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Abstract

We study the size of a neural network needed to approximate the maximum function over
d inputs, in the most basic setting of approximating with respect to the L2 norm, for continu-
ous distributions, for a network that uses ReLU activations. We provide new lower and upper
bounds on the width required for approximation across various depths. Our results establish
new depth separations between depth 2 and 3, and depth 3 and 5 networks, as well as provid-
ing a depth O(log(log(d))) and width O(d) construction which approximates the maximum
function, significantly improving upon the depth requirements of the best previously known
bounds for networks with linearly-bounded width. Our depth separation results are facilitated
by a new lower bound for depth 2 networks approximating the maximum function over the
uniform distribution, assuming an exponential upper bound on the size of the weights. Fur-
thermore, we are able to use this depth 2 lower bound to provide tight bounds on the number
of neurons needed to approximate the maximum by a depth 3 network. Our lower bounds are
of potentially broad interest as they apply to the widely studied and used max function, in con-
trast to many previous results that base their bounds on specially constructed or pathological
functions and distributions.

1 Introduction
How and why depth helps neural networks to excel in applications is one of the central challenges
in the quest to understand deep learning. Both classical circuit complexity and modern deep learn-
ing theory is guided by the intuition that a modest increase in depth often leads to drastic—and
often exponential—improvements in the expressive power of the circuit or network described,
along with concomitant improvements in key measures of performance, including efficiency as
measured by width or neuron count, and approximation accuracy. Despite this firm intuition, and
much recent encouraging evidence of the practical expressive power of deep networks (and hence
also deep circuits), theoretical insight to illuminate these phenomena remains scarce; and each ad-
ditional layer of depth adds often prohibitive new theoretical challenges. This paper contributes to
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this area by providing several new lower and upper bounds across a range of depths for a natural
function, with respect to a meaningful notion of approximation, in a realistic circuit/network model
with realistic parameters.

While it is known that any continuous function can be approximated arbitrarily well by a shal-
low (depth 2) network [2, 14], these constructions of depth 2 approximations typically require
exponential size, as a function of the input dimension in the worst case. This raises the natural
question: when and how can increasing the depth beyond 2 allow us to drastically improve the
width, so as to be polynomial in the input dimension. Indeed, significant study has been directed
towards understanding the benefit of depth in expressing functions. For example, there are sev-
eral constructions of functions which can be approximated by a depth 3 and polynomial width
network, but require exponentially many neurons to be approximated by a network of depth 2
[4, 3, 20, 21, 25, 8, 19]. It is also known that highly oscillatory or even sufficiently non-linear
functions may require exponentially fewer neurons when approximated by networks whose depth
scales with the problem’s parameters (e.g. the target accuracy) than by constant depth networks
[23, 26, 15, 20]. While such results establish the expressive superiority of depth over width, the
functions used to demonstrate this are at times somewhat pathological, the configuration of the
network which approximates them efficiently is highly stylized, or the assumed data distribution is
quite complex. Therefore we are motivated to study the effect of depth on efficiency for “natural”,
well-studied functions that commonly arise in machine learning tasks.

We study the effect of depth on the quality of approximation for the maximum function

fd(x1, . . . , xd) := max{x1, . . . , xd},

where (x1, . . . , xd) ∈ Rd. This function enjoys many favorable properties: It is a fundamental
mathematical function; it has a very simple structure; it is easy to compute in linear time (assuming
comparisons between real numbers can be done in time O(1)), and it is used explicitly in popular
neural network architectures (e.g. max pooling [12, 22, 9]). Computing the maximum is important
in reinforcement learning tasks (choosing an action maximizing the expected reward) and has
received attention in theoretical neuroscience [11]. Several works have studied how to compute
the maximum efficiently using a neural network [1, 7, 17, 5]. However, most known results only
deal with L∞ approximations or even exact computation of this function, which is a far more
stringent notion of approximation than the L2 approximation which is often the metric chosen for
machine learning applications, and is the metric we study in this paper (see related work subsection
and Sec. 2 for further discussion).

We provide new lower and upper bounds for approximating the maximum function with respect
to a broad class of distributions including the uniform distribution over the hypercube, and the
Gaussian distribution (see Assumption 3.2). We show that for any natural k ≤ O(log(log(d))),1

ReLU networks of depth 2k+1 and width O
(
d1+1/(2k−1)

)
can approximate the maximum function

to arbitrary accuracy given sufficiently large weights. In particular, this implies a depth 3 and width
O(d2) approximation; a depth 5 and width O(d4/3) approximation; and a depth O(log(log(d)))
and width O(d) approximation, significantly improving upon the previously best known linear

1Unless stated otherwise all logarithms are base 2.
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Table 1: New results in this paper for approximating the maximum function using ReLU neural
networks. We provide a polynomial separation between depth 2 and 3, and for the same target
function, we provide a polynomial separation between depth 3 and 5, requiring widths of Ω(d2)
and O(d4/3), respectively. We also provide a novel upper bound which only requires a perhaps
surprising network depth of O(log(log(d))) for approximating the maximum using linear width,
in contrast to the best known approximations which required depth O(log(d)) [1, 17]. In our
lower bounds, the theta notation hides an absolute constant and the domain is scaled so that the
approximation error is constant (where scaling it to [0, 1]d would result in accuracy which is at
least inverse polynomial in d). An asterisk (∗) denotes that in addition to the ReLU activation, the
bound applies to any activation satisfying a mild assumption (Assumption 3.2); and a dagger (†)

denotes that an exponential upper bound on the magnitude of the weights is assumed.

Depth Width lower bound Width upper bound
Bound Domain

2 Ω(dℓ) (Thm. 4.2) (∗,†) [
0, dθ(ℓ)

]d
3 Ω(d2) (Thm. 4.3) (†) [

0, dθ(1)
]d O(d2) (Thm. 3.3)

5 d (Thm. 4.4) (∗) [0, d2.25]
d O(d4/3) (Thm. 3.4)

O(log(log(d))) d (Thm. 4.4) (∗) [0, d2.25]
d O(d) (Thm. 3.4)

width upper bound which requires depth Ω(log(d)) [1, 17]. Moreover, assuming data which are
distributed uniformly over a d-dimensional hypercube with side length polynomial in d and an
exponential upper bound on the size of the weights, we show corresponding lower bounds for
approximating the maximum using ReLU networks. Specifically, we show a depth 2 lower bound
requiring width dℓ for any ℓ ≥ 1 assuming the side length of the hypercube scales with dℓ, and a
depth 3 lower bound requiring width Ω(d2), establishing the tightness of our depth 3 upper bound.

Our lower bounds show that the maximum function cannot be approximated to better than
constant accuracy if the domain of approximation scales with the input dimension d. Due to the
fact that our upper bounds on the required width are independent of the target accuracy (better
accuracy is obtained by increasing the magnitude of the weights of the approximating network),
scaling the domain of approximation does not affect the width requirement. In contrast, since
scaling the domain in our lower bounds also scales the approximation error (see Lemma D.6 in
the appendix for a formal statement), our results establish several new depth-based separations for
approximating the maximum function to better than constant accuracy. See Table 1 for a more
detailed comparison of our bounds.

It is interesting to compare lower bounds for continuous neural networks over continuous do-
mains to lower bounds for discrete neural networks such as threshold circuits over {0, 1}d. De-
vising superlinear lower bounds for depth three threshold circuits (with polynomial weights on the
output gate) has been obtained relatively recently after decades of research for a family of compli-
cated functions [10] which cannot be computed by circuits with o(d3/2/ log3(d)) threshold gates.
Our tight quadratic lower bound for depth 3 networks with ReLU gates approximating the maxi-
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mum function suggests that proving lower bounds for the continuous case is a more amenable task
and that further superlinear lower bounds for bounded depth networks might be achievable over
the continuous domain.

The remainder of this paper is structured as follows: After presenting our contributions in
this paper in more detail below, we discuss related work in the literature. In Sec. 2 we present
the notation used throughout this paper. Sec. 3 details our positive approximation results (upper
bounds) and Sec. 4 details our negative inapproximability results (lower bounds). Lastly, Sec. 5
summarizes and discusses potential future work directions.

Our contributions
• We exhibit a construction to approximate the maximum function arbitrarily well—in the L2

sense—using a depth 3 and width d(d + 1) ReLU network (Thm. 3.3). Interestingly, to
increase the accuracy of this construction, we increase the size of the weights, but do not
need to change the network architecture. This construction arises from a piecewise-linear
decomposition of the maximum function.

• We “compose” the above construction with itself, so as to enable different depth-width trade-
offs. This reinterpretation of Thm. 3.3 provides new upper bounds for expressing the maxi-
mum function across odd depths, with the required width dropping rapidly as larger depths
are used (Thm. 3.4).

• By contrast, we show that these constructions at depths 3 and higher are impossible at depth
2: the width of a depth 2 network approximating the maximum function must depend on
the desired approximation accuracy. This thus shows a polynomial separation between
depths 2 and 3 for approximating the maximum function. Our analysis relates to the seminal
technique developed in Eldan and Shamir [4], analyzing the Fourier spectrum of the maxi-
mum function, to show that, assuming exponential upper bounds on the size of the weights,
we show a lower bound for approximating the maximum function on a compact domain
(Thm. 4.2).

• We show a polynomial separation between depth 3 and depth 5 neural networks. Using a
combinatorial argument, we show that depth 3 ReLU networks with first hidden layer of
width at most d2/5 cannot capture the full structure of the maximum function on the hyper-
cube, reducing the approximation error lower bound to the accuracy achieved by the second
hidden layer. Using our previous lower bound in Thm. 4.2, this implies an approximation
lower bound for depth 3 ReLU networks (Thm. 4.3). Together with Thm. 3.3, this estab-
lishes a tight bound of Θ(d2) for approximation of the maximum using depth 3; and when
combined with our Thm. 3.4 which implies a depth 5 and width O(d4/3) approximation, this
provides a polynomial separation between depth 3 and 5.

• Lastly, we observe that any neural network (regardless of depth or activation function) ap-
proximating the maximum must have at least d neurons in its first hidden layer. Thus, known
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upper bounds on the number of ReLUs needed to compute the maximum precisely which
require size O(d) (c.f. Arora et al. [1], Matoba et al. [17]) are optimal up to a constant factor.

Related work
Exact computation and approximation of the maximum function Quite a few recent works
have studied the problem of exact computation of the maximum function using ReLU neural net-
works. Arora et al. [1] establish that any d-dimensional, piecewise-linear function can be expressed
exactly using a depth ⌈log(d+1)⌉ ReLU network. Observe that we are able to obtain a more depth
efficient implementation of the maximum function, although in contrast to Arora et al. [1] we
construct a network approximating the function rather than computing it exactly. The construc-
tion of Arora et al. [1] implies that max{x1, x2} is computable by depth 2 ReLU networks, and
max{x1, . . . , x4} is computable by depth 3 ReLU networks. In contrast, Mukherjee and Basu [18]
show that the function (x1, x2) 7→ max{0, x1, x2} (which can be shown to be equivalent to com-
puting the maximum over three inputs) cannot be computed exactly by a depth 2 ReLU network
regardless of its width. Hertrich et al. [7] conjecture an analogous impossibility result for com-
puting max{0, x1, . . . , x4} exactly using a depth 3 network, and partially resolve it by assuming
a certain restriction on the structure of the computing network. Haase et al. [5] further show the
uncomputability of max{0, x1, . . . , x4} assuming the computing network has depth 3 and integral
weights. Despite these efforts, this conjecture is still open. Furthermore, it is currently unknown
whether there exists any piecewise-linear function which cannot be computed exactly using depth
3 ReLU networks. We stress that the aforementioned lower bounds are concerned with exact
computation, whereas our notion of approximation is markedly different since we consider lower
bounds with respect to the L2 norm rather than requiring zero L∞ loss. This is a less stringent
approximation requirement in the sense that an L2 lower bound implies an L∞ lower bound, but
not vice versa.

In contrast to the exact computation requirement discussed above, Matoba et al. [17] consider
approximations of the maximum function with respect to the L∞ norm. They show a family of
networks that increase in accuracy as the size of the approximating network increases, whereas
we provide a construction of a network achieving arbitrarily good accuracy with fixed width (by
increasing the size of the weights). Additionally, under the restriction of the approximating net-
work to have a certain symmetry structure, they also show approximation lower bounds for the
maximum function, however these do not hold in general if we relax the symmetry assumption,
whereas our lower bounds hold only under the (mild) assumption that the approximating network
has exponentially bounded weights.

Separations between depth 2 and 3 The seminal work of Eldan and Shamir [4] was the first
to establish the existence of a (continuous) function that can be approximated efficiently using
networks of depth 3, whereas any network of depth 2 would require width exponential in the
input dimension to achieve better than constant accuracy. Later, Daniely [3] showed a separation
using a different technique which applies to a compactly supported distribution, but requires an
exponential upper bound on the magnitude of the weights of the approximating depth 2 network.
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Following these works, additional separation results between depth 2 and 3 were shown (e.g. [25,
8]), including reductions to the results of Eldan and Shamir [4] and Daniely [3] that however hold
for much simpler functions than the ones originally used (e.g. [20, 21, 19]). Nevertheless, due to
the reduction proof technique used, these results inevitably inherit the arguably more complicated
distributions over the data used in Eldan and Shamir [4] and Daniely [3]. In contrast, our separation
between depth 2 and 3 holds for both the simple maximum function and for the uniform distribution
over a hypercube, albeit providing a polynomial separation and requiring an exponential upper
bound on the magnitude of the weights.

Limitations of deeper architectures Moving beyond depth 2, there are known constructions of
functions that can be approximated by a small sized network (with no restriction on its depth),
whereas an approximation to similar accuracy using constant depth networks may require expo-
nentially many more neurons. Such lower bounds, however, are based on two main arguments and
suffer from certain drawbacks making them incomparable to our results. We discuss these lower
bounds and their limitations in more detail below.

Region-counting-based depth separations The seminal work of Telgarsky [23] first estab-
lished depth separations between deep architectures. It is shown that a deep ReLU network can
realize a one-dimensional, rapidly oscillating sawtooth function, whereas a shallower architecture
cannot generate sufficiently many linear segments to be able to approximate this function effi-
ciently. If one wishes, however, to learn this efficient representation of this function using the
deeper architecture, then it is known that this cannot be done efficiently using standard techniques
such as the gradient descent algorithm [16]. Different lower bounds exist that build on this region
counting proof technique, but focus on smooth and non-linear target functions that may be more
prone to be learned efficiently using gradient descent [26, 15, 20]. Nevertheless, there’s some the-
oretical work which shows that when initializing deep ReLU networks, the expected number of
linear regions our initialization will have is merely linear in the size of the network, and further
empirical evidence suggests that this number does not tend to increase significantly, indicating that
depth will impart no practical benefit for approximating these target functions [6, 24]. On the other
hand, our results which focus on the maximum function and do not rely on region counting, still
leave open the possibility of an optimization-based result to be shown which will demonstrate this
separation in a more practical setting.

Size lower bounds and connections to circuit complexity A different, less direct approach
for showing approximation lower bounds for neural networks relies on the connection between
threshold circuits and neural networks. Mukherjee and Basu [18] derive sub-linear size lower
bounds for neural networks by showing reductions to known threshold circuit lower bounds. Vardi
et al. [24] use communication complexity to provide linear size lower bounds for approximating
a smoothed version of the binary IP mod 2 function. These results provide a different result than
ours since they imply a linear width lower bound for approximating various functions using depth
3 networks, while we show a quadratic lower bound for depth 3 ReLU networks. Moreover, the
lower bounds in the aforementioned papers are for the size of the network, rather than the required
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width for some given depth. For this reason such results cannot establish the superiority of depth
over width, since these two quantities can be traded off evenly in such lower bounds, whereas
our results establish a non-symmetric trade-off which indicates that depth is more efficient for
approximating the maximum function.

2 Preliminaries and notation
Notation and terminology We let [n] be shorthand for the set {1, . . . , n}. We denote vectors
using bold-faced letters (e.g. x) and matrices or random variables using upper-case letters (e.g.
X). Multivariate random variables are denoted using bold-faced upper-case letters (e.g. X). Given

a vector x = (x1, . . . , xd), we let ∥x∥p denote its ℓp norm which is given by
(∑d

i=1 |xi|p
)1/p

,
where the case p = ∞ is defined as ∥x∥∞ = maxi∈[d] |xi|. Throughout, we use the notation
fd(x) := max{x1, . . . , xd} for the maximum function, [x]+ = max{0, x} for the ReLU activation
function, and β(k) := 1

2k−1
for the function defined for natural k ≥ 1. A function f : D → R

defined in some domain D ⊆ Rd is piecewise-linear if there exists a partition D = ∪iDi such that
f is linear on Di for all i, where each Di is referred to as a linear region of f . We let U(A) denote
the uniform distribution on a set A ⊆ Rd.

Neural networks We consider fully connected, feed-forward neural networks, computing func-
tions from Rd to R. A σ neural network consists of layers of neurons. In every layer except for
the output neuron, an affine function of the inputs is computed, followed by a computation of the
non-linear activation function σ : R → R. The single output neuron simply computes an affine
transformation of its inputs. Each layer with a non-linear activation is called a hidden layer, and
the depth of a network is defined as the number of hidden layers plus one. The width of a network
is defined as the number of neurons in the largest hidden layer which we generally denote by k,
and the size of the network is the total number of neurons across all layers.

Approximation error Since we consider a regression setting in which a neural network N :
Rd → R computes a real function of its input, we define our approximation error with respect to
an underlying distribution D on Rd and we consider the square loss. Formally, given a predictor
N , a target function f : Rd → R and an underlying distribution D, our approximation error is
defined as

Ex∼D
[
(N (x)− f(x))2

]
.

In words, the L2 approximation defined above corresponds to the expected square error when
sampling an instance from the underlying distribution D, labelling it using the target function f
we are trying to approximate, and making a prediction using a given neural network hypothesis
N . This makes this notion of approximation a natural choice for showing approximation lower
and upper bounds, as a lower bound for certain class of neural network predictors implies the
existence of a particular learning problem where the architecture being considered is unable to
achieve population loss better than a certain quantity, whereas a network N which achieves small
loss implies that this class of networks can express a good predictor.
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3 Deep ReLU approximations
In this section, we focus on positive approximation results for the maximum function. We now
begin with stating our assumptions on the underlying distribution generating the data, but first we
would need the following definition.

Definition 3.1. Given some δ > 0, we say that a vector x = (x1, . . . , xd) is δ-separated if for all
i ̸= j, and xj ̸= 0 we have that

xi

xj

/∈ [1− δ, 1 + δ].

We denote the set of δ-separated vectors in d-dimensional space by

Sδ :=
{
x ∈ Rd : x is δ-separated

}
.

The above definition essentially guarantees that each pair of coordinates in x have a ratio whose
distance from 1 is at least δ for some real δ > 0. Since our construction is sensitive to instances
where there are coordinates that are extremely close, we would need to make sure that points that
violate δ-separateness are sufficiently scarce. To this end, we make the following assumption on
the distribution of the data.

Assumption 3.2. The distribution D satisfies the following:

1.
EX∼D

[
∥X∥2∞

]
< ∞.

2.
lim
δ→0

PX∼D [X /∈ Sδ] = 0.

Item 1 merely requires that the tail of X is sufficiently well-behaved in the sense of having a
finite second moment for its infinity norm, and Item 2 requires that it becomes increasingly unlikely
to draw an instance from D which isn’t δ-separated as δ decreases. These hold, for example, when
the coordinates of X are i.i.d. and follow any absolutely continuous distribution with a bounded
density and a finite second moment, or when a certain continuous noise is added to a sufficiently
concentrated random variable X (see Appendix A for formal examples).

We now turn to formally state our positive approximation result for approximating the maxi-
mum function using depth 3 ReLU neural networks.

Theorem 3.3. Let D be any distribution satisfying Assumption 3.2. Then for any ε > 0 and natural
d ≥ 2, there exists a ReLU network N of depth 3 and width d(d+ 1) such that

Ex∼D
[
(N (x)− fd(x))

2] ≤ ε.

The proof of the above theorem, which appears in Appendix B, relies on the observation that
the structure of the maximum function is such that its surface consists of d linear regions (cor-
responding to the subsets of Rd where each coordinate is maximal). Since each such region has
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Figure 1: Three-step polytope approximation of (x, y) 7→ max{x, y}. Subfigure 1(a) plots the
depth 2 network [x]+ − [10y − 10x]+ − [−x]+ − [10y − 10x]+ which computes max{x, y} on the
polytope {(x, y) ∈ [−1, 1]2 : x ≥ y}. In Subfigure 1(b), a second layer of ReLUs is utilized to clip
negative values that are outside of the polytope to zero, plotting the depth 3 network N (x, y) :=[
[x]+ − [10y − 10x]+

]
+
−
[
[−x]+ − [10y − 10x]+

]
+

. Lastly, Subfigure 1(c) plots the depth 3
network N (x, y) + N (y, x) which is an effective approximation of max{x, y}. We remark that
while max{x, y} can be computed exactly using depth 2 ReLU networks, the figure is intended
for illustration purposes of our construction idea used in Thm. 3.3, which generalizes to any input
dimension d. Best viewed in color.

exactly d − 1 faces (corresponding to the hyperplanes where one coordinate overtakes the other),
we can use the first hidden layer to compute the linear function x 7→ xi and “peel off” the surface
of the function at the relevant faces using a ReLU neuron with a very large negative slope. We
then use the second hidden layer to truncate negative values. By adding such “polytope functions”,
we are able to obtain a good approximation of the maximum function at points where the coordi-
nates are sufficiently distant from each other. We refer the reader to Definition 3.6 for the formal
construction and Fig. 1 for an illustration.

It is interesting to note that the width of the approximating network in our result only scales with
the input dimension d, and does not scale with the desired target accuracy. Rather, by increasing
the magnitude of the weights of the approximating network we can control the accuracy of the
approximation. This is in contrast to many other approximation regimes where an improvement
in the approximation accuracy necessitates an increase in width. E.g., when approximating the
maximum function using depth 2 (see Proposition C.1 in the appendix) or when approximating
non-linear functions using ReLU networks (see Safran and Shamir [20]).

Our result allows the approximation of the maximum function using a network of size O(d2).
It is known, however, that the maximum function can be computed exactly using a smaller network
of size O(d) if we allow depth O(log(d)). It is therefore natural to ask whether by utilizing depth,
we can obtain more efficient approximations of the maximum function using our construction.
Perhaps surprisingly, we are able to approximate the maximum function using linear width but
by only requiring the depth to scale as O(log(log(d))). More formally, we have the following
theorem.

Theorem 3.4. Let D be any distribution satisfying Assumption 3.2. Then for any ε > 0 and
naturals d ≥ 58 and 1 ≤ k ≤ ⌈log(log(d) + 1)⌉, there exists a ReLU network N of depth 2k + 1
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and width at most 20d1+
1

2k−1 such that

Ex∼D
[
(N (x)− fd(x))

2] ≤ ε.

In particular, we have a ReLU network of width 40d and depth 2⌈log(log(d) + 1)⌉ + 1 which
approximates fd(x) to accuracy ε with respect to the distribution D.

The proof of the above theorem, which appears in Appendix B, exploits the key observation
that the maximum taken over sub-vectors of maxima is the maximum of the vector. We can thus
partition our input into smaller batches and use Thm. 3.3 to compute the maximum over each of
these batches. Since we may vary the size of the batches across layers, we can gradually take
larger and larger batches as our computation propagates deeper in the network, while keeping the
width roughly the same across all layers. This enables a double exponential decay in the number
of maxima computed at each layer, requiring depth of only O(log(log(d))) for approximating the
maximum using width linear in d (see Definition 3.7 for the formal construction and Fig. 2 for an
illustration). This greatly reduces the required depth for the best known deep approximation of the
maximum function with linear width, which requires Ω(log(d)) depth [1, 17].

Of particular interest is the following corollary, which provides an approximation guarantee in
the case where the data are sampled uniformly from a hypercube. Most importantly, in such a case
we can guarantee an approximation to accuracy ε > 0 using a network with weights that scale
polynomially with d and linearly with 1/ε. This property will turn out to be useful in the next
section where we will show lower bounds for approximating the maximum function with respect
to the uniform distribution.

Corollary 3.5. For any ε > 0 and naturals d ≥ 58 and 1 ≤ k ≤ ⌈log(log(d) + 1)⌉, there exists
a ReLU network N of depth 2k + 1, width at most 20d1+β(k) and weights of magnitude O

(
d4R2

ε

)
such that

Ex∼U([0,R]d)
[
(N (x)− fd(x))

2] ≤ ε.

Having stated our main positive approximation results, we now turn to specify the constructions
used to achieve them. Beginning with defining the depth 3 network used in Thm. 3.3, we have the
following architecture.

Definition 3.6. [Depth 3 approximation] Given a weight upper bound α > 0 and input dimension
d, we define the following depth 3 width d(d+ 1) network which approximates fd(x):

Nα,d(x) :=
d∑

i=1


[xi]+ −

d∑
j=1
j ̸=i

[αxj − αxi]+


+

−

[−xi]+ −
d∑

j=1
j ̸=i

[αxj − αxi]+


+

 .

We remark that we occasionally omit the dimension subscript whenever clear from context,
and we note that the above architecture can be realized using a width d(d+1) ReLU network since
the inner sum terms are identical, and thus computing both requires only d− 1 neurons.

Next, we define the architecture which approximates the function fd(x) using depth 2k+1 and
width at most 20d1+β(k), achieving the approximating result stated in Thm. 3.4.

10



Nα,2

Nα,2

Nα,2

Nα,2

Nα,2

Nα,2

Nα,2

Nα,2

Nα,4

Nα,4

Nα,16

Multiplicity: ×128 ×64 ×16 ×1

Layer #: input 1st & 2nd 3rd & 4th 5th,6th & 7th

Figure 2: Sketch of the architecture N 3
α,128 which approximates f128(·) using depth 7 and width

≈ 1288/7 = 256. The multiplicity row at the top counts the number of components in each layer,
and the layer # row at the bottom indicates which layers participate in the computation of each
component. The height of each Nα,· component is roughly proportional to its width. Each pair
of hidden layers increases the batch size on which the maxima are computed quadratically, while
maintaining the width of the network roughly the same across all hidden layers. This results in a
double exponential decay of the batch size, allowing an approximation of the maximum with depth
O(log(log(d))).
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Definition 3.7. [Depth 2k + 1 approximation] Given a weight upper bound α > 0 and input
dimension d, we define the following depth 2k + 1 width at most 20d1+β(k) network N k

α,d which
approximates fd(x) in a recursive manner:

• For k = 1, we have N 1
α,d ≡ Nα,d.

• For integer k > 1, we partition the input into
⌈
d1−β(k)

⌉
batches, each of size at most

⌈
dβ(k)

⌉
.

For each batch, the first two hidden layers compute the function Nα,⌈dβ(k)⌉. The output over

all the batches is then fed into the sub-network N k−1

α,⌈d1−β(k)⌉ which consists the remaining

layers of the network N k
α,d.

4 Approximation lower bounds
Having shown a positive approximation result for the maximum function in the previous section,
we now turn to complement our approximation upper bounds with lower bounds in this section.

4.1 Improving accuracy requires increasing width for depth 2 networks
Before presenting our main theorem for this subsection, we first state the following very mild
assumption that we use which is adopted from Eldan and Shamir [4]:

Assumption 4.1 (Polynomially-bounded activation). The activation function σ is Lebesgue mea-
surable and satisfies

|σ(x)| ≤ Cσ (1 + |x|ασ)

for all x ∈ R and for some constants Cσ, ασ > 0.

Our depth 2 lower bound is the following:

Theorem 4.2. Let ℓ ≥ 1 be arbitrary and suppose that σ satisfies Assumption 4.1. Then there exist
constants c1, c2 > 0 which depend solely on σ such that for all dimensions d ≥ c1, a σ depth 2
neural network N of width at most dℓ and with weights bounded by O(exp(O(d))) must satisfy

E
x∼U

(
[0,dc2·ℓ]

d
) [(N (x)− fd(x))

2] > Ω (1) .

The proof of the above theorem, which appears in Appendix C.1, builds on the proof technique
introduced in Eldan and Shamir [4]. Roughly speaking, they build on the important observation
that a neural network N approximates a function f if and only if the Fourier transform of N
approximates the Fourier transform of f . Our main technical contribution here is the computation
of the Fourier transform of the maximum function and showing that it has sufficient L2 mass
far away from the origin which is sufficiently spread. This, in turn, shows that the support of the
Fourier transform of a neural network (which is a linear combination of the Fourier transform of its
activation function) must be contained inside a d-dimensional union of ‘Gaussian tubes’. Namely,
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under the assumption of exponentially bounded weights, the approximation contribution of each
neuron is negligible outside a union of tubes with bounded radius. This entails that to approximate
the Fourier transform of the maximum function, one must use sufficiently many neurons in order
to be able to capture its non-trivial structure which is sufficiently spread across the domain of
approximation.

While the above theorem establishes a polynomial rather than exponential separation between
depths 2 and 3, such a gap is nevertheless significant since it provides a compelling practical
example where depth is more beneficial than width: Modern machine learning problems are often
high-dimensional, hence even such polynomial gaps quickly translate into a significant practical
advantage in the size of the required network. We further remark that our assumption that the
approximating network has exponentially bounded weights is mild and very reasonable. This
follows from the fact that approximations with weights that have exponential magnitude are known
to be difficult to learn using stable gradient descent [19], so from a more practical perspective
having exponentially bounded weights and having unbounded weights is equivalent. Lastly, as
we also pointed out earlier, in order to derive a lower bound with constant accuracy our domain
of approximation scales polynomially with d. This is justified since our upper bounds from the
previous section are not sensitive to scaling of the domain and merely require that the weights
of the approximating network would also scale appropriately (Corollary 3.5). This enables us to
show a separation in which a depth 2 network cannot approximate the maximum to better than
constant accuracy, whereas a depth 3 network with a fixed width of d(d+ 1) that does not depend
on the desired accuracy can achieve arbitrarily good accuracy. In contrast, known results in the
literature do require that the width of the depth 3 network would scale with the accuracy parameter
(e.g. Eldan and Shamir [4], Daniely [3] and results that build on their technique – see related work
subsection).

4.2 Depth 3 requires Ω
(
d2
)

width
In this subsection, we show that approximating the maximum function using depth 3 ReLU net-
works with weights bounded by O(exp(O(d))) requires width at least Ω(d2). Our main result in
this subsection is the following.

Theorem 4.3. Suppose that N is a depth 3 ReLU network of width at most d2

5
and with weights

bounded by O(exp(O(d))). Then there exist absolute constants c1, c2 > 0 such that for all d ≥ c1

Ex∼U([0,dc2 ]d)
[
(N (x)− fd(x))

2] > Ω (1) .

The proof of the above theorem, which appears in Appendix C.2, exploits the structure of
the maximum function which computes a lower dimensional version of itself on every subset of
its inputs. Using a combinatorial argument, we show that with fewer than d2/5 neurons in the
first hidden layer, our approximating network must be able to approximate the maximum over
three inputs well on a non-negligible subset of its domain with its remaining layers. Since in the
previous subsection we have shown a lower bound on the approximation capabilities of depth 2
ReLU networks for the maximum function, this implies that if the second hidden layer is also at
most d2/5, then we cannot obtain a good approximation.
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We remark that together with Thm. 3.3, we establish tight bounds on the capability of depth
3 ReLU networks to approximate the maximum function (up to constant factors). It is also inter-
esting to note that other existing lower bound techniques in the literature such as region counting
arguments (c.f. Telgarsky [23]) when applied to the maximum function yield a far weaker lower
bound for depth 3 networks, since the maximum function consists of d different linear regions, a
number which is attainable by merely using log(d) neurons. In contrast, our lower bound of Ω(d2)
highlights an inherent limitation of depth 3 ReLU networks for capturing the particular structure
of the maximum function. When combined with Thm. 3.4 for k = 2, our theorem also implies a
polynomial depth separation between depths 3 and 5 where the former requires width Ω(d2), yet
the latter can approximate with width O(d4/3).

4.3 Width of at least d is necessary
Having shown lower bounds for depth 2 and 3 ReLU networks, we now turn to show a general
width d lower bound requirement for approximating the maximum function.

Theorem 4.4. Let N be neural network employing any activation function and having first hidden
layer width of at most d− 1. Then

Ex∼U([0,d2.25]d)
[
(N (x)− fd(x))

2] ≥ Ω(1).

The proof of the above theorem, which appears in Appendix C.3, relies on the observation
that having fewer than d neurons in the first hidden layer implies that the linear transformation
defined by them has a non-trivial kernel, and therefore establishes the existence of some direction
in the domain of approximation where the function computed by the network is constant. Since
the maximum function typically does not remain constant in most directions, this results in a non-
trivial approximation error.

We remark that the exponent of 2.25 can possibly be improved somewhat, but in any case it
must be strictly positive, since a network with a single neuron which computes the constant value
function 1− 1/d will achieve better than constant accuracy over the domain [0, 1]d (which then by
scaling the domain implies that the exponent is strictly positive – see Lemma D.6). Moreover, we
note that this result also immediately implies a size d lower bound. Together with Thm. 3.4, this
establishes size bounds for approximating the maximum function using ReLU networks that are
tight up to a factor of O(log(log(d))).

5 Summary
We have shown that the maximum function can be gradually approximated more efficiently by
increasing the depth of the approximating ReLU network. This holds under an appropriate (but
mostly mild) assumption on the distribution of the data (Assumption 3.2). Interestingly, the width
in our positive approximation results does not scale with the desired target accuracy, but rather
by increasing the magnitude of the weights of the approximating network we can obtain an ar-
bitrarily good approximation. Assuming exponentially bounded weights, we show a polynomial
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lower bound on the required width when approximating the maximum function using depth 2, and
a quadratic lower bound on the width required for approximating using depth 3. Additionally,
we also provide a general width d lower bound for approximating the maximum function using
neural networks of any depth or with any activation function. Our results establish a partial depth
hierarchy for approximating a simple target function and with respect to the uniform distribution
on a hypercube, which provides a more grounded example for the benefits of depth compared to
previous results which make more stylized assumptions on the problem.

Our analysis leaves several important open questions. First, our lower bound for depth 2 is
(inverse) polynomial in the desired accuracy, which becomes polynomial in the input dimension d
if we scale the domain with d. However, it is not clear what is the optimal rate at which a depth 2
network can approximate the maximum function, and whether this quantity is polynomial or rather
exponential in the input dimension. Second, despite our tight Θ(d2) bound on the width for ap-
proximating the maximum using depth 3, our lower bound for deeper architectures is only linear,
which leaves open the question of showing superlinear width lower bounds for depths larger than 3.
Moreover, our upper bounds essentially suggest that depth 2k+1 and depth 2k+2 ReLU network
approximations require the same width, up to constant factors. It is therefore natural to ask whether
one can improve our depth 2k+1 upper bounds to apply to depth k+1 instead. Finally, our analy-
sis opens an avenue for novel optimization-based separations for the maximum function. Proving
that indeed deep architectures are capable of learning the representations constructed by our up-
per bounds (efficiently, from finite data) using standard techniques such as gradient descent is a
tantalizing future research direction. Such a result holds the potential to establish an optimization-
based depth hierarchy for learning the maximum function, exemplifying the superiority of depth
in a simple and natural problem setting.
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A Distributions that satisfy Assumption 3.2
In this appendix, we exemplify two instances of distribution that satisfy Assumption 3.2. While
the examples presented here are quite broad, they are in no way exhaustive, and a far richer family
of distributions can be shown to satisfy the assumption.

Theorem A.1. Suppose that X is absolutely continuous with bounded density and has a finite
second moment. Then X := (X1, . . . , Xd) satisfies Assumption 3.2, where each Xi is an i.i.d X
random variable.

Proof. Beginning with Item 1, we have

EX

[
∥X∥2∞

]
≤ EX

[
∥X∥21

]
≤ d

d∑
i=1

EX

[
X2

i

]
= d2EX

[
X2
]
< ∞.

In the above, the second inequality is an application of Cauchy-Schwartz to the vectors (1, . . . , 1)
and (X1, . . . , Xd) and due to the linearity of expectation, and the last inequality is due to our
assumption that X has a finite second moment.
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Moving on to Item 2, assuming X has density f satisfying supx∈R f(x) ≤ C for some C > 0,
we have that the density of the ratio distribution between two different coordinates of X satisfies

fR(r) =

∫
R
|x| f(r · x)f(x)dx ≤ C ·

∫
R
|x| f(x)dx = CEX [|X|] ≤ C

√
EX [X2] < ∞,

where the penultimate inequality follows from Jensen’s inequality applied to the function x 7→ x2.
The above implies that for any two coordinates Xi, Xj , we have

lim
δ→0

Xi

Xj

∈ [1− δ, 1 + δ] = 0,

therefore by taking a union bound over all ≤ d2 pairs of coordinates we have that

lim
δ→0

PX∼D [X /∈ Sδ] = 0.

Theorem A.2. Suppose that X := (X1, . . . , Xd) satisfies Item 1 in Assumption 3.2. Then the
vector X +Y satisfies Assumption 3.2, where Y := (Y1, . . . , Yd) is an i.i.d noise vector such that
Yi is absolutely continuous, with bounded density, and 0 < E [Y 2

i ] < ∞.

Proof. To show that Item 1 holds, we have by Thm. A.1 that Y satisfies Item 1. This entails that

∥X+Y∥∞ ≤ ∥X∥∞ + ∥Y∥∞ < ∞.

To show that Item 2 is satisfied, consider any coordinates i ̸= j. Let zi := xi + yi denote the
realizations of Zi := Xi + Yi. Then we have that for any realization xj of Xj , it must hold that yj
falls within an interval of length at most 2δ to have that

zj ∈ [zi − δ, zi + δ] ⇐⇒ |zj − zi| ≤ δ.

Since

sup
a∈R

P [Yj ∈ [a, a+ 2δ]] = sup
a∈R

∫ a+2δ

a

f(x)dx ≤ 2δC,

where f is the density of Y which satisfies supx f(x) ≤ C by assumption, we obtain

P [|zj − zi| ≤ δ] ≤ 2δC.

Since Zi has bounded first and second moments for all i by assumption, we have from Chebyshev’s
inequality that there exists some Mδ > 0 such that P [∥X∥∞ ≤ Mδ] ≥ 1 − δ. Since Lemma D.2
guarantees that if |zj − zi| > δ then z ∈ Sδ/Mδ

, we have from a union bound taken over all ≤ d2

pairs of coordinates and the event where ∥X∥∞ is bounded that

lim
δ→0

PX∼D [X /∈ Sδ] = 0.
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B Proofs from Sec. 3
To prove Thm. 3.3 and Thm. 3.4, we would first need the following lemmas and proposition:

Lemma B.1. Given a real α > 0 and integer i ≥ 1, let

n+
α,i(x) :=

[xi]+ −
d∑

j=1
j ̸=i

[αxj − αxi]+


+

, n−
α,i(x) := −

[−xi]+ −
d∑

j=1
j ̸=i

[αxj − αxi]+


+

.

Then

n+
α,i(x) =

{
xi, If fd(x) = xi and xi ≥ 0,

0, If fd(x) > xi and x ∈ S1/α,

and

n−
α,i(x) =

{
xi, If fd(x) = xi and xi ≤ 0,

0, If fd(x) > xi and x ∈ S1/α.

Proof. We will only focus on the proof for n+
α,i since the analysis is symmetric for n−

α,i.
Suppose that fd(x) = xi. Then xj < xi for all j ̸= i, implying that αxj − αxi < 0 and thus

n+
α,i(x) =

[xi]+ −
d∑

j=1
j ̸=i

[αxj − αxi]+


+

= [xi]+ .

Suppose that fd(x) > xi. Then if xi ≤ 0 we immediately have that n+
α,i(x) = 0. Assuming xi > 0

and letting j := argmax
i∈[d]

xi, we have that xj > xi > 0. Next, from the assumption x ∈ S1/α we

obtain
xj

xi

> 1 +
1

α
,

which entails
αxj − αxi > xi,

implying that

[xi]+ −
d∑

i=1
i ̸=i

[αxi − αxi]+ ≤ [xi]+ − [αxj − αxi]+ < xi − xi = 0,

and thus
n+
α,i(x) = 0.
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Lemma B.2. Given a real α > 0, we have

Nα(x) = fd(x), ∀ x ∈ S1/α,

and
|Nα(x)| ≤ ∥x∥1 , ∀ x ∈ Rd.

Proof. By the definition of Nα and Lemma B.1, we have for all x ∈ S1/α that

Nα(x) =
d∑

i=1

(
n+
α,i(x) + n−

α,i(x)
)
=

d∑
i=1

xi · 1 {fd(x) = xi} = fd(x).

Assuming any arbitrary x ∈ Rd, we have by the definitions of n±
α,i that

∣∣n±
α,i(x)

∣∣ =
∣∣∣∣∣∣∣∣[±xi]+ −

d∑
j=1
i ̸=i

[αxi − αxi]+

∣∣∣∣∣∣∣∣ ≤ [±xi]+ ≤ |xi| ,

therefore by the definition of Nα and the fact that at most one of n±
α,i is non-zero, we have

|Nα(x)| ≤
d∑

i=1

∣∣n+
α,i(x) + n−

α,i(x)
∣∣ ≤ ∥x∥1 .

Proposition B.3. Given any real α > 0, we have

N k
α (x) = fd(x), ∀ x ∈ S1/α,

and ∣∣N k
α (x)

∣∣ ≤ d · fd(x), ∀ x ∈ Rd.

Proof. The proof follows by induction on k. The base case k = 1 follows immediately from
Lemma B.2. In what follows, given a natural k, recall that we use the shorthand β(k) := 1

2k−1
.

For the inductive step, assume the induction hypothesis for k, and consider the network N k+1
α .

Since any sub-vector of a δ-separated vector is also δ-separated for all δ > 0, we have from
Lemma B.2 that the output of the second hidden layer of N k+1

α is the maximum over each of the⌈
d1−β(k)

⌉
batches. Applying the inductive hypothesis on the sub-network consisting of layers 3 to

2k + 3, the network outputs fd(x).
For the second part of the proposition, partition the input x into

⌈
d1−β(k)

⌉
batches such that the

vector of inputs in each batch has dimension at most
⌈
dβ(k)

⌉
. Then by Lemma B.2, each coordinate

in the output of the second hidden layer of N k+1
α is upper bounded by(

∥x1∥1 , . . . ,
∥∥∥x⌈d1−β(k)⌉

∥∥∥
1

)
.
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Applying the induction hypothesis on the sub-network consisting of layers 3 to 2k + 3, we obtain

∣∣N k
α (x)

∣∣ ≤ ⌈d1−β(k)⌉∑
i=1

∥xi∥1 = ∥x∥1 ≤ d · fd(x).

With the above lemmas and proposition, we are now ready to prove the theorems. Since the
proof of Thm. 3.4 follows mainly by induction and since Thm. 3.3 consists the base case for the
induction, it would be convenient to prove both theorems simultaneously.

Proofs of Thm. 3.3 and Thm. 3.4. Recall we use the shorthand β(k) := 1
2k−1

for any natural k ≥ 1.
We begin with asserting the size of the approximating network. We have that N k

α has depth 2k+1
and weights of magnitude at most α by definition (note that the output neuron of Nα has weights
of magnitude exactly 1, and therefore composing its weights with the subsequent layer’s weights
does not increase the magnitude).

Next, we bound the width of N k
α using induction. To this end, we will show that for all natural

k ≥ 1 we have an upper bound on the width of

k∏
i=1

(
1 +

2

i3

)2

d1+β(k).

By Lemma D.3, we have that
∏∞

i=1

(
1 + 2

i3

)2 ≤ 20, thus the above implies the desired upper bound
on the width.

The base case is immediate since N 1
α ≡ Nα which has width exactly d(d+ 1) ≤ 2d2. Assume

the inductive hypothesis for k, and consider the network N k+1
α . Its first two hidden layers consist

of
⌈
d1−β(k+1)

⌉
≤ d1−β(k+1) + 1 batches of Nα,⌈dβ(k+1)⌉, each of which having width at most

⌈
dβ(k+1)

⌉2
+
⌈
dβ(k+1)

⌉
≤
(
dβ(k+1) + 1

)2
+ dβ(k+1) + 1 = d2β(k+1) + 3dβ(k+1) + 2,

for a total width upper bound of(
d1−β(k+1) + 1

) (
d2β(k+1) + 3dβ(k+1) + 2

)
≤ 12d1+β(k+1),

thus implying an upper bound on the width of

12d1+β(k+1) ≤
k+1∏
i=1

(
1 +

2

i3

)2

d1+β(k+1),

since k ≥ 1 and the product over the first two elements is at least 14. Moving on to bound the width
of the remaining layers, we have by definition that layers 3 to 2k+3 is the network N k

α,⌈d1−β(k+1)⌉,
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which by the induction hypothesis has width at most

k∏
i=1

(
1 +

2

i3

)2 ⌈
d1−β(k+1)

⌉1+β(k) ≤
k∏

i=1

(
1 +

2

i3

)2 (
d1−β(k+1) + 1

)1+β(k)

≤
k∏

i=1

(
1 +

2

i3

)2((
1 +

2

(k + 1)3

)
d1−β(k+1)

)1+β(k)

≤
k∏

i=1

(
1 +

2

i3

)2(
1 +

2

(k + 1)3

)2 (
d1−β(k+1)

)1+β(k)

=
k+1∏
i=1

(
1 +

2

i3

)2

d1+β(k+1).

In the above, the second inequality follows from Lemma D.4 by our assumption that d ≥ 58 and
1 ≤ k ≤ ⌈log(log(d) + 1)⌉, and the third inequality follows from the fact that β(k) ≤ 1 for all
natural k ≥ 1. We thus conclude that N k

α has width at most 20d1+β(k).
Turning to bound the approximation error of N k

α , we first have from Assumption 3.2 that there
exists some δ0 > 0 such that

Px∼D [x /∈ Sδ0 ] ≤
ε

(d+ 1)2Ex∼D
[
∥x∥2∞

] . (1)

We now compute using the law of total expectation

Ex∼D

[(
N k

1/δ0
(x)− fd(x)

)2]
= Ex∼D

[(
N k

1/δ0
(x)− fd(x)

)2 |x ∈ Sδ0

]
· Px∼D [x ∈ Sδ0 ]

+ Ex∼D

[(
N k

1/δ0
(x)− fd(x)

)2 |x /∈ Sδ0

]
· Px∼D [x /∈ Sδ0 ]

= Ex∼D

[(
N k

1/δ0
(x)− fd(x)

)2 |x /∈ Sδ0

]
· Px∼D [x /∈ Sδ0 ]

≤ Ex∼D
[
(d+ 1)2 ∥x∥2∞

]
· ε

(d+ 1)2Ex∼D
[
∥x∥2∞

] = ε,

where the second equality follows from Proposition B.3, and the inequality also follows from
Proposition B.3 and Eq. (1).

Lastly, we verify that ⌈log(log(d) + 1)⌉ = O(log(log(d))). We have

20d
1+ 1

2k−1 ≤ 20d1+
1

log(d) = 20d · d
1

log(d) = 20d · 2log(d)
1

log(d) = 40d,

thus for this choice of k we have a network of depth O(log(log(d))) and width O(d) which ap-
proximates fd(·), concluding the proof of the theorem.

Proof of Corollary 3.5. To prove the corollary, we need only show that D ∼ U
(
[0, R]d

)
satisfies

Assumption 3.2 and compute the δ0 > 0 for which Eq. (1) holds. Starting with Item 1, it is trivial
that

Ex∼U([0,R]d)
[
∥x∥2∞

]
≤ R2. (2)
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Moving on to Item 2, let δ > 0 be some arbitrary real number. Drawing any xi ∼ U([0, R]) for
some i ∈ [d], we have with probability at most 2δ

R
that it is within distance of at most δ from

any other xj , j < i. By a union bound taken over the distances from all coordinates, any freshly
sampled coordinate is within distance at least δ from all the other coordinates with probability at
least 1− 2dδ

R
. Taking another union bound over drawing each coordinate sufficiently far and using

Lemma D.2 with the fact that P [|xi| ≤ R] = 1 for all i, we have that

Px∼U([0,R]d)
[
x /∈ Sδ/R

]
≤ 2d2δ

R
,

which by a change of variables δ0 = δ/R implies

Px∼U([0,R]d) [x /∈ Sδ0 ] ≤ 2d2δ0.

It is only left to compute the δ0 for which Eq. (1) holds. To this end, we wish to find δ > 0 such
that

2d2δ ≤ ε

(d+ 1)2R2
≤ ε

(d+ 1)2Ex∼U([0,R]d)
[
∥x∥2∞

] ,
where the second inequality uses Eq. (2). Solving the above for δ, we have δ0 = Ω

(
ε

d4R2

)
, implying

a weight upper bound of O
(

d4R2

ε

)
and concluding the proof of the corollary.

C Proofs from Sec. 4

C.1 Proof of Thm. 4.2
The following proposition is key in the proof of the theorem.

Proposition C.1. For each fixed dimension d ≥ 2, the squared L2 error of approximating the
function max{0, x1, x2, . . . , xd} on the unit Gaussian, using n neurons in a depth 2 σ network
satisfying Assumption 4.1, with coefficients of size at most s, is at least

polylog(n)
polylog(s)

· 1

n1+ 3
d−1

.

Before we prove the proposition, however, we will first need the following definition and lem-
mas.

Definition C.2. Let M(x) = max{0, x1, x2, . . . , xd} denote the max function. Let M1(x) denote
only the portion of the max function where coordinate x1 is biggest, namely, the function that
takes value x1 if x1 is the largest of 0, x2, x3, . . . , xd, and 0 otherwise. Equivalently, let q1(x) =
x1 · 1[x1≥0] · 1[x2≤0] · 1[x3≤0] · . . . · 1[xd≤0], namely the function taking value x1 but only when x1

is nonnegative and all the other coordinates are nonpositive; let S1(x) be the “skew” matrix such
that S1 · (x1, x2, x3, . . . , xd)

T = (x1, x2 − x1, x3 − x1, . . . , xd − x1)
T , namely subtracting x1 from

all the other coordinates; thus M1(x) = q1(S1 · x)) since x1 is at least some other coordinate xj if
and only if xj − x1 ≤ 0.
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Lemma C.3. The Fourier transform of the skew of a function is the inverse transpose skew of
the Fourier transform of the function: for a function g, we have ̂g(S1 · x) = ĝ(S−⊤

1 ξ), using the
standard notation S−⊤

1 to represent the matrix inverse transpose.

Proof. Standard (linear) change of variables relation for the Fourier transform integral.

Lemma C.4. Letting q1(x) = x1·1[x1≥0]·1[x2≤0]·1[x3≤0]·. . .·1[xd≤0] and defining Dawson’s integral
to be daw(x) := exp(−x2)

∫ x

0
exp(t2) dt, then the Fourier transform of q1(x) exp(−∥x∥22 /4)

equals (
2− 4ξ1 daw(ξ1)− 2i

√
πξ1 exp(−ξ21)

) d∏
j=2

(exp(−ξ2j )
√
π + 2i · daw(ξj)).

And further, this Fourier transform has magnitude at most 2π
d−1
2 everywhere, and for inputs ξ

each of whose coordinates is positive and has value at least Ω(log(d)), the Fourier transform has
a component in the (complex) direction −id−1 that is at least 1

ξ21

∏d
j=2

1
ξj

.

Proof. The Fourier transform is a straightforward calculation on each dimension separately, since
the function q1(x) exp(−∥x∥22 /4) is separable.

The global magnitude bound simply comes from evaluating the Fourier transform at the origin,
since the Fourier transform of a nonnegative real function attains its largest magnitude at the origin.

For the final bound, we take the approximation of Dawson’s integral daw(x) = 1
2x
+ 1

4x3+Θ( 1
x5 )

for inputs x away from 0. These inverse polynomial terms in ξj dominate the inverse exponential
exp(−ξ2j ) terms, even when d such terms are multiplied together, for ξ = Ω(log d). Substituting
in this approximation for daw(x) into our Fourier transform expression and dropping lower-order
terms yields − 1

ξ21

∏d
j=2

i
ξj

, with the next-largest terms from the expansion of Dawson’s integral
contributing inverse-polynomially farther in the same direction. Thus we conclude the lemma.

Lemma C.5. For vector ξ with all of its coordinates positive and at least Ω(d), but less than some
parameter b, the Fourier transform of exp(−∥x∥22 /4)max(0, x1, x2, . . . , xd) evaluated at ξ has
magnitude at least b−(d+1)2−O(d).

Proof. The Fourier transform of exp(−∥x∥22 /4)max{0, x1, x2, . . . , xd} can be decomposed into
the sum of the contributions of the d separate components of the max function, which are all
symmetric up to relabeling the coordinates. We thus compute the contribution from the first com-
ponent.

We compute the Fourier transform of exp(−∥x∥22 /4)M1(x) by expressing M1 = q1 ◦ s1 from
Definition C.2, as the composition of a separable function q1 with a volume-preserving affine
transformation s1. We make further use of the transformation s1 by breaking the scaling term
exp(−∥x∥22 /4) into 2 parts, one of which is a spherical Gaussian even after begin transformed by
s1. Explicitly, we have

exp(−∥x∥22 /4)M1(x) = exp
(
−x⊤Qx

)
exp

(
−||s1(x)||22/(4(d+ 1))

)
q1(s1(x)) (3)

for some symmetric positive semidefinite matrix Q with eigenvalues at most 1
4
.
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Since the Fourier transform of a product equals the convolution of the Fourier transform of
the terms, we thus have that the Fourier transform of Equation 3 equals the convolution of the
Fourier transform of the Gaussian exp

(
−x⊤Qx

)
with the Fourier transform of the expression

exp (−||s1(x)||22/(4(d+ 1))) q1(s1(x)). Since this expression is an affine transformation of
exp (−||y||22/(4(d+ 1))) q1(y), its Fourier transform is the corresponding (inverse transpose) affine
transformation of the Fourier transform of exp (−||y||22/(4(d+ 1))) q1(y).

We bound this Fourier transform via Lemma C.4. Explicitly, let g(ξ) be the Fourier transform
of exp (−||y||22/4) q1(y), which Lemma C.4 bounds. Then the Fourier transform of
exp (−||y||22/(4(d+ 1))) q1(y) is exactly g(ξ

√
d+ 1)(d + 1)

d+1
2 , since replacing y by y

√
d+ 1

scales the function q1 by
√
d+ 1 and thus scales its integral and hence Fourier transform by the

d + 1 power of this, as claimed. Next, transforming the inputs of a function by the affine function
s1 transforms its Fourier transform by the transpose of the inverse of the affine function. Thus the
Fourier transform of exp (−||s1(x)||22/(4(d+ 1))) q1(s1(x)) equals g(

√
d+ 1((

∑
j ξj), ξ2, ξ3, . . . , ξd))·

(d+ 1)
d+1
2 .

We now use the bounds of Lemma C.4 to characterize g. For ξ with all coordinates positive
and at least Ω(1), the transformed coordinates

√
d+ 1((

∑
j ξj), ξ2, ξ3, . . . , ξd) will all be at least

Ω(log(d)) and thus the lemma applies. Thus we conclude that the Fourier transform has component
in the direction −id−1 at least 1

(
∑

j ξj)
2

∏d
j=2

1
ξj

, where the factors of d+ 1 all cancel; by the second

part of Lemma C.4, this Fourier transform has magnitude at most O(d)O(d) everywhere.
Finally, to obtain the overall Fourier transform of exp (−||x||22/4)M1(x), it remains to con-

volve this last expression with the Fourier transform of the remaining term exp
(
−x⊤Qx

)
; namely,

we convolve this last expression with the Gaussian of covariance Q, which thus has radius ≤ 1
4

by construction. Since all but exp (−Ω(d2)) fraction of the mass of this Gaussian must be within
radius O(d), we thus have that—even after this final convolution—the component of the Fourier
transform of exp (−||x||22/4)M1(x) in the direction −id−1 must be at least 2−O(d) 1

(
∑

j ξj)
2

∏d
j=2

1
ξj

provided all coordinates of ξ are at least Ω(d).
Summing this bound over all d components of the maximum function, and then pointing out

that the magnitude of a complex number must be at least its component in the direction −id−1

yields our final bound.

Using the above lemmas, we now turn to the proof of the proposition.

Proof of Proposition C.1. Let b = ω(d). Consider the region in Fourier space where each coordi-
nate ξj lies in [Ω(d), b]. This region has volume Ω(bd). By Lemma C.5, the Fourier transform of
the maximum function, weighted by the square root of the pdf of the unit Gaussian, has magnitude
at least b−(d+1)2−O(d); denote this bound by ℓ.

However, a ReLU with bounded coefficients has a Fourier transform which is large only on a
relatively small volume, which is what gives us the desired contradiction.

We will show that the linear combination of ReLU units cannot closely approximate the max
function on our Gaussian via the following “accounting” scheme: consider the contribution of each
neuron separately, and letting fk(ξ) be the Fourier transform of the contribution of the kth neuron,
then we give this neuron a “score” of

∫
[Ω(d),b]d

min
{
1, 1

ℓ
|fk(ξ)|

}
dξ. We will show that the total
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score over all neurons is at most half the volume of the region, which implies a squared-L2 error
of at least Ω(bdℓ2) = b−d−22−O(d).

Consider a neuron with an activation function σ : R → R satisfying Assumption 4.1, and
weights of magnitude at most some bound s. In the context of the neural net, σ will be applied as
wσ(x · v) where w is a weight of magnitude at most s and v is a vector each of whose coordinates
has magnitude at most s. We decompose the Fourier transform of wσ(x · v) exp (−||x||22/4) into
the Fourier transform along the direction of v, and then the Fourier transform in the transverse
d− 1 dimensional space.

Since by Assumption 4.1, σ is polynomially bounded, the 1-dimensional Fourier transform
along direction v of this scaled version wσ(x · v) exp (−||x||22/4) will be bounded by O(sd)d+1,
where the parameters of the big-O expression depend on σ. We now consider the Fourier transform
of along the d − 1 dimensional space orthogonal to d: along any hyperplane orthogonal to v, we
have a d−1 dimensional Gaussian exp (−||x||22/4) times some number bounded by O(sd)d+1. We
thus consider how much “score” this can contribute.

Namely, for a scaling factor t = O(sd)d+1, we bound
∫
Rd−1 min

{
1, t

ℓ
(2
√
π)d−1 exp (−||ξ||22)

}
dξ,

where the expression (2
√
π)d−1 exp (−||ξ||22) is the d − 1 dimensional Fourier transform of the

Gaussian exp (−x2/4). This integral is straightforward to bound once we convert it to an integral
over the radius. We solve for the radius r where the min function transitions from the first term to
the second: t

l
(2
√
π)d−1 exp (−r2) ≤ 1 means that r ≥

√
log t

l
(2
√
π)d−1. Since the surface area of

a radius r ball in d− 1 dimensions is O(1)rd−1, we bound our integral as∫
Rd−1

min

{
1,

t

ℓ
(2
√
π)d−1 exp

(
−||ξ||22

)}
dξ ≤

∫ ∞

0

O(1)rd−1min

{
1,

t

ℓ
(2
√
π)d−1 exp

(
−r2

)}
dr

And for log t
ℓ
(2
√
π)d−1 ≥ d this integral is bounded by O(1) · (log t

ℓ
(2
√
π)d−1)

d
2 . Substituting in

our bound for t yields that, for ℓ ≤ O(sd)d+1, the contribution to the score per unit in the transverse
direction v is at most ((d+ 1) logO(sd) + log 1

ℓ
)
d
2 .

Since we integrate the score over the hypercube of side length b, the projection to direction
v has length at most b

√
d, and thus the total score of our neural network with n neurons is at

most nb
√
d((d + 1) logO(sd) + log 1

ℓ
)
d
2 . Substituting in the definition ℓ = b−(d+1)2−O(d) yields

nb
√
d((d+ 1) logO(sdb))

d
2 .

As described above, we show this neural network does not closely approximate the max func-
tion by showing that this score is less than half the volume of the region of frequency space under
consideration, 1

2
(b − Ω(d))d, which is true provided b ≥ n

1
d−1

polylog(s)
polylog(n) , where we emphasize that

the base and exponents of the polylog terms may depend on d. Thus our overall L2-squared error
bound of b−d−22−O(d) becomes polylog(n)

polylog(s)
1

n
1+ 3

d−1
, as claimed.

With Proposition C.1 at our disposal, we can now prove Thm. 4.2.

Proof of Thm. 4.2. By Lemma D.6, it will suffice to prove that

Ex∼U([0,1]d)
[
(N (x)− fd(x))

2] > Ω

(
1

dc·ℓ

)
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for some c > 0.
We first define the sets A := [0, 1 − 1/d]d−3 and B = [1 − 1/d, 1]3. For any natural n,

denote the uniform distribution over [0, 1]n by Dn and compute by repeatedly using the law of total
expectation

Ex∼Dd

[
(N (x)− fd(x))

2] = Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1

]]
= Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 ∈ A,x2 ∈ B
]]

· P [x1 ∈ A,x2 ∈ B]

+ Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 /∈ A or x2 /∈ B
]]

· P [x1 /∈ A or x2 /∈ B]

≥ Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 ∈ A,x2 ∈ B
]]

· P [x1 ∈ A,x2 ∈ B]

≥ Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 ∈ A,x2 ∈ B
]]

· d−3 exp(−1)

= Ex2∼D3

[
(N (x′

1,x2)− fd(x
′
1,x2))

2 |x2 ∈ B
]
· d−3 exp(−1).

In the above, the last equality holds for some intermediate point x′
1 ∈ A whose existence is guar-

anteed by Lemma D.5 due to the fact that g(x) = Ex2∼D3

[
(N (x,x2)− fd(x,x2))

2 |x2 ∈ B
]

is
continuous on [0, 1]d−3. Since x2 7→ N (x′

1,x2) defines a depth 2 σ network which we denote by
Ñ (·), and by using the fact that fd(x′

1,x2) = f3(x2) for all x′
1 ∈ A and x2 ∈ B, we can let N(2)

denote the class of depth 2 networks employing a σ activation function, and lower bound the above
by

inf
Ñ∈N(2)

Ex2∼U(B)

[(
Ñ (x2)− f3(x2)

)2]
· d−3 exp(−1).

It now suffices to lower bound the expectation term above by Ω(d−c′·ℓ) for some constant c′ > 0.
Focusing on the expectation term above and letting Ñ denote arbitrary (not necessarily fixed)
elements in N(2), we once more use the law of total expectation repeatedly to obtain

Ex2∼U(B)

[(
Ñ (x2)− f3(x2)

)2]
= Ex̃1∼U([1− 1

d
,1])

[
E

x̃2∼U
(
[1− 1

d
,1]

2
) [(Ñ (x̃1, x̃2)− f3(x̃1, x̃2)

)2
|x̃1 ∈

[
1− 1

d
, 1

]]]
≥ 0.5Ex̃1∼U([1− 1

d
,1])

[
E

x̃2∼U
(
[1− 1

d
,1]

2
) [(Ñ (x̃1, x̃2)− f3(x̃1, x̃2)

)2
|x̃1

]
|x̃1 ∈

[
1− 3

4d
, 1− 1

4d

]]
= 0.5E

x̃2∼U
(
[1− 1

d
,1]

2
) [(Ñ (x0, x̃2)− f3(x0, x̃2)

)2]
,

where the last equality uses Lemma D.5 to establish the existence of some intermediate point
x0 ∈

[
1− 3

4d
, 1− 1

4d

]
satisfying the above. Writing the above expectation term in integral form,

we have that it equals ∫ 1

1− 1
d

∫ 1

1− 1
d

(
Ñ (x0, x̃2)− f3(x0, x̃2)

)2
d2dx̃2.
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By the change of variables x̃2 = y + (x0, x0), dx̃2 = dy, the above equals∫ 1−x0

1− 1
d
−x0

∫ 1−x0

1− 1
d
−x0

(
Ñ (x0,y + (x0, x0))− f3(x0,y + (x0, x0))

)2
d2dy

=

∫ 1−x0

1− 1
d
−x0

∫ 1−x0

1− 1
d
−x0

(
Ñ (x0,y + (x0, x0))− x0 − f3(0,y)

)2
d2dy

=

∫ 1−x0

1− 1
d
−x0

∫ 1−x0

1− 1
d
−x0

(
Ñ (y)− f3(0,y)

)2
d2dy

≥
∫ 1

4d

− 1
4d

∫ 1
4d

− 1
4d

(
Ñ (y)− f3(0,y)

)2
d2dy,

where the first equality uses the fact that f3(x+(c, c, c)) = c+f3(x) for any vector x and real c, the
second equality follows from the fact that N(2) is closed under linear transformations of the input
and the output, and since we can simulate the fixed input x0 in the first coordinate by an appropriate
linear rescaling of the first hidden layer, and the inequality follows from x0 ∈

[
1− 3

4d
, 1− 1

4d

]
which implies that [−0.25d−1, 0.25d−1] ⊆ [1− 1/d− x0, 1− x0]. Letting γ > 0 to be determined
later, we perform a second linear change of variables y = 0.5γ−1z, dy = 0.5γ−2dz, which entails
that the above displayed equation equals

0.5

∫ γ
2d

− γ
2d

∫ γ
2d

− γ
2d

(
Ñ
(
0.5γ−1z

)
− f3

(
0, 0.5γ−1z

))2
d2γ−2dz

=0.5

∫ γ
2d

− γ
2d

∫ γ
2d

− γ
2d

(
0.5γ−12γÑ

(
0.5γ−1z

)
− 0.5γ−1f3 (0, z)

)2
d2γ−2dz

=0.25πd2γ−2

∫ γ
2d

− γ
2d

∫ γ
2d

− γ
2d

(
Ñ (z)− f3 (0, z)

)2 1

2π
dz

≥0.25πd2γ−2

∫
{z:∥z∥2≤0.5d−1γ}

(
Ñ (z)− f3 (0, z)

)2 1

2π
exp

(
−0.5 ∥z∥22

)
dz

=0.25πd2γ−2

(
Ez∼N (0,I2)

[(
Ñ (z)− f3 (0, z)

)2]
−
∫
{z:∥z∥2≥0.5d−1γ}

(
Ñ (z)− f3 (0, z)

)2 1

2π
exp

(
−0.5 ∥z∥22

)
dz

)
. (4)

In the above, the first equality follows from the fact that f3(α · x) = αf3(x) for all α > 0 and
x ∈ R, the second equality follows from the fact that N(2) is closed under linear scaling of its input
and output, and the inequality follows from {z : ∥z∥2 ≤ 0.5d−1γ} ⊆ [−0.5d−1γ, 0.5d−1γ]2 and
the fact that the maximum of a bivariate standard Gaussian is 1

2π
.

Next, we upper bound the square of the above approximation. We begin with the output of a
single neuron:

|σ (⟨wi, z⟩+ bi)| ≤ Cσ (1 + |⟨wi, z⟩+ bi|ασ)

≤ Cσ (1 + |∥wi∥ · ∥z∥+ |bi||ασ) ≤ O (exp (O(d)) ∥z∥ασ) ,
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where the second inequality follows from Cauchy-Schwartz and the last inequality follows from
our assumption on the magnitude of the weights. Using the above, we can upper bound the output
of the network by∣∣∣Ñ (z)

∣∣∣ = ∣∣∣∣∣
k∑

i=1

σ (⟨wi, z⟩+ bi) + b0

∣∣∣∣∣ ≤ dℓ · O (exp (O(d)) ∥z∥ασ) ,

implying (
Ñ (z)− f3 (0, z)

)2
≤ d2ℓ · O

(
exp (O(d)) ∥z∥2ασ

)
.

Substituting γ = O(d2) in Eq. (4) and using the above, we get a lower bound of

0.25πd−2

(
Ez∼N (0,I2)

[(
Ñ (z)− f3 (0, z)

)2]
−O

(
exp

(
−0.5d2

)))
.

Lastly, using Proposition C.1 to lower bound the expectation term above with the assumed bounds
on the parameters, the theorem follows.

C.2 Proof of Thm. 4.3
Proof. We begin with reducing the approximation error of fd over a depth 3 ReLU network to
the approximation error of f3 over a depth 2 ReLU network. To this end, we first identify three
coordinates in the domain of N where a certain sub-cube B of dimension 3, and a set A ⊆ [0, 1]d−3

exist, which satisfy the following properties:

1. Px∼Dd−3
[x ∈ A] ≥ 0.1.

2. Px∼D3 [x ∈ B] = d−18.

3. fd(x1,x2) = f3(x2) for all x1 ∈ A,x2 ∈ B.

4. A can be decomposed into a disjoint partition of at most 2k convex sets A1, A2, . . . and a set
of measure zero ∆, such that A =

⋃
j Aj∪∆, where for all j and i ∈ [k], Px∼Dd−3

[x ∈ Aj] >
0 and sign(ni(x1,x2)) is fixed for all x1 ∈ Aj and all x2 ∈ B.

Before we prove the existence of A and B, we shall first show how they imply a reduction to an
approximation using depth 2. For any natural n, denote the uniform distribution over [0, 1]n by Dn

and compute by repeatedly using the law of total expectation

Ex∼Dd

[
(N (x)− fd(x))

2] = Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1

]]
= Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 ∈ A,x2 ∈ B
]]

· P [x1 ∈ A,x2 ∈ B]

+ Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 /∈ A or x2 /∈ B
]]

· P [x1 /∈ A or x2 /∈ B]

≥ Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x1 ∈ A,x2 ∈ B
]]

· P [x1 ∈ A,x2 ∈ B]

=
∑
j

Ex1∼Dd−3

[
Ex2∼D3

[
(N (x1,x2)− fd(x1,x2))

2 |x2 ∈ B,x1

]
|x1 ∈ Aj

]
· P [x1 ∈ Aj,x2 ∈ B]

=
∑
j

Ex2∼D3

[(
N (x′

j,x2)− fd(x
′
j,x2)

)2 |x2 ∈ B
]
· P [x1 ∈ Aj,x2 ∈ B] .
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In the above, the penultimate equality holds despite the omission of ∆ from the decomposition
of A since it is a set of measure zero, and the last equality holds for a set of intermediate points
(x′

1,x
′
2, . . .) ∈ Rd−3 whose existence is guaranteed by Lemma D.5 due to Item 4 and the fact that

g(x) = Ex2∼D3

[
(N (x,x2)− fd(x,x2))

2 |x2 ∈ B
]

is continuous on [0, 1]d−3. Since for any given
j, sign(ni(x

′
j,x2)) is fixed for all i ∈ [k] and all x2 ∈ B, we can collapse the first hidden layer

of N ,2 obtaining a depth 2 ReLU network Nj for each x′
j such that N (x′

j,x2) = Nj(x2) for all
x2 ∈ B. Combining the previous argument with Item 3, the above displayed equation is equal to∑

j

Ex2∼D3

[
(Nj(x2)− f3(x2))

2 |x2 ∈ B
]
· P [x1 ∈ Aj,x2 ∈ B]

=
∑
j

Ex2∼U(B)

[
(Nj(x2)− f3(x2))

2] · P [x1 ∈ Aj] · P [x2 ∈ B] .

Letting N(2) denote the class of depth 2 ReLU networks of width at most d2/5, and letting b > a ≥
0 such that B = [a, b]3 where b := a+ d−6, we can lower bound the above by∑

j

inf
Ñ∈N(2)

Ex2∼U(B)

[(
Ñ (x2)− f3(x2)

)2]
· P [x1 ∈ Aj] · P [x2 ∈ B]

= inf
Ñ∈N(2)

Ex2∼U(B)

[(
Ñ (x2)− f3(x2)

)2]
· P [x1 ∈ A] · P [x2 ∈ B]

≥ 0.1d−18 · inf
Ñ∈N(2)

Ex2∼U(B)

[(
Ñ (x2)− f3(x2)

)2]
, (5)

where the equality is due to Item 4 and the inequality is due to Items 1 and 2. Applying Lemma D.6
and Thm. 4.2 with input dimension 3 and ℓ = 2, the lower bound follows.

It now remains to show the existence of A and B. Starting with B, we first assume w.l.o.g. that
no neuron in the first hidden layer of N has an all-zero weight vector. This is justified since if such
a neuron exists, it merely outputs a constant as input to the second layer which can be simulated
by modifying the bias terms in the second layer, which doesn’t increase the width of N . Denote
for all i ∈ [k], wmax

i = wi,ji where ji = argmax
j∈[d]

|wi,j|, we define the set

P :=

{
x ∈

[
1− 1

d
, 1

]
:

∣∣∣∣x+
bi

wmax
i

∣∣∣∣ ≤ d−3, ∀ i ∈ [k]

}
.

Note that by our assumption k ≤ d2

5
, we have that P consists of at most d2

5
connected components

where each is of length at most 2d−3. Therefore, the overall length of P is no more than 2
5d

, and

2More formally, we can obtain Nj from N and x′
j by choosing some arbitrary x2 ∈ B and considering the sign of

ni(x
′
j ,x2) for each i ∈ [k]. If it is negative we can discard the neuron and set its incoming weight in the second layer

to 0, and if it is positive then we discard the ReLU activation and compose the obtained linear transformation with the
linear transformation computed by the corresponding neuron in the second layer. In both cases, the neuron in the first
layer is either canceled or is absorbed into the second layer, thus removing the first hidden layer altogether without
increasing the width of the network.
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we can thus find an interval [a, a+ d−6] ⊆ [1− 1/d] \ P for some a ∈ [1− 1/d, 1− d−6]. We can
now define

B :=
[
a, a+ d−6

]3
.

Note that this immediately entails that Px∼D3 [x ∈ B] = d−18, proving Item 2. Continuing to
showing the existence of A, we first define it formally as the set given by

A :=

[
0, 1− 1

d

]d−3

\
{
x1 ∈ [0, 1]d−3 : ∃x2 ∈ B, i ∈ [k] s.t. ni(x1,x2) = 0

}
.

Note that this immediately implies Item 3. To show Item 4, we observe that A can be defined as the
set difference between a cube and the union of k closed sets, one for each neuron in the first hidden
layer of N . More specifically, for i ∈ [k], suppose that the i-th neuron has weights w = (w1,w2)
and bias b where w1 ∈ Rd−3 and w2 ∈ R3, and consider the set

Ãi :=
{
x1 ∈ [0, 1]d−3 : ∃x2 ∈ B s.t. ni(x1,x2) = 0

}
.

Observing that
Ãi =

⋃
x2∈B

{x1 : ⟨w1,x1⟩ = b− ⟨w2,x2⟩} ,

we have that Ãi = Rd−3 or Ãi = ∅ if w1 = 0, depending on whether b − ⟨w2,x2⟩ equals zero
for some w2 ∈ B or not. Otherwise, if w1 ̸= 0, we have that Ãi can be represented as a union of
parallel affine subspaces, the boundary of which is given by ⟨w1,x1⟩ = minx2∈B b− ⟨w2,x2⟩ and
⟨w1,x1⟩ = maxx2∈B b− ⟨w2,x2⟩, where both the minimum and maximum are defined since B is
compact and x2 7→ b − ⟨w2,x2⟩ is continuous. Moreover, by continuity we also obtain that Ãi is
connected. We thus have in either case that we can represent Ãi = Ãi,1 ∪ Ãi,2 for some disjoint
and convex sets Ãi,1, Ãi,2 ⊆ Rd−3. We now compute

A =

[
0, 1− 1

d

]d−3

\

⋃
i∈[k]

Ãi

 =

[
0, 1− 1

d

]d−3 ⋂ ⋃
i∈[k]

Ãi =

[
0, 1− 1

d

]d−3 ⋂ ⋂
i∈[k]

Ãi


=

[
0, 1− 1

d

]d−3 ⋂ ⋂
i∈[k]

(
Ãi,1 ∪ Ãi,2

) =
⋃

j1,...,jk∈{1,2}

⋂
i∈[k]

Ãi,ji

⋂[
0, 1− 1

d

]d−3
 .

Namely, A is a union of at most 2k disjoint and convex sets (since the intersection of convex sets
is also convex). For j1, . . . , jk ∈ {1, 2}, denote

Aj1,...,jk :=

⋂
i∈[k]

Ãi,ji

⋂[
0, 1− 1

d

]d−3

.

By defining

∆ :=

 ⋃
j1,...,jk∈{1,2}

Aj1,...,jk : Px∼Dd−3
[x ∈ Aj1,...,jk ] = 0

 ,
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we can partition A into ∆ and A \∆ where each connected component in A \∆ is not a measure
zero set. Finally, we have that sign(ni(x1,x2)) is fixed on each such convex component. This
holds true since if otherwise, by contradiction, it holds that some neuron satisfies ni(x1,x2) ≥ 0
and ni(x

′
1,x

′
2) < 0 for some (x1,x2), (x

′
1,x

′
2) ∈ Aj × B and some j ∈ [2k]. Consider the path

p : [0, 1] → Rd given by
p(λ) := λ(x1,x2) + (1− λ)(x′

1,x
′
2).

Since Aj and B are convex, so is Aj × B, and we have p(λ) ∈ Aj × B for all λ ∈ [0, 1]. Since
ni(p(λ)) is continuous in λ, by the intermediate value theorem, we can find some λ0 ∈ [0, 1] such
that ni(p(λ0)) = 0, which contradicts the definition of A.

To show Item 1, we first show that with high probability over drawing x1, it holds that ni(x1,x2) ̸=
0 for all x2 ∈ B and i ∈ [k]. Suppose that x1 ∼ U

(
[0, 1− 1/d]d−3

)
. We now construct the follow-

ing graph G: G has d vertices, one for each coordinate of the input dimension, and the set of edges
is determined according to the values of the weights in the first hidden layer of N . Specifically,
there’s an edge between two vertices j1, j2 ∈ [d] if and only if there exists no neuron m ∈ [k]
such that |wm,j1| > |wm,ℓ| for all ℓ ∈ [k] \ {j2} and |wm,j2| > |wm,ℓ| for all ℓ ∈ [k] \ {j1}. In
words, there’s no edge between vertices j1 and j2 if and only if there exists a neuron in which the
coordinates j1, j2 have the strictly largest weights in the neuron in absolute value. Since k ≤ d2/5,
we have that G must contain at least

(
d
2

)
− d2

5
edges, which is strictly greater than d2

4
for sufficiently

large d, and thus by Mantel’s theorem (Thm. D.1) we have that G must contain a triangle. Consider
this triangle in G, and assume w.l.o.g. that it is formed on the last three coordinates. This means by
the definition of G that at least one of the two largest coordinates in each neuron in the hidden layer
of N have an index j ≤ d−3. Fix some neuron, and let w = (w1, . . . , wd) and b denote the weights
and bias, respectively, of the neuron. Further assume w.l.o.g. that |w1| ≥ |w2| ≥ . . . ≥ |wd−3| and
that |wd−2| ≤ |wd−1| ≤ |wd|. We now perform a case analysis depending on the ratio between the
two largest coordinates in the weights of the neuron.

• Suppose that |w1| ≤ |wd|d−4. Note that this also entails |wd| ≥ |w1|d4 > |w1|. Namely,
wd has the largest magnitude in absolute value among the weights of the neuron. By our
construction of B, we have∣∣∣∣x+

b

wd

∣∣∣∣ > d−3, ∀ x ∈
[
a, a+ d−6

]
.

Simple algebra and the above imply that

wdx+ b /∈
[
−|wd|d−3, |wd|d−3

]
, ∀ x ∈

[
a, a+ d−6

]
. (6)

We now compute ∣∣∣∣∣
d−1∑
j=1

wjxj

∣∣∣∣∣ ≤
d−1∑
j=1

|wj| ≤
d−1∑
j=1

|w1| < |wd|d−3.

In the above, the first inequality is Hölder’s inequality, the second inequality is due to the
fact that |w1| is the second largest in absolute value among the weights of the neuron, and the
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last inequality is by our assumption |w1| ≤ |wd|d−4. Adding the above displayed inequality
with Eq. (6) we obtain

d∑
j=1

wjxj + b ̸= 0, ∀ x1 ∈ [0, 1− 1/d]d−3 , ∀ x2 ∈ B. (7)

• Suppose that |w1| > |wd|d−4. Then in such a case, we cannot guarantee that Eq. (7) holds
with probability 1. However, we can show that the randomness over drawing x1 induces
sufficient variance and therefore it holds with high probability. Define the random variables
X :=

∑d−3
j=1 wjxj + b, X̃ :=

∑d−3
j=2 wjxj + b, where the randomness is taken over drawing

x1 ∼ U([0, 1− 1/d]d−3), and let I ⊆ R be any interval of length 3|wd|d−6. We compute

P
[
X ∈ I|X̃ = x

]
= P

[
w1x1 + x ∈ I|X̃ = x

]
≤
∫
R

1− 1/d

|w1|
1 {t+ x ∈ I} dt

≤ 3|wd|d−6

|w1|
< 3d−2, (8)

where we used the fact that the density of the random variable w1x1 is 1−1/d
|w1| in its support,

and our assumption which implies that |wd| < |w1|d4. Next, compute using the law of total
probability to obtain

P [X ∈ I] =

∫
R
P
[
X ∈ I|X̃ = x

]
pX̃(x)dx <

∫
R
3d−2pX̃(x)dx = 3d−2,

where the inequality follows from Eq. (8). Since

max
x2∈B

d∑
i=d−2

wixi − min
x2∈B

d∑
i=d−2

wixi ≤ 3|wd|d−6,

we have that

Px1∼U([0,1−1/d]d−3)

[
d∑

j=1

wjxj + b ̸= 0

]
≥ 1− 3d−2, ∀ x2 ∈ B. (9)

Having shown that in both cases Eq. (9) holds, we proceed by taking a union bound over all the
k ≤ d2/5 neurons in the first hidden layer of N , obtaining

Px1∼U([0,1−1/d]d−3)

[
d∑

j=1

wi,jxj + b ̸= 0

]
≥ 2

5
, ∀ i ∈ [k], ∀ x2 ∈ B.

We now observe that

Px1∼Dd−3
[x1 ∈ A]

= Px1∼Dd−3

[
x1 ∈ A|x1 ∈ [0, 1− 1/d]d−3

]
· Px1∼Dd−3

[
|x1 ∈ [0, 1− 1/d]d−3

]
≥ 2

5

(
1− 1

d

)d−3

≥ 2

5
exp(−1) ≥ 0.1,

which thus proves Item 1, and completes the proof of the theorem.
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C.3 Proof of Thm. 4.4
Proof. Consider the matrix of first hidden layer weights W ∈ Rk×d. Since k ≤ d − 1 by our
assumption, we have that dim(ker(W )) ≥ 1. Fix some vector v = (v1, . . . , vd) ∈ ker(W ) such
that ∥v∥2 = 1 and assume w.l.o.g. ∥v∥∞ = v1. Denote X := [0, 1]d, we now consider the triangular
matrix and vector

P :=


1
d
v1 0 0 · · · 0

1
d
v2 1− 2

d
0 · · · 0

1
d
v3 0 1− 2

d
· · · 0

...
...

... . . . ...
1
d
vd 0 0 · · · 1− 2

d

 , b :=


1− 1

d
1
d
1
d
...
1
d

 ,

and the set defined by
P := {Px+ b : x ∈ X} .

By its definition, P is a parallelotope satisfying P ⊆ X . Moreover, we have

fd(u) = u1, ∀ u = (u1, . . . , ud) ∈ P . (10)

The above holds true since for all u ∈ P there exists some x = (x1, . . . , xd) ∈ X such that
ui = 1− 1

d
+ 1

d
vix1 for all i ≥ 2 and u1 = 1− 1

d
+ 1

d
v1, and thus by our assumption that ∥v∥∞ = v1

we have
u1 = 1− 1

d
+

1

d
v1x1 ≥ 1− 1

d
+

1

d
vix1 = ui.

Using the change of variables u = Px + b, du = |det (P )| dx; the fact that P ⊆ X; and the fact
that the squared loss is non-negative, we have

Eu∼U(X)

[
(N (u)− fd(u))

2] ≥ ∫
P
(N (u)− fd(u))

2 du

=

∫
X

(N (Px+ b)− fd(Px+ b))2 |det (P )| dx. (11)

Letting ei denote the standard unit vector with coordinate ei = 1, we get from Px = 1
d
vx1 +∑d

i=2

(
1− 2

d

)
xiei and v ∈ ker(W ) that we can write N (Px + b) = c(x2, . . . , xd) for some

function c : Rd−1 → R. Since P is triangular, we have |det(P )| = 1
d

(
1− 2

d

)d−1
v1 ≥ 1

10d
v1.

Moreover, since ∥v∥∞ = v1 and ∥v∥2 = 1, we have that v1 ≥ d−0.5 and we can further lower
bound the above to obtain |det(P )| ≥ 1

10d1.5
. Plugging the above and Eq. (10) back in Eq. (11), we

obtain

Ex∼U(X)

[
(N (x)− fd(x))

2] ≥ 1

10d1.5

∫
X

(
c(x2, . . . , xd)−

(
1− 1

d
+

1

d
v1x1

))2

dx

=
1

10d1.5

∫
xd

. . .

∫
x2

∫
x1

(
c(x2, . . . , xd)−

(
1− 1

d
+

1

d
v1x1

))2

dx1dx2 . . . dxd. (12)
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It is easy to verify that the optimal constant approximation for the linear function 1− 1
d
+ 1

d
v1x1 is

1− 1
d
+ 1

2d
v1, in which case the optimal L2 approximation error is∫ 1

0

(
1− 1

d
+

1

2d
v1 −

(
1− 1

d
+

1

d
v1x

))2

dx =
v21
d2

∫ 1

0

(
1

2
− x

)2

dx =
v21
12d2

.

Plugging the above back in Eq. (12) and using the fact that v1 ≥ d−0.5 again, we obtain

Ex∼U(X)

[
(N (x)− fd(x))

2] ≥ 1

10d1.5

∫
xd

. . .

∫
x2

v21
12d2

dx2 . . . dxd ≥
1

120d4.5
.

Applying Lemma D.6, the lemma follows.

D Technical lemmas
The following theorem is a well-known result in graph theory, which we state here for the sake of
completeness.

Theorem D.1 (Mantel’s theorem). Let G be a graph with d vertices and more than d2/4 edges.
Then G contains a triangle.

Lemma D.2. Let x = (x1, . . . , xd) and M, δ > 0 such that |xi − xj| > δ and |xj| ≤ M for all i
and j. Then x ∈ Sδ/M .

Proof. Assuming xj ̸= 0, we have that

xi

xj

= 1 +
xi − xj

xj

/∈
[
1− δ

M
, 1 +

δ

M

]
⇐⇒

∣∣∣∣xi − xj

xj

∣∣∣∣ > δ

M
.

Thus the lemma follows from ∣∣∣∣xi − xj

xj

∣∣∣∣ > δ

|xj|
≥ δ

M
,

where the first inequality is by the assumption |xi − xj| > δ and the second inequality is by the
assumption |xj| ≤ M which implies 1/ |xj| ≥ 1/M .

Lemma D.3.
∞∏
i=1

(
1 +

2

i3

)2

≤ 20.

Proof. Compute
∞∏
i=1

(
1 +

2

i3

)2

= 9

(
5

4

)2 ∞∏
i=3

(
1 +

2

i3

)2

=
225

16
exp

(
2

∞∑
i=3

ln

(
1 +

2

i3

))

≤ 225

16
exp

(
2

∞∑
i=3

2

i3

)
=

225

16
exp

(
4

(
ζ(3)− 9

8

))
≤ 225

16
exp

(
4

(
1.21− 9

8

))
,
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where the first inequality follows from the inequality ln(1 + x) < x for all x > 0, and the second
inequality is a known bound ζ(3) ≤ 1.21 where ζ(·) is Riemann’s zeta function. Evaluating the
above expression, the lemma follows.

Lemma D.4. For all natural d ≥ 58 and 1 ≤ k ≤ ⌈log(log(d) + 1)⌉, we have

1 ≤ 2d1−β(k+1)

(k + 1)3
.

Proof. We first verify the lemma for k = 1. We have

2d1−β(2)

8
=

1

4
d

2
3 ≥ 1

4

√
d ≥ 1

4

√
100 ≥ 1.

Next, assume k ≥ 2 and compute

2d1−β(k+1)

(k + 1)3
≥ 2d

6
7

(k + 1)3
≥ 2d

6
7

(⌈log(log(d) + 1)⌉+ 1)3
.

It thus suffices to prove that
⌈log(log(d) + 1)⌉+ 1 ≤ 2

1
3d

6
21 .

It is easy to see that this inequality holds for d = 58 (using any symbolic computation package),
and since the left hand side is constant for all d ∈ [58, 128] whereas the right hand side is increasing,
the inequality also holds for all d ≤ 128. By the same reasoning, we observe that the left hand side
is constant on any interval of the form

(
22

n−1, 22
n+1−1

]
for integer n ≥ 3, and takes the value of

n + 2. In contrast, the right hand side is lower bounded by 2
1
3

(
22

n−1
) 6

21 on each such interval. It
is thus sufficient to prove that

n+ 2 ≤ 2
1
3

(
22

n−1
) 6

21

for all integer n ≥ 3. We shall show this using induction. The base case can be easily verified for
n = 3. Assuming the induction hypothesis for n, we compute

2
1
3

(
22

n+1−1
) 6

21
= 2

1
3

(
22

n−1
) 6

21 ·

(
22

n+1−1
) 6

21

(22n−1)
6
21

≥ (n+ 2)
(
22

n) 6
21

≥ (n+ 2)
(
28
) 6

21 ≥ 2n+ 4 ≥ n+ 3,

where the first inequality follows from the induction hypothesis, and the second inequality follows
from n ≥ 3.

Lemma D.5. Let µ denote the d-dimensional Lebesgue measure, Let D ⊆ Rd be compact, and
suppose that g : D → R is continuous and that Ω ⊆ [0, 1]d is a convex set satisfying µ(Ω) > 0.
Then there exists some x0 ∈ Ω such that

Ex∼U(D) [g(x)|x ∈ Ω] = g(x0).
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Proof. Since Ω = (∂Ω ∩ Ω) ∪ int(Ω) is a disjoint union and since the boundary of a convex set in
Rd has measure zero [13], we have

Ex∼U(D) [g(x)|x ∈ Ω] =
1

µ(Ω)

∫
Ω

g(x)dx =
1

µ(Ω)

∫
int(Ω)

g(x)dx.

Due to the above, we may assume w.l.o.g. that Ω = int(Ω) is thus open and Lebesgue measurable.
If g is constant on Ω then the lemma holds true for all x0 ∈ Ω. Suppose that g is not constant on Ω,
then due to being continuous on the compact domain D ⊇ Ω, it is bounded on Ω, and there exist
x1,x2 ∈ Ω such that g(x1) < g(x2). Denote

−∞ < m := inf
x∈Ω

g(x) ≤ g(x1) < g(x2) ≤ sup
x∈Ω

g(x) =: M < ∞.

In particular, by the continuity of g and since Ω is open, there exists some open neighborhood
U ⊆ Ω containing x2 and satisfying µ(U) > 0 such that g(x′) ≥ g(x1)+g(x2)

2
> g(x1) ≥ m for all

x′ ∈ U . We now have

1

µ(Ω)

∫
Ω

g(x)dx =
1

µ(Ω)

(∫
Ω\U

g(x)dx+

∫
U

g(x)dx

)
≥ 1

µ(Ω)

(
m · µ (Ω \ U) +

∫
U

g(x)dx

)
>

1

µ(Ω)
(m · µ (Ω \ U) +m · µ(U)) = m.

An analogous argument shows that 1
µ(Ω)

∫
Ω
g(x)dx < M , and we thus deduce that

m <
1

µ(Ω)

∫
Ω

g(x)dx < M. (13)

Let {an}∞n=1 , {bn}∞n=1 ⊆ Ω such that limn→∞ g(an) = m and limn→∞ g(bn) = M . Then for
any ε > 0, there exists n0 such that g(an0) ≤ m + ε and g(bn0) ≥ M − ε. Consider the path
p : [0, 1] → Rd given by

p(λ) := λan0 + (1− λ)bn0 .

From the convexity of Ω we have that p(λ) ∈ Ω for all λ ∈ [0, 1], and since g(p(λ)) is continuous
in λ, for all y ∈ [m+ ε,M − ε] there exists some λ ∈ [0, 1] such that

g(p(λ)) = y.

In particular, using Eq. (13), we can choose ε > 0 sufficiently small such that

1

µ(Ω)

∫
Ω

g(x)dx ∈ [m+ ε,M − ε],

and find some λ0 satisfying
1

µ(Ω)

∫
Ω

g(x)dx = g(p(λ0)).

Letting x0 := p(λ0) ∈ Ω gives the desired result.
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Lemma D.6. Let Nk,ℓ denote the class of width k and depth ℓ neural networks with an arbitrary
activation function. Then there exists some ε > 0 such that

inf
N∈Nk,ℓ

Ex∼U([0,1]d)
[
(N (x)− fd(x))

2] ≥ ε,

if and only if for all R > 0 and all a ∈ R, we have

inf
N∈Nk,ℓ

Ex∼U([a,a+R]d)
[
(N (x)− fd(x))

2] ≥ R2ε.

Proof. The fact that the latter implies the former is immediate by substituting R = 1 and a = 0.
For the reverse implication, observing that fd(x) = R · fd

(
1
R
x
)

for all x ∈ Rd, we have by [21,
Theorem 9] that

inf
N∈Nk,ℓ

Ex∼U([0,1]d)
[
(N (x)− fd(x))

2] ≥ ε

implies
inf

N∈Nk,ℓ

Ex∼U([0,R]d)
[
(N (x)− fd(x))

2] ≥ R2ε,

for all R > 0. Writing the above expectation in integral form and performing the change of
variables x = y + (a, . . . , a), dx = dy, the lemma follows.
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