be a diagonal matrix. We will denote the

diagonal entries of this matrix as γj = Ei[h
j
ih
j
i ] ≥ 0. Thus, this term of the update rule for

θj reduces to −2ηγjθj in expectation, and hence this terms corresponds to an exponential
decay towards 0 with time constant 1/(2ηγj). And for directions with γj = 0, there is no
decay.

Combined with the 1st term after θj on the right hand side of the update rule in Equa-

tion 6, namely −2ηeih
j
i , whose main effect when ei has expectation near 0 is to add noise to

the updates, we have what is essentially an Ornstein-Uhlenbeck process; the 2nd term, ana-
lyzed in the previous paragraph, plays the role of mean-reversion. However, because of the
additional terms in the update rule, we cannot simply apply standard results, but must be
rather more careful with our bounds. However the (multi-dimensional) Ornstein-Uhlenbeck
process can provide valuable intuition for the evolution of θ.

11
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3.3. Intuition behind the implicit regularizer

Recall that we defined the implicit regularizer of Equation 3 to be the square of the length
of the gradient of the hypothesis with respect to the parameter vector, summed over the
training data. Hence, in the above notation, it is proportional to:∑

k

Ei[h
k
i h

k
i ] (7)

The claim is that stochastic gradient descent with label noise will act to minimize this
quantity once the optimization has reached the training error 0 regime. The mechanism
that induces this implicit regularization is subtle, and apparently novel. As discussed in
Section 3.2, the combination of the first 2 terms of the θj update in Equation 6 acts similarly
to a multidimensional Ornstein-Uhlenbeck process, where the noise added by the first term
is countered by the exponential decay of the second term, converging to a Gaussian distri-
bution of fixed radius. The singular values γj (defined in Section 3.2) control this process
in dimension j, where—ignoring the remaining update terms for the sake of intuition—the
Ornstein-Uhlenbeck process will converge to a Gaussian of radius Θ(

√
η) in each dimension

for which γj > 0. Crucially, this limiting Gaussian is isotropic! The variance in direction
j depends only on the variance of the label noise and does not depend on γj , and the dif-
ferent dimensions become uncorrelated. The convergence time, for the dynamics in the jth
direction to converge to a Gaussian, however, is Θ( 1

η
√
γj

), which varies inversely with γj .

Crucially, once sufficient time has passed for our quasi-Ornstein-Uhlenbeck process to
appropriately converge, the expectation of the 5th term of the update in Equation 6,
E[−2ηhj,θi hθi ] = −2ηE[

∑
k,` θkθ`h

j,k
i h`i ], takes on a very special form. Assuming for the

sake of intuition that convergence occurs as described in the previous paragraph, we expect
each dimension of θ to be uncorrelated, and thus the sum should consist only of those terms
where k = `, in which case E[θ2

k] should converge to a constant (proportional to the amount
of label noise) times η. Namely, the expected value of the 5th term of the Equation 6 up-

date for θj should be proportional to the average over data points i of −2η2
∑

k h
j,k
i hki , and

this expression is seen to be exactly −η2 times the j derivative of the claimed regularizer
of Equation 7. In short, subject to the Ornstein-Uhlenbeck intuition, the 5th term of the
update for θj behaves, in expectation, as though it is performing gradient descent on the
regularizer, though with a training rate an additional η times slower than the rate of the
overall optimization.

To complete the intuition, note that the rank of the matrix Ei[h
j
ih
k
i ] is at most the

number of datapoints, and hence for any over-parameterized network, there will be a large
number of directions, j, for which γj = 0. For sufficiently small η—any value that is sig-
nificantly smaller than the smallest nonzero γj—the update dynamics will look roughly
as follows: after � 1/η updates, for any directions k and ` with γk, γ` > 0, we have
E[θ2

k] ≈ E[θ2
` ] = Θ(η), and for k 6= `, we have E[θkθ`] = 0. The update term responsi-

ble for the regularization, 2hj,θi hθi will not have a significant effect for the directions, j, for
which γj > 0, as these directions have significant damping/mean-reversion force and behave
roughly as in the Ornstein-Uhlenbeck process, as argued above. However, for a direction j
with γj = 0, there is no restoring force, and the effects of this term will add up, driving θ
consistently in the direction of the implicit regularizer, restricted to the span of dimensions,
j, for which γj = 0. The full proof of Theorem 1 is stated in Appendix A.
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Appendix A. Proof of Theorem 1

This section contains the proofs of our general characterization of stable neighborhoods of
points with zero training error, under the training dynamics of SGD with label noise.

See Section 3 for notation, intuition, and preliminaries. In particular, the evolution of
parameters θ is governed by the updates of Equation 6, which is a 3rd-order power series
expansion about the origin. We analyze the regime where optimization has already yielded a
parameter vector θ that is close to a parameter vector with 0 training error (in expectation,
setting aside the mean-0 label noise). Without loss of generality and for ease of notation,
we take this 0-error parameter vector to be located at the origin.

Our first lemma may be viewed as a “bootstrapping” lemma, saying that, if the param-
eter vector θ has remained loosely bounded in all directions, then it must be rather tightly
bounded in those directions with γj > 0. Each of the following lemmas applies in the setting
where θ evolves according to stochastic gradient descent with bounded i.i.d. label noise.

Lemma 6 Given constant ε > 0, and T > 0, if it is the case that |θ| ≤ η1/4+ε for all
t ≤ T , then for any j s.t. γj > 0, it holds that with probability at least 1− exp(−poly(1/η))
at time T , |θj | ≤ ‖θ(0)‖ · e−Ω(ηT ) + η1/2−ε, where θ(0) denotes the value of θ at time t = 0.

Proof For convenience, we restate the update formula for θ, given in Equation 6, where i
is the randomly chosen training data index for the current SGD update:

θj ← θj − 2ηeih
j
i − 2η(hθih

j
i + eih

j,θ
i )− η(hjih

θ,θ
i + 2hj,θi hθi + eih

j,θ,θ
i ) +O(ηθ3). (8)

We will reexpress the update of θj as

θj(t) = (1− 2ηγj)θj(t− 1) + zt−1 + wt−1, (9)

where zt−1 will be a mean zero random variable (conditioned on θ(t−1)), whose magnitude
is bounded by O(η), and wt−1 is an error term that depends deterministically on θ(t− 1).

To this end, consider the expectation of the third term of the update in Equation 8:
Ei[h

θ
ih
j
i ] =

∑
k Ei[θkh

k
i h

j
i ] = θjγj , as we chose our basis such that Ei[h

k
i h

j
i ] is either 0 if

k 6= j and γj if k = j. Hence this third term, together with the first term, gives rise to the
(1 − 2ηγj)θj(t − 1) portion of the update, in addition to a contribution to zt−1 reflecting
the deviation of this term from its expectation. For |θ| = O(1), this zero mean term will
trivially be bounded in magnitude by O(η). The remaining contributions in the update to
zt−1 all consist of a factor of η multiplied by some combination of ei, powers of θ, and
derivatives of h, each of which are constant, yielding an overall bound of zt−1 = O(η).

Finally, we bound the magnitude of the error term, wt−1 = −η(hjih
θ,θ
i +2hj,θi hθi )+O(ηθ3).

The first two terms are trivially bounded by O(η|θ|2), and hence since |θ(t − 1)| ≤ η1/4+ε,
we have that |wt−1| = O(η · η1/2+2ε) = O(η3/2+2ε).

Given the form of the update of Equation 9, we can express θ(T ) as a weighted sum of
the θ(0), z0, . . . , zT−1, and w0, . . . , wT−1. Namely letting α = (1− 2ηγj), we have

θ(T ) = αT θ(0) +

T−1∑
t=0

αT−t−1(zt + wt).
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We begin by bounding the contribution of the error term,

T−1∑
t=0

αT−t−1(wt) = O(
1

1− α
·max

t
|wt|) = O(

1

η
η3/2+2ε) = O(η1/2+2ε),

where the 1
1−α term is due to the geometrically decaying coefficients in the sum.

To bound the contribution of the portion of the sum involving the zt’s, we apply a basic
martingale concentration bound. Specifically, note that by defining Zt =

∑t−1
i=0 α

T−i−1zi,
we have that {Zt} is a martingale with respect to the sequence {θ(t)}, since the expectation
of zt is 0, conditioned on θ(t). We now apply the Azuma-Hoeffding martingale tail bound

that asserts that, provided |Zt − Zt−1| ≤ ct, Pr[|ZT | ≥ λ] ≤ 2e
− λ2

2
∑
t c

2
t . In our setting,

ct = αT−t−1|zt−1|, and hence
∑

t c
2
t = O(1/(1− α2) maxt |z2

t |) = O( 1
ηη

2) = O(η). Hence for

any c > 0, by taking λ = cη1/2 we have that Pr[|ZT | ≥ cη1/2] ≤ 2eO(c2). By taking c = 1/ηε,
our proof is concluded.

A.1. Analysis of concentration of the time average of θjθk in the γj > 0
directions

The following lemma shows that, at time scales � 1/η, the average value of the empirical
covariance, θkθ`, concentrates for directions k, ` satisfying γj + γ` > 0. The proof of this
lemma can be viewed as rigorously establishing the high-level intuition described in Sec-
tion 3, that for each directions k with γk > 0, the behavior of θk is as one would expect in
an Ornstein-Uhlenbeck process with time constant Θ(1/η).

Lemma 7 Let T ≥ 1/η1.25 denote some time horizon, and assume that, at all t < T,
we have that |θ(t)| ≤ R , η0.5−β, and for every direction j for which γj > 0, we have
|θj(t)| ≤ Rγ>0 = η0.5−ε, for some constants 1

12 > β > ε > 0. Then for any pair of directions
j 6= k such that at least one of γj or γk is positive, we have that

Pr

[∣∣∣∣∣ 1

T

T∑
t=0

θjθk(t)

∣∣∣∣∣ ≥ η1.25−2ε−1.5β

]
= O(eη

−ε
).

Similarly for any direction j with γj > 0, we have that

Pr

[∣∣∣∣∣ηVar[ei]−
1

T

T∑
t=0

θ2
j (t)

∣∣∣∣∣ ≥ η1.25−0.5ε−2β

]
= O(eη

−ε
).

Proof Given the update described by Equation 8, we derive the following update for the
evolution of the second moments of θ :

θjθk ← θjθk − θkη(2eih
j
i + 2(hθih

j
i + eih

j,θ
i ))− θjη(2eih

k
i + 2(hθih

k
i + eih

k,θ
i )) + 4η2e2

ih
j
ih
k
i

+O(ηθ(η + θ2)).

As in the proof of Lemma 6, we will reexpress this as the sum of three terms: a mean-
reversion term, a term with zero expectation (conditioned on the previous value of θ), and
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an error term. To this end we analyze each of the above terms. Each term that has an ei
but not an e2

i will have expectation 0, and the magnitude of these terms is trivially bounded
by O(η|θ|).

The first nontrivial term is 2θkηh
θ
ih
j
i . Splitting this into a mean zero portion, and its

expectation, we see that Ei[ηθkh
θ
ih
j
i ] = ηθkEi[h

θ
ih
j
i ] = ηθkEi[

∑
` θ`h

`
ih
j
i ]. Since Ei[h

`
ih
j
i ]

is 0 unless ` = j, we simplify the above expression to ηθkEi[θjh
j
ih
j
i ] = ηθkθjγj . Hence

this term contributes −2ηθkθjγj to the “mean reversion” term, and |2θkηhθih
j
i | = O(η|θ|2)

to the bound on the zero mean term. An analogous argument holds for the symmetric
term, 2θjηh

θ
ih
k
i , which together account for the full mean reversion portion of the update:

θjθk ← (1− 2η(γj + γk))θjθk + . . . .
Other than the zero expectation terms and the final big “O” term, the only remaining

term in the update is the 4η2e2
ih
j
ih
k
i term. Since the error ei is i.i.d. mean 0 label noise,

we have that the expectation of this term is Ei[η
2e2
ih
j
ih
k
i ] = η2V ar[ei]γj , if j = k, and 0 if

j 6= k. The magnitude of this term is trivially bounded by O(η2).
Summarizing, we have the following expression for the update of the variance in the

case that j 6= k:

θjθk(t) = (1− 2η(γj + γk))θjθk(t− 1) + zt−1 + wt−1, (10)

and in the case that j = k, we have the following update:

θ2
j (t) = (1− 4ηγj)θ

2
j (t− 1) + 4η2γjVar[ei] + zt−1 + wt−1, (11)

where the stochastic term zt−1 given θ(t − 1), has expectation 0 and magnitude bounded
by |zt−1| = O(η|θ(t− 1)|+ η2), and the deterministic term wt−1 has magnitude bounded by
|wt−1| = O(η|θ(t− 1)|3 + η2|θ(t− 1)|).

We now turn to showing the concentration in the average value of these covariance
terms. The argument will leverage the martingale concentration of the Doob martingale
corresponding to this time average, as the values of θ are revealed. A naive application,
however, will not suffice, as we will not be able to bound the martingale differences suffi-
ciently tightly. We get around this obstacle by considering the martingale corresponding
to revealing entire batches of S � 1/η1+ε updates at once. Hence each step of the mar-
tingale will correspond to S updates of the actual dynamics. The utility of this is that
the mean-reversion of the updates operates on a timescale of roughly 1/η—namely after
O(1/η) timesteps, the updates have mostly “forgotten” the initial value θ(0). The martin-
gale differences corresponding to these large batches will be fairly modest, due to this mean
reversion, and hence we will be able to successfully apply an Azuma-Hoeffding bound to
this more granular martingale.

Given some time horizon T > S > 0, we consider the Doob martingale Z0, Z1, . . . , ZT/S
defined by

Zi = E

[
T∑
t=0

θjθk(t)|θ(0), θ(1), . . . , θ(i · S)

]
.

In words, Zi is the expected average value of θjθk over the first T steps, conditioned on
having already seen iS updates of the dynamics. To analyze the martingale differences for
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this Doob martingale, it will be helpful to understand what Equations 10 and 11 imply
about the expectation of θjθk(t

′), given the value of θ(t) at some t < t′. Letting α denote
the mean reversion strength, namely α := 2η(γj + γk), or α := 4ηγj in the case that we are
considering θ2

j , we have the following expressions for the expectations respectively:

E[θjθk(t
′)|θ(t)] = (θjθk(t)) (1− α)t

′−t +O

(
min(t′ − t, 1

α
) · (η|θ|3 + η2|θ|)

)
.

E[θ2
j (t
′)|θ(t)] =

(
θ2
j (t)

)
(1−α)t

′−t+
(
4η2γjVar[ei]

) 1− (1− α)t
′−t

α
+O

(
min(t′ − t, 1

α
) · (η|θ|3 + η2|θ|)

)
.

For any constant ε > 0 and t′ ≥ t + 1/η1+ε, and any pair of directions, j, k where
γj + γk > 0, assuming that |θ| ≤ R until time t′, we have that the the above two equations
simplify to:

E[θjθk(t
′)|θ(t)] = O

(
1

α
(ηR3 + η2R)

)
(12)

E[θ2
j (t
′)|θ(t)] =

4η2γjVar[ei]

α
+O

(
1

α

(
ηR3 + η2R

))
. (13)

Equipped with the above expressions for the conditional expectations, we now bound
the martingale differences of our Doob martingale {Zi}. Revealing the values of θ at times
t = 1 + i · S to t = (i + 1) · S, affects the value of Zi+1 in three ways: 1) This pins
down the exact contributions of θ at these timesteps to the sum 1

T

∑
θjθk, namely it fixes

1
T

∑(1+i)S
`=1+iS θjθk(`); 2) This alters the expected contribution of the next batch of S terms,

namely 1
T

∑(2+i)S
`=1+(i+1)S θjθk(`); and 3) it alters the expected contribution of the remaining

terms, 1
T

∑T
`=1+(i+2)S θjθk(`).

We now bound the contribution to the martingale differences of each of these three
effects of revealing θ(1 + iS), . . . , θ((1 + i)S). Assuming that, until time T we have |θj | ≤
Rγ>0 for any j with γj > 0, and |θk| ≤ R for every direction, k, we can trivially bound
the contribution of 1) and 2) towards the martingale differences by O(SRγ>0R/T ), and
O(SR2

γ>0/T ), in the respective cases where we are considering θjθk where both γj and γk
are positive, and the case where exactly one of them is nonzero. This is because at each
of the 2S timesteps that cases 1) and 2) are considering, each of the terms in the sum

is absolutely bounded by
R2
γ>0

T and
Rγ>0R
T in the respective cases. For the third case, we

leverage Equations 12 and 13, which reflect the fact that, conditioning on θ((i + 1)S) has
relatively little effect on θ(t) for t ≥ (i+ 2)S. Namely, the total effect over these at most T
terms is at most O(T 1

T
1
α(ηR3 + η2R)) = O(R3 + ηR).

Hence the overall martingale differences for {Zi} are bounded by

O

(
SR2

γ>0

T
+R3 + ηR

)
, or O

(
SRγ>0R

T
+R3 + ηR

)
,

depending on whether we are considering a term θjθk corresponding to γj , γk > 0, or not
(and note that the martingale difference does not include a contribution from the variance
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term in Equation 13 since this term has no dependence on θ). Hence, as our martingale has
T/S updates, by standard martingale concentration, letting d denote a bound on the martin-
gale differences, for any c > 0, the probability that θjθk(T ) deviates from its expectation by

more thanO
(
cd
√
T/S

)
decreases inverse exponentially with c2. In the case of θ2

j for a direc-

tion j with γj > 0, we have that the differences d = O

(
SR2

γ>0

T +R3 + ηR

)
. Hence for R =

η0.5−β, and Rγ>0 = η0.5−ε, we have d
√
T/S = O

(
η1−2ε

√
S/T + η1.5−3β

√
T/S

)
. Equating

the two terms inside the big “O” results in choosing S such that
√
S/T = η0.25−1.5β+ε, in

which case martingale bounds yield

Pr
[
|ZT/S − Z0| ≥ η1.25−2ε−1.5β

]
≤ Pr

[
|ZT/S − Z0| ≥ η−ε · Ω(d

√
T/S)

]
≤ 2eO(η−2ε) = O(eη

−ε
).

In the case of θjθk where either γj or γk is nonzero, we have that the differences d =

O
(
SRγ>0R

T +R3 + ηR
)

. Hence for R = η0.5−β, and Rγ>0 = η0.5−ε, we have d
√
T/S =

O
(
η1−ε−β√S/T + η1.5−3β

√
T/S

)
. Equating these two terms results in choosing S such

that
√
S/T = η0.25−β+0.5ε, in which case

Pr
[
|ZT/S − Z0| ≥ η1.25−0.5ε−2β

]
≤ Pr

[
|ZT/S − Z0| ≥ η−ε · Ω(d

√
T/S)

]
≤ O(eη

−ε
).

To conclude the proof of the lemma, note that Equations 12 implies that, in the case of
θjθk, Z0 = E[ 1

T

∑T
t=0 θjθk(t)] = O(R3 + ηR) = o(η1.25), and hence provided at least one of

θj or θk is positive, we have:

Pr

[∣∣∣∣∣ 1

T

T∑
t=0

θjθk(t)

∣∣∣∣∣ ≥ η1.25−2ε−1.5β

]
≤ O(eη

−ε
).

Similarly in the case of θ2
j , Equation 13 implies that Z0 = E[ 1

T

∑T
t=0 θ

2
j (t)] = ηVar[ei] +

O(R3 + ηR) = ηVar[ei] + o(η1.25), and hence

Pr

[∣∣∣∣∣ηVar[ei]−
1

T

T∑
t=0

θ2
j (t)

∣∣∣∣∣ ≥ η1.25−0.5ε−2β

]
≤ O(eη

−ε
).

A.2. Proof of Theorem 1

The Proof of Theorem 1 will follow easily from the following lemma, which characterizes
the evolution of θj for directions j for which γj = 0. This evolution crucially leverages the
characterization of the average value of θkθ` given in Lemma 7. Given this characterization
of the evolution of θj , Lemma 6 shows that the directions j, for which γj > 0, will stay
bounded by ≈ √η, completing the proof.
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Lemma 8 If ‖θ‖ = O(
√
η) at time 0, then for each direction j with γj = 0, with probability

at least 1−O(exp(−1/poly(η))), after T ≤ η−1.6 updates, we have

θj(T ) = θj(0)− 2Tη2Var[ei]

 ∑
k:γk>0

Ei[h
j,k
i hki ]

+O(η0.44).

In the case that T = η−1.6, this expression becomes

θj(0)− 2η0.4Var[ei]

 ∑
k:γk>0

Ei[h
j,k
i hki ]

+O(η0.44).

Proof The proof will proceed by induction on time t, in steps of size η−0.1. Let ε be an
arbitrary constant strictly between 0 and 1

400 . Assume that, up to some time t0, for all
directions k, we have |θk(t)| ≤ η0.4−ε ≤ η.25+ε for all t ≤ t0. Hence, by Lemma 6, for all
t ≤ t0, for any direction k with γk > 0, we have the tighter bound |θk(t)| ≤ η1/2−ε with all
but inverse exponential probability. Consider advancing to some time t1 ∈ [t0, t0 + η−0.1].
Since only ≤ η−.1 time steps have passed, θ cannot have moved far, even using very weak
bounds on the θ update. Explicitly, by assumption, all derivatives are bounded by O(1),
for directions k with γk > 0 and thus after ≤ η−0.1 additional steps of SGD we have
|θk(t1)| ≤ |θk(t0)| + O(η · η−0.1) ≤ 2η1/2−ε, with all but inverse exponential probability.
Analogously, by our assumption, we also have that |θj(t1)| ≤ 2η0.4−ε, for every direction j,
including those with γj = 0. We now analyze the evolution of θj from time 0 through time
t1, leveraging the above bounds on |θk| across all dimensions, k, to bootstrap even tighter
bounds.

We consider the update given in Equation 8, and again, since we are considering a
direction for which hji = 0 for all i, there is no mean reversion term. Let rk,` := Ei[h

j,k
i h`i ].

Note that for any ` with γ` = 0, rk,` = 0. We can reexpress the expectation of the
corresponding portion of the update as

Ei[h
j,θ
i hθi ] =

∑
k,`

rk,`θkθ`.

Analogously with the martingale analysis in Equations 9, 10, or 11, we express the updates
of θj as:

θj(t) = θj(t− 1)− 2η
∑
k,`

θk(t− 1)θ`(t− 1)rk,` + zt−1 + wt−1, (14)

where E[zt−1|θ(t− 1)] = 0 is a mean zero term, defined as

zt−1 = eiη
(
−2h

j,θ(t−1)
i − hj,θ(t−1),θ(t−1)

i

)
− 2η

(
h
j,θ(t−1)
i h

θ(t−1)
i −Ei[h

j,θ(t−1)
i h

θ(t−1)
i ]

)
.

Hence |zt−1| = O(η|θ|) = η1.4−ε. The error term satisfies |wt−1| = O
(
η|θ(t− 1)|3

)
=

O(η1+3(0.4−ε)), where the above analysis follows from inspection of the update rule in Equa-
tion 8, simplifying using the fact that, in our context, hji = 0 for all i.

From our bound on |zt|, the Azuma-Hoeffding martingale concentration bounds give
that, Pr[|

∑t1−1
t=0 zt| ≥ η1.4−2ε

√
t1] ≤ 2e−cη

−2ε
. Additionally,

∑t1−1
t=0 wt = O(t1η

2.2−3ε). If t1 ≤
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η−1.25, Lemma 7 does not apply, but we have that θk(t)θ`(t) = O(η1/2−ε+0.4−ε) as long as
either γk > 0 or γ` > 0, and hence η

∑t1
t=0 rk,`θk(t)θ`(t) = O(t1η

1.9−2ε) = O(η−1.25+1.9−2ε) =
O(η1/2), since rk,` = O(1). If t1 ≤ η−1.25, the martingale concentration also gives a bound
of |
∑t1

t=0 zt| = O(η1/2) with probability 1−O(exp(−1/poly(η))). Hence if t1 ≤ η−1.25, then
with probability 1 − O(exp(−1/poly(η))), at all times t ≤ t1, we have that |θj | ≤ η0.4−ε.
Thus inductively applying this argument, and taking a union bound over these poly(1/η)
steps, yields that this conclusion holds up through time t1 = η−1.25.

We now consider the case when t1 ∈ [η−1.25, η−1.6]. In this case, we may apply Lemma 7,
with β = 0.1 + ε, which guarantees that for a direction k with γk > 0, with all but
exp(−1/poly(η)) probability,

1

t1

t1−1∑
t=0

θ2
k(t) = ηVar[ei] +O(η1.05−4ε) and

∣∣∣∣∣ 1

t1

t1−1∑
t=0

θk(t)θ`(t)

∣∣∣∣∣ = O(η1.05−4ε). (15)

From above, we have that
∑t1

t=0 zt = O(η1.4−2ε
√
t1) = O(η0.6−2ε) = O(η1/2), and

∑t1
t=0wt =

O(t1η
2.2−3ε) = O(η1/2). From Equation 14, we plug in the two bounds from Equation 15

multiplied by η to conclude that

θj(t1) = θj(0)− 2η2t1Var[ei]
∑
k

rk,k +O(t1η
2.05−4ε) +O(η1/2).

Note that the “cross terms,”
∑

k,` rk,` do not explicitly appear in the previous sum, and
instead contribute to the first big “O” term, due to our bound on the time average of θkθ`
from Lemma 7.

Applying the above conclusions inductively (as we did in the first half of the proof for the
case t1 ≤ η−1.25) yields that, with all but exp(−1/poly(η)) probability, |θj(t)| ≤ η0.4−ε at all
times t ≤ η−1.6, and at time T ≤ η−1.6, we have that θj(T ) = θj(0)−2η2TVar[ei]

∑
k rk,k +

O(Tη2.05−4ε) +O(η1/2) = θj(0)− 2Tη2Var[ei]
∑

k rk,k +O(η0.45−4ε), yielding the lemma, as
desired.

Appendix B. Proof of Theorem 2

Before proving Theorem 2, we formalize the notation that will be used throughout this
section. We consider a network with two layers of trainable weights, with an additional
linear and bias unit leading to the output. The network takes as input a one dimensional
datapoint, x, and a constant, which we can assume wlog to be 1. For the ith neuron in
the middle layer, there are three associated parameters: ai, the weight to input x, bi the
weight to the constant input, and ci, the weight from neuron i to the output. Hence the
parameters θ = ({ai}, {bi}, {ci}, a, b) represent the following function:

fθ(x) =
∑
i

ciσ(aix+ bi) + ax+ b

where σ is the ReLU non-linearity i.e. σ(x) = max(0, x).
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The implicit regularization term for a dataset (x1, y1), . . . , (xn, yn), evaluated at param-
eters θ, simplifies as follows:

R(θ) :=
∑
j

‖∇θfθ(xj)‖22 (16)

=
∑
j

(
‖∇{ai}fθ(xj)‖

2
2 + ‖∇{bi}fθ(xj)‖

2
2 + ‖∇{ci}fθ(xj)‖

2
2 + ‖∇a,bfθ(xj)‖22

)
=

∑
j

(∑
i

(cixjIaixj+bi>0)2 + (ciIaixj+bi>0)2 + (σ(aixj + bi))
2

)
+ x2

j + 1

Defining the contribution of the ith ReLU neuron and jth datapoint to be

Ri,j(θ) := (σ(aixj + bi))
2 + c2

i (1 + x2
j )Iaixj+bi>0,

the regularization expression simplifies to R(θ) =
∑

i,j Ri,j(θ)+
∑

j 1+x2
j , where the last sum

does not depend on θ, thus has no θ gradient, and thus does not contribute to regularization.

Definition 9 The ith ReLU unit fi(x) = ciσ(aix+bi) has an intercept at location x = − bi
ai

,
and we say this unit is convex if ci > 0 and is concave if ci < 0. If ci = 0, then fi(x) = 0
and the unit has no effect on the function.

Proof [Proof of Theorem 2] The proof will proceed by contradiction, considering a set
of parameters, θ, and set of consecutive datapoints (xi, yi), (xi+1, yi+1), (xi+2, yi+2) that
violates the claim, and then exhibiting a direction in which θ could be perturbed that
preserves the values of the hypothesis function at the data points, but decreases the implicit
regularizer proportionately to the magnitude of the perturbation.

Assume, that the piecewise linear interpolation of (xi, yi), (xi+1, yi+1), (xi+2, yi+2) is con-
vex (i.e. concave up). An analogous argument will apply to the case where it is convex
down. If f(θ, x) fits the three points, but is not also convex, then it must have a change
of convexity, and hence there must be at least two “kinks” in the interval (xi, xi+2), each
corresponding to a ReLU unit whose intercept lies in this interval, and with one of the units
corresponding to a “convex” unit (with c > 0) and the other a “concave” unit (with c < 0).
We will consider the case where the intercept of the concave unit, k1 is less than the inter-
cept of the convex unit, k2 and the argument in the alternate case is analogous. There are
now three cases to consider: 1) the point xi+1 lies between the intercepts, xi+1 ∈ (k1, k2);
2) xi+1 = k1 or k2; and 3) there is no point in the interval [k1, k2]. In each case, we will
exhibit a perturbation of the two units in question that simultaneously preserves the func-
tion values at all data points {xi}, while decreasing the implicit regularizer. The proof in
the first case will trivially also apply to the third case.

We begin with the first case, when xi+1 ∈ (k1, k2). For notational convenience, we will
henceforth use x0 to denote xi+1. Let a1, b1, c1 denote the parameters of the first unit, and
a2, b2, c2 denote the parameters of the second unit in question. Figure 4 depicts the setting
where x0 ∈ (k1, k2), along with the four possible configurations of the units, according to
the four possible configurations of the signs of a1 and a2. In each case, the dotted lines in
the figure indicate the direction of perturbation of these two units which 1) preserves the
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Figure 4: The leftmost figure depicts the case where the middle datapoint lies between the intercepts
of the ReLU units with opposing convexities. The solid line depicts the original function, and the
dotted line depicts the function after the perturbation, which preserves the function values at all
datapoints and decreases the regularization expression. The rightmost four plots depict the four
possible types of ReLU units that could give rise to the function depicted in the left pane, together
with the perturbations that realize the effect depicted in the left pane. For cases 2 and 3, the linear
and bias units must also be adjusted to preserve the function values at the datapoints.

function value at all data points, and 2) decreases the value of the implicit regularizer. We
note that in several of the cases, the bias unit, b, and and linear unit, a, which are directly
connected to the output, must also be adjusted to accomplish this. We will never perturb
the weights, c1, c2, leading to the output neuron.

Let ã1, b̃1 and ã2, b̃2 be the parameters of the two perturbed ReLU units and k̃1 and
k̃2 be the new location of the corresponding intercepts. The perturbations will be in terms
of an arbitrarily small quantity ε > 0, and hence we will assume that, for all j 6= i + 1,
xj 6∈ [k̃1, k̃2]. Let R̃1j , R̃2j denote the contributions to the regularization expression for units
1 and 2 corresponding to the jth datapoint, after the perturbation.

Case 1 (a1 > 0, c1 < 0, a2 > 0, c2 > 0): We first give an intuitive argument
of how the perturbation is chosen to preserve the function values while decreasing the
regularization. As depicted in the second pane of Figure 4, we change the parameters of the
first ReLU unit a1 and b1 such that the intercept k1 moves towards the left to a position
k̃1 and the slope a1 decreases. The changes in a1 and b1 are chosen such that the value at
the point x0 remains the same. The second ReLU unit’s parameters are perturbed such
that for all datapoints xj ≥ k̃2, the change in the function values due to the changes in the
parameters of the first ReLU unit are balanced by them. Hence, the function values are
preserved for all datapoints. To see that the regularization decreases by the same order of
magnitude as the perturbation, recall that the regularization term for a ReLU unit i and
datapoint j is proportional to (σ(aixj + bi))

2 if the value of ci is kept unchanged. From
Figure 4, the value of (σ(aixj + bi))

2 for both units remains the same for all datapoints
xj ≤ x0 and strictly decreases (proportionately to the magnitude of the perturbation) for
all datapoints xj ≥ k̃2. This realizes the intuition that the implicit regularizer promotes
small activations in the network.

A nearly identical argument applies in the other three cases depicted in Figure 4, with
the slight modification in cases 2 and 3 that we need to perturb the linear and bias units
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to preserve the function values, and the regularization term is independent of the values of
those parameters.

Now, we explicitly describe the case analysis mentioned above, and explicitly state the
perturbations, and compute the improvement in the regularizer for all four cases, and the
cases corresponding to the setting where the data point x0 lies at one of the intercepts, k1

or k2 are analogous. For clarity, Figure 5 depicts the function before the perturbation, and
after, for both the case when x0 lies between the intercepts k1, k2, and when x0 = k1. We

(a) When the datapoint is be-
tween the kinks.

(b) When the datapoint is on
one of the kinks.

Figure 5: The plots show the change such that the function values at the datapoints are
preserved and the regularization term strictly decreases.

begin by computing the perturbations for each of the four cases depicted in Figure 4. When
the values of linear and bias units a, b are not mentioned, we assume there is no change in
them.

Case 1 (a1 > 0, c1 < 0, a2 > 0, c2 > 0) :

ã1 = a1(1− ε) b̃1 = b1 + x0a1ε

ã2 = a2 −
c1

c2
(ã1 − a1) b̃2 = b2 −

c1

c2
(b̃1 − b1)

First, observe that the intercept for ReLU 1 moves to the left since

k̃1 − k1 = − b̃1
ã1

+
b1
a1

= −ε(a1x0 + b1)

a1(1− ε)
< 0

The last inequality follows since 0 < ε < 1 and a1 > 0 and a1x0 + b1 > 0 since x0 > k1 and
a1k1 + b1 = 0. Similarly, the intercept for ReLU 2 moves to the right

k̃2 − k2 = − b̃2
ã2

+
b2
a2

=
a1c1ε(a2x0 + b2)

a2(c2a2 + c1a1ε)
> 0

The last inequality follows because c1 < 0, a1, a2 > 0, a2x0 +b2 < 0 and c2a2 +c1a1ε > 0
for sufficiently small ε. Now, we will verify that f(xj) = f̃(xj) ∀ xj , j ∈ [n] and the total
regularization term R decreases by Θ(ε). We will analyze the three cases separately where
xj ≤ k̃1, xj = x0 and xj ≥ k̃2.
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xj ≤ k̃1: Since both the units were not active for xj ≤ k̃1 and are not active after the
change, there is no change in the function value. Similarly, since the units were not active
before the change and did not become active after the change, the regularization term for
xj ≤ k̃1 does not change.

xj = x0: First, calculating the value of ã1x0 + b1, we get that

ã1x0 + b1 = a1(1− ε)x0 + b1 + a1εx0 = a1x0 + b0 (17)

The function value for x0 does not change since the contribution of the first unit does
not change by (17) and the second unit remains off before and after the change. This is
by design as we decreased the slope a1 and moved the intercept k1 to the left such that
function value at point x0 is preserved.

f̃(x)− f(x) = c1σ(ã1x0 + b̃1) + c2σ(ã2x0 + b̃2)− c1σ(a1x0 + b1)− c2σ(a2x0 + b2) = 0

Calculating the change in regularization value with the perturbed parameters, we see there
is no change since ã1x0 + b̃0 = a1x0 + b0 by (17) and c does not change.

R̃10−R10 = (σ(ã1x0+ b̃1))2+c2
1(1+x2

0)Iã1x0+b̃1>0−(σ(ã1x0+ b̃1))2−c2
1(1+x2

0)Iã1x0+b̃1>0 = 0

Since the second unit remains off for x0 before and after the change, the regularization value
does not change.

R̃20−R20 = (σ(ã2x0+ b̃2))2+c2
2(1+x2

0)Iã2x0+b̃2>0−(σ(a2x0+b2))2−c2
2(1+x2

0)Ia2x0+b2>0 = 0

Thus, we see that both the function value and the regularization term do not change for x0.

xj ≥ k̃2: Now for this case, both the units are active before and after the change. So,
we need to look at the how the total contribution changes to both the output value and the
regularization for both the units. First, calculating ã1xj + b̃1 − (a1xj + b1), we see that it
is strictly negative since ε > 0, a1 > 0 and xj ≥ k̃2 > k2 > x0.

ã1xj + b̃1 − (a1xj + b1) = a1(1− ε)xj + b1 + a1εx0 − a1xj − b1 = εa1(x0 − xj) < 0 (18)

Similarly, calculating ã2xj + b̃2− (a2xj + b2), we see that it is also strictly negative since
c1 < 0 and c2 > 0.

ã2xj+ b̃2−(a2xj+b2) = (ã2−a2)xj+ b̃2−b2 = −c1

c2
((ã1−a1)xj+ b̃1−b1) = −c1

c2
εa1(x0−xj)

(19)
This can also be readily seen from the figure 4. Now, calculating the change in function
value due to the perturbed parameters, we get

f̃(xj)− f(xj) = c1σ(ã1xj + b̃1) + c2σ(ã2xj + b̃2)− c1σ(a1xj + b1)− c2σ(a2xj + b2)

= c1((ã1 − a1)xj + b̃1 − b1) + c2((ã2 − a2)xj + b̃2 − b2)

Now, substituting the changes computed in equation (18) and equation (19), we get that

f̃(xj)− f(xj) = c1a1ε(x0 − xj) + c2

(
−c1

c2
εa1(x0 − xj)

)
= 0
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Hence, we see that the function values are preserved for datapoints in this range. This
is because the changes in the parameters a2 and b2 were chosen in such a way so that
the change in function value introduced due to the change in parameters of unit 1 can be
balanced. Calculating the change in regularization value with the perturbed parameters,
we get that the regularization term strictly decreases since 0 < ã1xj + b̃1 < a1xj + b1 by
(18) which we have already argued before.

R̃1j−R1j = (σ(ã1xj+b̃1))2+c2
1(1+x2

j )Iã1xj+b̃1>0−(σ(a1xj+b1))2−c2
1(1+x2

j )Ia1xj+b1>0 < −Θ(ε)

Similarly, since 0 ≤ ã2xj + b̃2 < a2xj + b2 by equation (19), the regularization value for unit
2 strictly decreases for this range of datapoints.

R̃2j−R2j = (σ(ã2xj+b̃2))2+c2
2(1+x2

j )Iã2xj+b̃2>0−(σ(a2xj+b2))2−c2
2(1+x2

j )Ia2xj+b2>0 < −Θ(ε).

Case 2 (a1 > 0, c1 < 0, a2 < 0, c2 > 0) : This case corresponds to the third pane in
Figure 4.

ã1 = a1(1− ε) b̃1 = b1 + x0a1ε

ã2 = a2 +
c1

c2
(ã1 − a1) b̃2 = b2 +

c1

c2
(b̃1 − b1)

a = −c1(ã1 − a1) b = −c1(b̃1 − b1)

Similarly to the previous case, we can argue that the function value at the datapoints remain
same and regularization decreases by Θ(ε).

Case 3 (a1 < 0, c1 < 0, a2 > 0, c2 > 0) : This case corresponds to the fourth pane
in Figure 4:

ã1 = a1(1− ε) b̃1 = b1 + x0a1ε

ã2 = a2 +
c1

c2
(ã1 − a1) b̃2 = b2 +

c1

c2
(b̃1 − b1)

a = −c1(ã1 − a1) b = −c1(b̃1 − b1)

Similarly to the previous case, we can argue that the function value at the datapoints remain
same and regularization decreases by Θ(ε).

Case 4 (a1 < 0, c1 < 0, a2 < 0, c2 > 0) : This case corresponds to the right pane in
Figure 4:

ã1 = a1 −
c2

c1
(ã2 − a2) b̃1 = b1 −

c2

c1
(b̃2 − b2)

ã2 = a2(1− ε) b̃2 = b2 + x0a2ε

Similarly to the previous case, we can argue that the function value at the datapoints
remains the same and regularization decreases by Θ(ε).

Appendix C. Tanh and Logistic Activations (Proof of Theorem 3)

Here, we discuss the implications of our characterization of stable points in the dynamics
of SGD with label noise, for networks with either hyperbolic tangent activations or logistic
activations. In particular, we will consider networks with two layers, of arbitrary width, that
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are trained on a single d-dimensional data point (x, y). We find that, at “non-repellent”
points, the neurons can be partitioned into a constant number of essentially equivalent
neurons, and thus the network provably emulates a constant-width network on “simple”
data.

Throughout this section we denote our single training point by (x, y), where x ∈ Rd
and y ∈ R, and we assume x 6= 0. Our network is a two layer network, parameterized by a
length n vector c and a d× n matrix w, and represents the function

f(x; c, w) =

n∑
i=1

ciσ(wᵀ
i x)

where c ∈ Rn and w1, ..., wn are the columns of w ∈ Rd×n. In Section C.1 below, the
activation function σ will be the logistic function, while in Section C.2 we analyze the tanh
activation function. Since we are only concerned with the network’s behavior on a single
data point (x, y), unlike in the body of the paper where the subscript i typically denoted a
choice of data point, here we use the subscript i to index the hidden units of the network.
We let hi = σ(wtix) denote the value of the ith hidden unit and let oi = cihi denote the
output (after scaling) of the ith hidden unit. Then, we simply have that f(x; c, h) =

∑n
i=1 oi.

C.1. “Non-repellent” points for logistic activation

We prove the following proposition, establishing the portion of Theorem 3 concerning logistic
activation functions:

Proposition 10 Let θ = (c, w) parameterize a two-layer network with logistic activations.
If θ is “non-repellent” according to Definition 5 for the dynamics of training with a single
d-dimensional datapoint (x, y) where x 6= 0, then there exists α1, α2 and β1, β2 such that for
each hidden unit i, either ci = α1 and hi = β1 or ci = α2 and h2 = β2.

Proof First, we derive the implicit regularizer, R, for a two layer network with logistic
activations. We compute:

∇cif(x; c, w) = hi ∇wijf(x; c, w) = cihi(1− hi)xj
Thus,

R = ||∇w,cf(x; c, w)||2 =
∑
i

[
h2
i + c2

ih
2
i (1− hi)2||x||2

]
Recall that a choice of parameters with zero-error is “non-repellant” iff the implicit regular-
izer has zero gradient in the span of directions with zero function gradient. Thus, we want
to consider directions that do not change the error, up to first order. Recall that we defined
oi = cihi and that the networks output is just

∑n
i=1 oi. Any change to the parameters

that leaves all the oi the same must leave the network output the same, and thus the error
unchanged as well. First, we investigate for what choices of parameters do there not exist
any directions that leave all oi constant but decrease the regularization term. We rewrite
the regularization term using oi:

R = ||∇w,cf(x; c, w)||2 =
∑
i

[
h2
i + o2

i (1− hi)2||x||2
]

(20)
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Suppose for some i that the derivative of the above expression with respect to hi is nonzero.
Then, we can change wi in the direction that slightly increases hi while also decreasing
ci just enough to keep oi constant. That direction would keep the error at 0 but the
implicit regularization term would have nonzero directional derivative in it. Thus, for “non-
repellent” points, we must have that the following is 0 for all i:

∂

∂hi
R = 2hi + 2(hi − 1)o2

i ||x||2 = 0

We solve the above equation for hi to determine that at all “non-repellent” points:

hi =
o2
i ||x||2

1 + o2
i ||x||2

(21)

We can plug this back into equation 20 to determine that at “non-repellent” points the
following must be true:

R =
∑
i

[
(

o2
i ||x||2

1 + o2
i ||x||2

)2 + o2
i (1−

o2
i ||x||2

1 + o2
i ||x||2

)2||x||2
]

=
∑
i

o2
i ||x||2

1 + o2
i ||x||2

For convenience, we define Ro(z) = z2||x||2
1+z2||x||2 . Then, we have that at “non-repellent” points,

R =
∑n

i=1Ro(oi). The function Ro, as well as its derivative, is depicted in Figure 6.
Next, we consider the effect of changing two units at a time. We claim that if there

are units i, j where R′o(oi) 6= R′o(oj), then we are not at a “non-repellent” point. Consider
moving the parameters in a direction that increases oi by ε and decreases oj by ε. That
direction will leave the network output constant, and therefore also the error. Furthermore,
we can choose the direction so that it additionally modifies hi and hj so that they satisfy
equation 21 with respect to the modified oi and oj . Altogether, this means that R changes
by (Ro(oi+ε)−Ro(oi))−(Ro(oj+ε)−Ro(oj)). The result is that, after a change by ε, the new
regularization penalty will change (up to first-order approximation) by ε(R′o(oi)−R′o(oj)),
which is nonzero. Thus, R decreases linearly in the direction we constructed, implying we
are not at a “non-repellent” point, yielding the desired contradiction.

Thus, at a “non-repellent” point we must have that R′o(oi) is the same for all oi. Thus
the number of different values of oi is upper bounded by the number of solutions to the
equation R′o(o) = a where a is some scalar. See Figure 6 for a plot illustrating that this
equation has at most 2 solutions. To prove this, we first compute the derivative and set it
equal to a

R′o(o) =
2o||x||2

(1 + o2||x||2)2
= a =⇒ a(1 + o2||x||2)2 − 2o||x||2 = 0

Since ||x|| 6= 0, the function a(1 + o2||x||2)2 − 2o||x||2 is a strictly convex function of o for
a > 0, is strictly concave for a < 0, and a linear function when a = 0, and thus in all cases
has at most 2 solutions for ||x|| 6= 0. Thus, at a “non-repellent” point, there are at most two
distinct values for o1, ..., on. Furthermore, we have already shown that at “non-repellent”
points, hi is a function of oi. It also follows that ci = oi/hi is a function of oi. Thus, if
oi = oj then ci = cj and hi = hj , so all units with the same output (oi) also share the same
value for ci and hi. Hence, there are at most two possible values for ci, hi, which we can
name α1, β1 and α2, β2, proving this proposition.
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Figure 6: Plots depicting the function Ro on the left and its derivative on the right, for ||x|| = 1.
From the plots, we see that the equation R′

o(o) = a has at most two solutions for any choice of a.
Other choices of ||x|| would only stretch the plots, which does not affect that conclusion

C.2. “Non-repellent” points for tanh activation

The following proposition characterizes the portion of Theorem 3 concerning tanh activa-
tions.

Proposition 11 Let θ = (c, w) parameterize a two-layer network with tanh activations.
If θ is “non-repellent” according to Definition 5 for the dynamics of training with a single
d-dimensional datapoint (x, y) where x 6= 0, then there exists α and β such that for each
hidden unit i, either ci = α and hi = β or ci = −α and h2 = −β or ci = hi = 0.

The proof of this proposition is mostly the same as the proof of proposition 10. However,
instead of proving that every point in the range of R′o(o) is attained by at most two points
in the domain, we will prove that the function is injective. The other difference is that
R′o(o) is undefined at o = 0, so in addition to the units that are hi and ci (up to sign), there
can also be units with 0 output. Due to the highly repetitive logic, we go through this proof
at a faster pace than 10.
Proof For a two layer network with tanh activations, the implicit regularizer is

R =
∑
i

[
h2
i + c2

i (1− h2
i )

2||x||2
]

=
∑
i

[
h2
i +

o2
i

h2
i

(1− h2
i )

2||x||2
]

(22)

At “non-repellent” points, we must have that the below derivative is 0 for all i

∂

∂hi
R =

2h4
i + 2h4

i o
2
i ||x||2 − 2o2

i ||x||2

h3
i

= 0

We solve the above equation for h2
i to determine that at all “non-repellent” points:

h2
i =

√
o2
i ||x||2

o2
i ||x||2 + 1

(23)
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Figure 7: Plots depicting the function Ro on the left and its derivative on the right, for ||x|| = 1.
From the plots, we see that R′

o(o) is injective and undefined at o = 0. Other choices of ||x|| would
only stretch the plots, which does not affect that conclusion.

We plug this back into equation 22 and simplify to determine that, at “non-repellent”
points, the following must be true:

R =
∑
i

[
h2
i +

o2
i

h2
i

(1− h2
i )

2||x||2
]

=
∑
i

h4
i (1 + o2

i ||x||2) + o2
i ||x||2(1− 2h2

i )

h2
i

=
∑
i

o2
i ||x||2 + o2

i ||x||2(1− 2h2
i )

h2
i

=
∑
i

2o2
i ||x||2(

1

h2
i

− 1)

=
∑
i

2o2
i ||x||2(

√
o2
i ||x||2 + 1

o2
i ||x||2

− 1)

=
∑
i

2
[
(
√
o2
i ||x|2(o2

i ||x||2 + 1)− o2
i ||x||2)

]
We define Ro(oi) = 2

[
(
√
o2
i ||x||2(o2

i ||x||2 + 1) − o2
i ||x||2)

]
. Recall that we showed in the

proof of Proposition 10 that if there exists two units, i, j, such that R′o(oi) 6= R′o(oj), then
we cannot be at a “non-repellent” point. In this case, it turns out that R′o(o) is undefined
at o = 0, which means any number of units can have zero output. However, at all other
points, R′o(o) is injective. This means that all units that don’t have 0 output must share
the same output. See Figure 7 for illustrative plots.

To show that R′o is injective, we first take ||x|| = 1 without loss of generality, since the
argument of Ro always appears multiplied by ||x||. Next, we differentiate and simplify to
obtain

R′o(z) = 2z
z2 + 1

2 −
√
z4 + z2

√
z4 + z2

,
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which is easily seen to have the same sign as z (and is undefined when z = 0). Further, the
2nd derivative—ignoring its value at 0—simplifies to the following expression:

R′′o(z) = 2|z|
z2 + 3

2

(z2 + 1)3/2
− 2,

which is seen to be negative everywhere. Thus for positive z, we have R′o(z) is positive and
decreasing, while for negative z it is negative and decreasing, implying R′o(z) is injective,
as desired.

We thus conclude that at “non-repellent” points, all units have either the same output
(oi) or have output 0. From Equation 23, we know that at “non-repellent” points h2

i is
a function of oi. Furthermore, c2

i = o2
i /h

2
i , so c2

i is also a function of oi. Thus, all units
that don’t have output 0 must have the same hi and ci (up to sign), and since they have
the same oi = hici, the signs must match up as well. This means that, at “non-repellent”
points, there is α, β so that for each hidden unit i where oi 6= 0, either ci = α and hi = β
or ci = −α and hi = −β.

Finally, we show that at “non-repellent” points, if oi = 0 then hi = ci = 0. This means
that not only does the ith unit not affect the output of the network at this particular choice
of x, but it also does not affect the output of the network for any input. If oi = 0 then from
equation 23 we know hi = 0. Recall that the networks output is

∑n
i=1 cihi, so if hi = 0,

then changing ci does not affect the error. Therefore, we could only be at a “non-repellent”
point if ∂R

∂ci
= 0. Taking the derivative of equation 22 we see ∂R

∂ci
= 2ci(1− h2

i )
2||x||2 which

is zero only if ci = 0. Thus, if oi = 0 then hi = ci = 0.
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