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Abstract

In light of much recent interest in finding a model of

multi-player multi-action games that allows for efficient

computation of Nash equilibria yet remains as expressive

as possible, we investigate the computational complexity of

Nash equilibria in the recently proposed model of action-

graph games (AGGs). AGGs, introduced by Bhat and

Leyton-Brown, are succinct representations of games that

encapsulate both local dependencies as in graphical games,

and partial indifference to other agents’ identities as in

anonymous games, which occur in many natural settings

such as financial markets. This is achieved by specifying

a graph on the set of actions, so that the payoff of an

agent for selecting a strategy depends only on the number

of agents playing each of the neighboring strategies in

the action graph. We present a simple Fully Polynomial

Time Approximation Scheme for computing mixed Nash

equilibria of AGGs with constant degree, constant treewidth

and a constant number of agent types (but an arbitrary

number of strategies), and extend this algorithm to a

broader set of instances. However, the main results of this

paper are negative, showing that when either of the latter

conditions are relaxed the problem becomes intractable. In

particular, we show that even if the action graph is a tree

but the number of agent-types is unconstrained, it is NP–

complete to decide the existence of a pure-strategy Nash

equilibrium and PPAD–complete to compute a mixed Nash

equilibrium (even an approximate one). Similarly for AGGs

with a constant number of agent types but unconstrained

treewidth. These hardness results suggest that, in some

sense, our FPTAS is as strong a positive result as one can

expect. In the broader context of trying to pin down the

boundary where the equilibria of multi-player games can

be computed efficiently, these results complement recent

hardness results for graphical games and algorithmic results

for anonymous games.
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1 Introduction

What is the likely behavior of autonomous agents
in a variety of competitive environments? This question
has been the motivation for much of economic theory.
Partly due to the increasing prevalence of vast online
networks over which millions of individuals exchange
information, goods, and services, and the corresponding
increasing importance of understanding the dynamics of
such interactions, the Computer Science community has
joined in the effort of studying game-theoretic questions.

Computing equilibria in games and markets has
been extensively studied in the Economics and Oper-
ations Research literatures since the 1960’s, see e.g.
[23, 27, 32, 28, 30]. Computational tractability has
been recently recognized as an important prerequisite
for modeling competitive environments and measuring
the plausibility of solution concepts in Economics: if
finding an equilibrium is computationally intractable,
should we believe that it naturally arises? And, is it
plausible that markets converge to solutions of compu-
tationally intractable problems? Probably not — but if
so, the Computer Science community should certainly
know about it.

Computing Nash equilibria in games, even in the
case of two players, has been recently shown to be
an intractable problem; in particular, it was shown to
be complete for the class of fixed point computation
problems termed PPAD [10, 4]. This result on the in-
tractability of computing Nash equilibria has sparked
considerable effort to find efficient algorithms for ap-
proximating such equilibria, and has increased the im-
portance of considering special classes of games for
which Nash equilibria might be efficiently computable.

For two-player games the hardness of computing
approximate equilibria persists even if the required
approximation is inverse polynomial in the number of
strategies of the game [5]; similarly, hardness persists in
graphical games if the required approximation is inverse
polynomial in the number of players [10, 5]. The same
hardness results apply to special cases of the problem,
e.g. win-lose games, where the payoff values of the game
are restricted to {0, 1} [1, 8, 6], sparse two-player games,
where the number of non-zero entries of each row an
column of the payoff matrices is a constant, and two-



player symmetric games [17]. The emerging question of
the research in this field is: Is there a Polynomial Time
Approximation Scheme (PTAS) for Computing Nash
Equilibria? And, which special cases of the problem
are computationally tractable?

The zero-sum two-player case is well-known to
be tractable by reduction to linear programming [31].
Tractability persists in the case of low-rank two-player
games, in which the sum A + B of the payoff matrices
of the players, instead of being 0, has fixed rank; in this
case, a PTAS exists for finding mixed Nash equilibria
[21]. In n-player graphical games, a PTAS has been
provided if the tree-width is O(log n) and the maximum
degree is bounded [11]; in the case of dense graphical
games, a quasi-polynomial time approximation scheme
exists [13].

An important line of research on tractable special
cases explores games with symmetries. Multi-player
symmetric games with (almost) logarithmic number of
strategies per player can be solved exactly in polynomial
time by reduction to the existential theory of reals
[26]. For congestion games, a pure Nash equilibrium
can be computed in polynomial time if the game is
a symmetric network congestion game [16], and an
approximate pure Nash equilibrium can be found if the
game is symmetric but not necessarily a network game,
and the utilities satisfy a “bounded-jump condition” [7].
Another important class of games for which computing
an approximate equilibrium is tractable is the class of
anonymous games, in which each player is different, but
does not care about the identities of the other players, as
happens —for example— in congestion games, certain
auction settings, and social phenomena [3]; a PTAS
for anonymous games with a fixed number of strategies
has been provided in [12, 13]. For a thorough study
of the problem of computing pure Nash equilibria in
symmetric and anonymous games see [15].

In this paper we continue the effort to pin down
the tractability of computing equilibria for meaningful
classes of games, considering the class of Action Graph
Games (AGGs). Introduced by Bhat and Leyton-Brown
[2] (see Definition 1.1), AGGs are a fully general game
representation that succinctly captures both ‘local’ de-
pendencies as in graphical games, as well as partial in-
difference to other agents’ identities as in anonymous
games. The set of strategies each of the players may
play is represented as a set of nodes in a graph, called
the strategy graph, where the strategy sets may be dis-
joint, or overlapping. The game is anonymous to the
extent that the utility of a player depends only on his
action and the number of players playing each strat-
egy, regardless of their identities. More specifically, each
player’s utility only depends on the number of players

playing strategies adjacent to his action, in the strategy
graph. The only attribute that distinguishes players is
the set of strategies that each player is allowed to play.
In particular, all agents who play a given strategy get
the same payoff. Note that AGGs are fundamentally
different than Graphical Games in that the nodes in
graphical games represent the agents rather than the
strategies as in AGGs (see [22] for an introduction to
graphical games). A variety of natural games can be
concisely represented as AGGs including models of fi-
nancial markets, and we refer the reader to [2, 19] for
further discussion.

In the remainder of this section, we discuss previous
work on AGGs and summarize our results. At the end
of the section, we provide definitions.

1.1 Previous Work
Action graph games were first defined by Bhat and

Leyton-Brown [2] who considered the problem of com-
puting Nash equilibria of these games. In particular,
they analyzed the complexity of computing the Jaco-
bian of the payoff function—a computation that is, in
practice, the bottleneck of the continuation method of
computing a Nash equilibrium. They considered this
computation for both general AGGs and AGGs with a
single player type (symmetric AGGs), and found that
this computation is efficient in the latter case. In [18],
Jiang and Leyton-Brown describe a polynomial-time al-
gorithm for computing expected utilities of an AGG.
For pure Nash equilibria, Jiang and Leyton-Brown [19]
show that deciding the existence of such equilibria in
AGGs is NP-complete, even in the case of a single
player type and bounded degree. On the other hand,
they provide a polynomial time algorithm for finding
pure-Nash equilibria in AGGs with constant number of
player types when the strategy graph has bounded tree-
width. In [14] Dunkel and Schultz show hardness results
for computing pure-Nash equilibria for a special case of
AGGs, called Local-Effect Games, in which the utility
for playing an action can be decomposed into a sum of
edge-wise utility functions, one for every adjacent edge.
Their results are incomparable to ours.

1.2 Our Results
We examine, and largely resolve the computational

complexity of computing Nash equilibria in action graph
games. We give a fully polynomial algorithm for com-
puting an ε-Nash equilibrium for AGGs with constant
degree, constant treewidth and a constant number of
agent types (and arbitrarily many strategies), together
with hardness results for the cases when either the
treewidth or the number of agent types is unconstrained.
In particular, we show that even if the strategy graph is



a tree with bounded degree but the number of agent
types is unconstrained, it is NP–complete to decide
the existence of a pure-strategy Nash equilibrium and
PPAD–complete to compute a mixed Nash equilibrium;
similarly for AGGs in which there are a constant num-
ber (10) of player types if we allow the strategy graph to
have arbitrary treewidth. These hardness results sug-
gest that, in some sense, our FPTAS is as strong of
a positive result as one can expect. While Bhat and
Leyton-Brown studied heuristics for computing mixed
Nash equilibria [2], there are few complexity theoretic
results concerning mixed Nash equilibria for AGGs—
PPAD-hardness follows from AGGs being a generaliza-
tion of normal-form games, and membership in PPAD
which follows from the nontrivial fact that computing a
Nash equilibrium of an AGG can be efficiently reduced
to the problem of computing a Nash equilibrium of a
graphical game, which was also noted in [20].

1.3 Definitions
In this section we give a formal definition of AGGs

and introduce the terminology that will be used in the
remainder of this paper. We follow the notation and
terminology introduced in [19].

Definition 1.1. An action-graph game, A, is a tuple
〈P,S, G, u〉 where

• P := {1, . . . , n} is the set of agents.

• S := (S1, . . . , Sn), where Si denotes the set of pure
strategies that agent i may play.

• For convenience, let S :=
⋃

i Si = {s1, . . . , s|S|} de-
note the set of all strategies, and thus each Si ⊆ S.
Also, we write Si = {si,1, si,2, . . . , si,|Si|} Further-
more, we’ll let s(i) denote the strategy played by
agent i.

• For any S′ ⊂ S, let ∆(S′) denote the set of valid
configurations of agents to strategies s ∈ S′; we
represent a configuration D(S′) ∈ ∆(S′) as an
|S′|-tuple D(S′) = {n1, . . . , n|S′|} where ni is the
number of agents playing the ith strategy of S′.

• G is a directed graph with one node for each action
si. Let ν : S → 2S, be the neighbor relation
induced by graph G, where s′ ∈ ν(s) if the edge
(s′, s) ∈ G. Note that self-loops are allowed, and
thus it is possible that s ∈ ν(s). We refer to G as
the strategy graph of A.

• The utility function u assigns identical utilities to
all agents playing a given strategy s, with the utility
depending only on the number of agents playing

neighboring strategies. Formally, u : ∆(S) → R|S|,
via maps u1, . . . , u|S| where ui : ∆[ν(si)] → R
defines the common utility of all agents playing
strategy si.

Note that AGGs are fully expressive because any
games can be written as an action graph game in which
the strategy sets of different players are disjoint, and
the strategy graph G is complete.

We now define a further type of possible symmetry
between agents that will be important in our analysis
of the complexity of computing Nash equilibria.

Definition 1.2. We say that an AGG has k player
types if there exists a partition of the agents into k sets
P1, . . . , Pk, such that if p, p′ ∈ Pi, then Sp = Sp′ . (The
terminology of [19] refers to such games as k-symmetric
AGGs.)

Since agents who play the same strategy receive the
same utility, all agents of a given type are identical—
for example an AGG with a single player type is a
symmetric game. While the number of player types does
not significantly alter the description size, decreasing
the number of player types adds structure to the space
of possible Nash equilibria; this is the motivation for
considering AGGs with few player types as a possible
class of tractable games.

A strategy profile, M := [m1, . . . , mn], with mi =
(pi,1, . . . , pi,|Si|) assigns to each agent a probability dis-
tribution over the possible strategies that the agent
may play, with Pr[s(i) = si,k] = pi,k where si,k is
the kth element of Si. Thus a given strategy profile
induces an expected utility for each player E[u|M ] =∑

D∈∆ u(D) Pr(D), where the probability is with re-
spect to the strategy profile M .

Definition 1.3. A strategy profile M is a Nash-
equilibrium if no player can increase her expected utility
by changing her strategy mi given the strategy profiles
m−i of the other agents. That is, for all strategy profiles
m′

i, E[ui|m−i,mi] ≥ E[ui|m−i,m
′
i].

Definition 1.4. A strategy m ∈ M is an ε-Nash-
equilibrium if no player can increase her expected utility
by more than ε by changing her strategy profile.

Note that there is the slightly stronger definition
of an ε–Nash equilibrium in which, for all agents i,
the expected utility of playing every strategy s in the
support of mi is at most ε less than the expected
utility of playing a different s′ ∈ Si. We do not
stress the distinction, as our FPTAS finds such an ε–
Nash equilibrium, and our hardness results apply to the
weaker definition given above.



2 FPTAS

Action graph games have properties of both anonymous
games and graphical games. As such, one might expect
that classes of AGGs that resemble tractable classes of
anonymous or graphical games could have efficiently
computable equilibria. For anonymous games, the
symmetry imposed by the limited number of types
implies the existence of a highly symmetric mixed
equilibrium which seems easier to find than asymmetric
equilibria. For graphical games with small treewidth,
the tree structure allows for an efficient message-passing
dynamic-programming approach. In line with this
intuition, we give an FPTAS for computing ε-Nash
equilibria for the class of AGGs that has both player
symmetries and a tree-like graph structure. While these
conditions might seem strong, we show in Section 3 that
if either condition is omitted the problem of computing
an ε-Nash equilibrium is hard.

The following theorem both motivates, and is im-
plied by the stronger Theorem 2.2, which we state at
the end of this section.

Theorem 2.1. For any fixed constants d, k, and t, an
AGG A with k player types and strategy graph GA with
bounded degree d and treewidth t, an ε-Nash equilibrium
can be computed in time polynomial in |A|, 1/ε, n.

For clarity, we begin by outlining the key compo-
nents of our simple dynamic-programming based FP-
TAS for the case that there is a single player type, and
the action graph is a tree. These ideas generalize easily
to the case that there are a constant number of player
types and the action graph has a constant treewidth.
Finally, we describe a larger class of AGGs for which
a modified version of our FPTAS holds (Theorem 2.2).
Due to space limitations, we defer the main proofs of
this section to the full version.

We begin with a fact about games with few player
types.

Fact 2.1. [24] Any AGG with k player types has a
Nash equilibrium where all players of a given type play
identical mixed strategy profiles. Formally, there is a
strategy profile M = [m1, . . . , mn] such that if Si = Sj,
then mi = mj. We refer to such equilibria as type-
symmetric equilibria.

The high-level outline of the FPTAS is as follows:
we discretize the space of mixed strategy profiles such
that each player may play a given strategy with prob-
ability Nδ for N ∈ N, and some fixed δ > 0 that will
depend on ε and n. We also discretize the space of tar-
get expected utilities into the set V = {0, ε/2, ε, . . . , 1}.
Then, for each i ∈ {0, . . . , |V |}, starting from the leaves

of the strategy-graph tree, we employ dynamic program-
ming to efficiently search the discretized strategy space
for a type-symmetric ε-Nash equilibrium in which each
strategy in the support has an expected utility close to
vi. To accomplish this we associate to each strategy si

a polynomially sized table expressing the set of proba-
bilities with which si could be played so that there is
some assignment of probabilities to the strategies below
si in the strategy tree that can be extended to an ε-Nash
equilibrium for the whole game. The following lemma
guarantees the existence of such a type-symmetric ε-
Nash equilibrium in our discretized search space.

Lemma 2.1. Given an n-player AGG A with utilities
in [0, 1], with 1 player type and strategy graph GA with
maximum degree d, for any δ > 0 there is a strategy
profile Q = (q1, . . . , q|S|) with each qi a multiple of δ
and the property that if all agents play profile Q, for any
strategy s in the support of Q, E[us|Q] ≥ E[us′ |Q]−4δdn
for all s′ ∈ S.

Proof. From Fact 2.1, there exists a mixed Nash equilib-
rium in which each player plays the same mixed strategy
P = (p1, . . . , p|S|). Consider another mixed strategy Q
with the property that each qi is a multiple of δ, qi = 0
if pi = 0, and otherwise |qi − pi| ≤ δ. (Note that such
a profile clearly exists.) For a given strategy s with
|ν(s)| = d, we now show that

|E[us|Q]− E[us|P ]| ≤ 2δdn,

from which our lemma follows.
The utility that an agent receives for playing strat-

egy s depends on how many of the other agents play
the strategies s1, s2, ..., sd ∈ ν(s). Define Ps :=
(p1, . . . , pd, 1−

∑d
1 pi), and Qs := (q1, . . . , qd, 1−

∑d
1 qi).

The number of players playing strategies s1, s2, ..., sd

under the mixed strategies P and Q follow multinomial
distributions with probability vectors Ps, Qs (where the
d + 1st outcome represents selecting a strategy that is
not in the neighborhood of s). It is easy to couple the
outcomes of a single draw from these multinomials to
exhibit that their total variation distance is at most δd;
indeed, we can couple the two outcomes so that each
i = 1, . . . , d contributes at most δ in total variation
distance, and so that the d + 1st outcome contributes
δd. Since we have n− 1 agents independently selecting
strategies according to Ps and Qs the total variation
distance between the distributions derived from P and
Q of assignments of numbers of players to strategies in
the neighborhood s1, . . . , sd will less than nδd. To con-
clude, note that since all utilities are between 0 and 1,
|E[us|Q]− E[us|P ]| ≤ 2δdn and our lemma follows.

Using standard techniques, the dynamic program-
ming approach extends to the case of a strategy graph of



constant treewidth. In this case, the strategy graph de-
composes into a tree over cliques of vertices of size t and
one can process all the vertices in each constant-sized
clique simultaneously, resulting in at most a polynomial
increase in running time. In the case that there are a
constant number of player types, we need only modify
the algorithm so as to maintain separate tables for each
player type, and enforce that each player type uses only
the allowed strategies.

Finally, to motivate a generalization of Theo-
rem 2.1, consider an AGG with an unbounded num-
ber of player types, but whose action-graph is a tree
with each player type restricted to disjoint connected
components of the tree. In this setting, the dynamic
programming approach clearly still applies, essentially
without modification. Thus it is intuitive that even with
an unbounded number of player types, if there is suffi-
cient structure to the organization of the set of strategies
available to each player type, an equilibrium can still be
efficiently computed. The following definition allows us
to formalize this intuition.

Definition 2.1. We define the agent-augmented ac-
tion graph (AAAG) of an AGG A = 〈P,S, GA, u〉 to
be the graph resulting from starting with GA, adding a
vertex for each player type and adding an edge between
each player type and the vertex corresponding to each
strategy available to that player type. Formally, given
a k-symmetric action graph game A = 〈P,S, GA =
(VA, EA), u〉 with player types P1, P2, . . . , Pk with strat-
egy spaces S1, S2, . . . , Sk respectively, the AAAG corre-
sponding to A is

G′ = (VA∪{P1, P2, . . . , Pk}, EA∪{(Pi, s) : ∀i, ∀s ∈ Pi})
The dynamic programming FPTAS can be general-

ized to prove the following extension of Theorem 2.2.

Theorem 2.2. For any fixed constants d and t, an
AGG A with AAAG G′ which has tree-width t, and a t-
treewidth decomposition graph with bounded degree d, an
ε-Nash equilibrium can be computed in time polynomial
in |A|, 1/ε, n.

Theorem 2.2 yields a variety of corollaries (in ad-
dition to Theorem 2.1) that apply to many naturally-
arising games. As an example, we provide one that cap-
tures our motivating example.

Corollary 2.1. Given an AGG A with strategy graph
GA which is a tree of bounded degree, and player types
with strategy sets S1, . . . , Sk that are each connected
components of GA, if maxs |{i : s ∈ Si}| is bounded,
then an ε-Nash equilibrium can be computed in time
polynomial in |A|, 1/ε, n.

3 Hardness Results

In this section we state and prove our four hard-
ness results. We show that it is (1) NP–complete to
decide the existence of pure-strategy Nash equilibria,
and (2) PPAD complete to approximate general (mixed
Nash) equilibria for the classes of action graph games
that either (a) have action graphs of treewidth 1 or (b)
are symmetric (all agents are of a single type). Our
two hardness results for pure equilibria will come from
reductions from the NP–complete problem CIRCUIT-
SAT, and follow the approach of [29]. Our hardness
results for approximating mixed Nash equilibria are via
equilibria-preserving gadgets that let us reduce from the
PPAD-complete problem of computing equilibria in the
class of graphical games where the maximum degree is 3
and each player has only two possible strategies. We be-
gin by showing that action graph games are in the class
PPAD, which was independently discovered in [20].

Mapping Action Graph Games to Graphical
Games

We show the following result which reduces the
problem of computing a Nash equilibrium of an action
graph game to the problem of computing a Nash equi-
librium of a graphical game. Since the latter is in PPAD
[25], it follows that the former is in PPAD as well.

Theorem 3.1. Any action-graph game A can be
mapped in polynomial time to a graphical game G so that
there is a polynomial-time computable surjective map-
ping from the set of Nash equilibria of G to the set of
Nash equilibria of A.

We define a bounded division-free straight-line pro-
gram to be an arithmetic binary circuit with nodes per-
forming addition, subtraction, or multiplication on their
inputs, or evaluating to pre-set constants, with the ad-
ditional constraint that the values of all the nodes re-
main in [0, 1]. To prove Theorem 3.1, we show that
there exists a bounded division-free staight-line pro-
gram of polynomial size in the description of the ac-
tion graph game which, given a mixed strategy profile
M := {(pi,1, . . . , pi,|Si|)}n

i=1, computes, for every agent
i, i = 1, . . . , n, and for every pure strategy si, si ∈ Si, of
that agent, the expected utility that this agent gets for
playing pure strategy si. The proof then follows from
Theorems 1 and 2 of [9]. We defer the details of the
proof to the full version.

A Copy Gadget
As a preliminary to the hardness results of the

next two subsections, we describe a copy gadget which
will prove useful in both NP-completeness and PPAD-



Figure 1: The copy gadget—in any Nash equilibrium
Pr[s(c) = fc] = Pr[s(i) = fi].

completeness results. Intuitively, to simulate games G
of high treewidth by treewidth 1 action graph games
H, we create several “copies” of each player, but only
one copy of each edge relating players, thus ending
up with a very “sparse” simulation, whose treewidth
we can control. Explicitly, given an AGG A, and an
agent i whose strategy set consists of the two strategies
Si = {fi, ti} used only by player i, our copy gadget
will add two additional players a, c, of which player c
will be the “copy” and player a is an auxiliary player,
whose inclusion will allow player i’s strategies to be
disconnected from player c’s. We add strategies for a
and c that are {fa, ta} and {fc, tc} respectively, and set
the incentives so that in any Nash equilibrium Pr[s(i) =
ti] = Pr[s(c) = tc] (and Pr[s(i) = fi] = Pr[s(c) = fc]).

Definition 3.1. Given an AGG A = 〈P,S, G, u〉 and
an agent i with two strategy choices Si = {fi, ti} such
that no other player may play strategy fi, we create
AGG A′ = 〈P ′,S′, G′, u′〉 from A via the addition of
a copy gadget on i as follows:

• P ′ := P ∪ {a, c}.
• S′ := (S1, . . . , S|P |, Sa, Sc), where Sa = {fa, ta},

and Sc = {fc, tc}, where fa, ta, fc, tc 6∈ S.

• G′ consists of the graph G with the additional ver-
tices corresponding to fa, ta, fc, tc, and the directed
edges (fi, fa), (ta, fc), (fc, ta).

• u′ is identical to u for all strategies in S′\{Sa∪Sc},
and for a configuration D, u′(fa) = D(fi), u′(ta) =
D(fc), u′(fc) = 1− 2D(ta), and u′(tc) = 0.

See Figure 1 for a depiction of the copy gadget.

Lemma 3.1. Given an AGG A and an agent i, the
addition of a copy gadget on i yields A′ that satisfies
the following properties:

• The description size of A′ is at most a constant
larger than A.

• In the strategy graph GA′ , fc and tc are not path
connected to either fi or ti.

• In every ε2–Nash equilibrium with agent i’s profile
(pi,f , 1 − pi,f ), agent c’s profile will have |pc,f −
pi,f | ≤ ε (and |pc,t − pi,t| ≤ ε).

Proof. The first two properties follow directly from
Definition 3.1. For the third property, assume otherwise
and consider the case where pc,f > ε + pi,f . Agent a’s
expected utility for playing fa is pi,f , and is pc,f for
playing ta, thus our assumption that pc,f > ε + pi,f

implies that agent a must be playing ta with probability
at least 1− ε since the game is at ε2–equilibrium. Given
that a plays ta with probability at least 1 − ε, agent c
maximizes her utility by playing tc, and thus pc,f ≤ ε,
which contradicts our assumption that pc,f > ε + pi,f .
An analogous argument applies to rule out the case
pc,f < pi,f − ε.

3.1 PPAD-Completeness
Our PPAD hardness results are reductions from the

problem of computing equilibria in graphical games, and
rely on the following fact due to [5].

Fact 3.1. For the class of graphical games with n
players, maximum degree 3 and payoffs in {0, 1, 2}, it
is PPAD–complete to compute ε-Nash equilibria where
ε ∝ 1/poly(n).

Theorem 3.2. Computing a Nash equilibrium for
AGGs with strategy graph GA is PPAD-complete even
if treewidth(GA) = 1, and GA has constant degree.

Proof. From Theorem 3.1 this problem is in PPAD.
To show PPAD-hardness, we reduce from the known

PPAD-hard problem of Fact 3.1. Given an instance of
such a graphical game H, we construct an AGG A′H
with treewidth 1 and maximum degree 4 with similar
description size to H such that there a polynomial
time mapping from ε–Nash equilibria of A′H to the
ε–Nash equilibria of H. We construct A′H via the
intermediate step of constructing an AGG AH which
will be equivalent to H and might have large treewidth.
From AH , we construct A′H using our copy gadget to
reduce the treewidth of the associated strategy graph.
See Figure 2 for a depiction of the reduction.

The construction of AH is straightforward: for
each player iH in the graphical game, we have a
corresponding player iA in the AGG with strategy set
SiA

= {fi, ti}, corresponding to the two strategies that
iH may play in H. For each undirected edge between
players (i, j) ∈ H, we add directed edges between the
t nodes (tj , ti), (ti, tj), and edges between the f nodes
(fj , fi), (fi, fj) to the strategy graph GAH

of AH . We



define utilities u by simulating the utility functions from
the original game H: from each f strategy connected
to iA in the AGG we know that if it is played then
the corresponding t strategy is not played and vice
versa; thus we have recovered the strategy choice of each
neighbor of IH in original graphical game; we then apply
the utility function of the graphical game to compute
the utility in the AGG. We do the symmetric procedure
for the t nodes of the AGG. From the construction, it is
clear that H and AH represent the same game via the
correspondence iH → iA, and in particular an ε–Nash
equilibrium of one game will correspond to an ε–Nash
equilibrium of the other game via the natural mapping.

We obtain A′H from AH by making three copies
of each iA via the copy gadget. Thus for each i there
are agents iA, i1A, i2A, i3A with Sik

A
= {fk

iA
, tkiA

}. Finally,
for each of the (at most three) outgoing edges of fiA

that are not part of copy gadgets, i.e the edges of
the form (fiA

, fjA
), we replace the edge by (fk

iA
, fjA

),
with each fk

iA
having at most one outgoing edge, and

modify the utility function u analogously so as to have
the utility of strategy fjA

depend on fk
iA

instead of
fiA

. Analogous replacements are made for the outgoing
edges of tiA . Since the copied strategies fk

iA
, tkiA

are
disconnected from the original strategies fiA , tiA the
longest path in the strategy graph GA′H associated with
A′H has length at most 4, with maximum degree 6, and
treewidth(GAH

) = 1. (See Figure 2.) Lemma 3.1
guarantees that the transformation from AH to A′H
increases the representation size by at most a constant
factor. Further, from an 1

144ε2–Nash equilibrium of A′H
we can extract an ε–Nash equilibrium of AH by simply
ignoring the new players: all of the copies ikA of a player
iA will play strategies with probabilities within 1

12ε of
the probabilities of playing the original by Lemma 3.1;
thus the joint distribution of any triple of these will
have joint distribution within 1

4ε of the “true” joint
distribution; since each utility has magnitude at most 2
the computed utilities will be within 1

2ε of the utilities
computed in AH ; thus each of the mixed strategies of a
player iA in A′H , interpreted as a strategy in AH will
yield utility within ε of optimal. From Fact 3.1 we
conclude that finding an 1

144ε2–Nash equilibrium of A′H
is PPAD complete for any polynomial ε, yielding the
desired result.

We now turn our attention to AGGs that have a
constrained number of player types.

Theorem 3.3. Computing a Nash equilibrium for
AGGs with 10 player types is PPAD-complete even if
the strategy graph GA has bounded degree.

To show PPAD-hardness, as above we reduce from
the known PPAD-hard problem of computing Nash

Figure 2: The transformation from the graphical game
H to the AGG A′H . For simplicity, the internal
strategies and edges associated with the copy gadgets
are omitted.

equilibria in graphical games of degree at most 3 where
each player chooses between 2 strategies f, t and has
utility 0, 1, or 2. Given such a graphical game H,
we will reduce it to an AGG AH that has strategies
fi, ti corresponding to the two strategies that agent i
may choose in H. Intuitively, if our reduction is to be
successful there are several properties of H that seem
necessary. First, in every Nash equilibrium of H, there
must be at least one agent playing either fi or ti for
every i. This is accomplished by giving agents a bonus
payment if they choose either of the two strategies of a
sparsely-played fi, ti pair. Second, there must be some
unambiguous mapping between the number of agents
playing fi and ti in AH to a choice of actions of agent i in
H. This is accomplished via the MAJORITY function:
if more agents play fi than ti in AH , we say that i plays
f . This motivating intuition is formalized in the proof
below.
Proof of Theorem 3.3: From Theorem 3.1 this problem
is in PPAD.

To show PPAD-hardness, we reduce from the
PPAD-hard problem of Fact 3.1, namely, computing ε-
Nash equilibria in graphical games of degree at most 3
where each player chooses between 2 strategies and has
utility 0, 1, or 2, where ε is chosen to be inverse poly-
nomial in n but less than 1

18n . Given an instance of
such a graphical game H with n agents, we construct
the AGG AH so that an ε2–Nash equilibrium of AH can



be efficiently mapped to an ε–Nash equilibrium of H.
We construct AH = 〈P,S, GA, u〉 as follows:

• P := {1, . . . , 3cn} with c > 64
ε2 .

• Let the strategy set S := {f1, t1, . . . , fn, tn} where
strategies fi and ti correspond to the two strategies
of the ith agent of H; the strategy sets for each
player are defined as follows: since the graph of H
has degree ≤ 3, we may trivially 10-color it so that
no nodes within distance 2 are of the same color;
for each of the ten colors, chose 1

10 of the players
P (in the action graph game) and let their strategy
set consist of those fi, ti with i of that color.

• For every undirected edge (i, j) in the graph of H,
the strategy graph GA has the eight directed edges
(fi, fj), (fj , fi), (fi, tj), (tj , fi), (ti, fj), (fj , ti),
(ti, tj), (tj , ti). Furthermore, for all i ∈ {1, . . . , n},
GA contains the edges (fi, ti), (ti, fi) and the self
loops (fi, fi) and (ti, ti).

• To simplify the description of the utility function
u, it will be useful to define the indicator functions
I1[D(f1, t1)], . . . , In[D(fn, tn)] where

Ii[D(fi, ti)] :=
{

f if D(fi) ≥ D(ti)
t if D(fi) < D(ti)

Let u assign utility to fi as a function of D(ν(i)),
where ν(i) denotes i’s neighbors, by applying the
utility function for agent i from H on the simu-
lated actions of her neighbors j1, j2, j3 evaluated as
Ij1 [D(fj1 , tj1)], Ij2 [D(fj2 , tj2)], and Ij3 [D(fj3 , tj3)],
respectively. Finally, if D(fi)+D(ti) ≤ c, u assigns
an extra 100 utility to strategies fi and ti.

Observe that the description size of AH is polynomial
in cn, and thus is polynomial in the description size of
H (since 1

ε and hence c are polynomial in n). From
Fact 3.1, our theorem will follow if we show that any
ε2–Nash equilibrium of AH can be efficiently mapped
to an ε–Nash equilibrium of H.

Consider the map from mixed strategy profiles of
AH to mixed strategy profiles of H given by φ : MA →
MH that assigns MH = [(p1,f , 1 − p1,f ), . . . , (pn,f , 1 −
pn,f )] by setting pi,f := PrMA(Ii = f) where the prob-
ability is taken over the distribution over ∆ defined by
MA. It is clear that the map φ can be computed effi-
ciently, as it simply involves computing the probabilities
that certain numbers of independent random variables
take a certain value.

Before showing that φ maps ε2–equilibria to ε–
equilibria we first show that the “extra utility” of 100
correctly incentivizes a large number of players to play
on each strategy pair. We observe that in any mixed

strategy profile there will be at least one agent, j,
who has probability at most 1/3 of receiving a payoff
of at least 100 (since in any outcome, at most cn of
the 3cn players receive this extra payoff of 100, there
must be some player who receives this payoff with
probability no more than 1/3). Since his payoff from the
simulation of H is at most 2, such an agent’s expected
utility is at most 100/3 + 2 < 36 − ε, and thus any
Nash equilibrium mixed strategy profile must satisfy
100Pr(D(fi) + D(ti) < c) < 36, ∀i ∈ {1, . . . , n}, for
if this were not the case, then agent j could improve
her expected utility to at least 36 by always choosing
strategy fi, contradicting the fact that the players are
in equilibrium. Thus with probability at least 64% we
have D(fi) + D(ti) ≥ c, in which case we also have
max(D(fi), D(ti)) ≥ c

2 . Since 64% > 1
2 we have:

E [max (D(fi), D(ti))] >
c

4
.

We now proceed with the proof of correctness of
the map φ. Let MA be an ε2–Nash equilibrium of
AH , and MH = φ(MA). Consider a player i in the
graphical game, and a strategy of his that he plays with
probability at least ε. Without loss of generality let this
strategy be fi. We show that his utility for playing fi is
at least his utility for playing his other choice, ti, minus
ε; taken together, these statements imply that MH is an
ε–Nash equilibrium of the graphical game, as desired.

Since E [max (D(fi), D(ti))] > c
4 , we have that

if fi is played with probability at least ε, namely if
Pr(D(fi) ≥ D(ti)) ≥ ε then (by Chernoff bounds)
we must have E[D(fi)] ≥ c

6 . This implies that for at
least one of the 3cn players j in AH , his probability of
playing fi is at least 1

18n , which is at least ε. Thus,
since MA is, by assumption, an ε2–Nash equilibrium,
we have that player j’s utility for playing fi is at
most ε below his utility for playing ti, when the other
players play from MA. Since, by construction, the
distribution of the actions of i’s neighbors j1, j2, j3 (in
the graphical game) is identical to the distribution of
Ij1 [D(fj1 , tj1)], Ij2 [D(fj2 , tj2)], Ij3 [D(fj3 , tj3)] (since the
marginals are equal by definition, and the marginals are
independent since j1, j2, j3 and i are played by different
player types due to our 10-coloring) we conclude that
the expected payoffs for ti, fi in the action graph game
are identical to those in the graphical game, plus the
constant coming from the probability of the extra 100
payoff. Thus since the expected utility in the AGG for fi

is at most epsilon less than the expected utility of ti, this
also holds in the original graphical game H, which was
exactly the conclusion we needed to prove that the ε2-
Nash equilibria MA in AH maps to an ε-Nash equilibria
in H. Thus approximating Nash equilbiria of AGGs of



constant degree and number of player types is PPAD
hard.

3.2 NP–Completeness
Both of our NP–completeness results are reductions

from the NP-Complete problem CIRCUITSAT and
follow an approach employed in [29].

Fact 3.2. It is NP-complete to decide satisfiability
for the class of circuits consisting of AND, OR, and
NOT gates, with maximum degree 3 (in-degree plus out-
degree).

In our reductions from CIRCUITSAT, given a cir-
cuit C, we construct an AGG AC that computes C in
the sense that pure strategy Nash equilibria of AC map
to valid circuit evaluations. To this game we add two
agents that have a simple pure-strategy equilibrium if C
evaluates to true, but when C evaluates to false play
pennies—a simple game that has no pure strategy Nash
equilibria. Thus the existence of a pure strategy Nash
equilibrium is equivalent to the satisfiability of C.

Theorem 3.4. Deciding the existence of a pure strat-
egy Nash equilibrium for AGGs with strategy graph GA

is NP-complete even if treewidth(GA) = 1, and GA has
constant degree.

Proof. Membership in NP is clear. To show hardness,
given a circuit C, we construct the associated AGG
AC := 〈P,S, GA, u〉 as follows:

• P := {1, . . . , n, p1, p2}, where n is the number of
gates in C, and the gate corresponding to player n
is the output gate.

• S := ((f1, t1), . . . , (fn, tn), (fp1 , tp1), (fp2 , tp2)).

• For every pair of gates i, j for which the output
of gate i is an input to gate j, GA has the edges
(fi, fj), and (fi, tj). Furthermore, we add edges
(fn, fp1), (fn, tp1), (fn, fp2), (fn, tp2), and the edges
(fp1 , fp2), (fp1 , tp2), (fp2 , fp1), (fp2 , tp1).

• The utility function u is defined as follows: if agent
i corresponds to an input gate, then strategies
fi, ti both have utility 0. For any other agent
i corresponding to a gate of C, the payoff of
strategy fi is 1 or 0 according to whether fi

is the correct output value of gate i given the
values corresponding to the strategies played by
neighboring agents/strategies. Similarly for the
payoff for strategy ti. If D(fn) = 0, then fp1 and
tp1 have utility 0, otherwise the utility of p1 is 1 if
D(fp1) = D(fp2), and is 0 otherwise. The utility of
p2 is 1 if D(fp1) 6= D(fp2), and is 0 otherwise.

From the construction it is clear that if C is satisfiable
then there is a pure strategy profile for agents 1, . . . , n
with agent n playing tn, such that agents 1, . . . , n can
not improve their utility by deviating from their strate-
gies. Furthermore, p1 will be indifferent between her
strategies, and p2 will play the opposite of p1; in partic-
ular, there will be a pure strategy Nash equilibrium. If
C is not satisfiable, then any pure strategy profile that is
an equilibrium for agents 1, . . . , n will have D(fn) = 1,
and thus p1 will be incentivized to agree with p2, and p2

will be incentivized to disagree, and thus AC will admit
no pure strategy Nash equilibrium.

To complete the proof, note that we can apply the
copy gadget to each agent of AC , as was done in the
proof of Theorem 3.2 to yield the game A′C that has
strategy graph of treewidth 1, and a mapping from
equilibria of A′C to equilibria of AC .

Theorem 3.5. Deciding the existence of a pure strat-
egy Nash equilibrium for symmetric AGGs (1 player
type) is NP-complete even if the strategy graph GA has
bounded degree.

Proof. Membership in NP is clear; to show hardness
we proceed as was done in the proof of Theorem 3.4,
and obtain AGG AC from circuit C. Now, we make
AC symmetric by retaining the same number of agents,
but allowing each of them to pick any of the strategies.
We modify the strategy graph G by adding edges
(fx, tx), (tx, fx), (fx, fx), (tx, tx) for each player x from
AC , and extend the utility function u so that if D(fx)+
D(tx) > 1 then strategies fx and tx have utility
−1. Thus in any pure strategy Nash equilibrium
D(fx) + D(tx) = 1, and the reasoning in the proof of
Theorem 3.4 applies to complete our reduction.

4 Conclusions and Open Problems

The results in this paper are of a negative nature. While
we exhibit a simple FPTAS for the case of a bounded
number of player types and bounded treewidth, we show
that neither of these conditions can be relaxed if we
hope to retain a polynomial time solution. Unfortu-
nately, this suggests that the search must continue for
computationally tractable models of large-scale games.
We leave this as the main open question, and note that
perhaps there are other restricted classes of games that
circumvent our hardness results while retaining some of
the motivating features of general action graph games.
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