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Abstract

For a broad class of practically relevant distribution properties, which includes entropy and
support size, nearly all of the proposed estimators have an especially simple form. Given a set of
independent samples from a discrete distribution, these estimators tally the vector of summary
statistics—the number of domain elements seen once, twice, etc. in the sample—and output
the dot product between these summary statistics, and a fixed vector of coefficients. We term
such estimators linear. This historical proclivity towards linear estimators is slightly perplexing,
since, despite many efforts over nearly 60 years, all proposed such estimators have significantly
suboptimal convergence, compared to the bounds shown in [32, 33].

Our main result, in some sense vindicating this insistence on linear estimators, is that for
any property in this broad class, there exists a near-optimal linear estimator. Additionally, we
give a practical and polynomial-time algorithm for constructing such estimators for any given
parameters.

While this result does not yield explicit bounds on the sample complexities of these estimation
tasks, we leverage the insights provided by this result, to give explicit constructions of near-
optimal linear estimators for three properties: entropy, L1 distance to uniformity, and for pairs
of distributions, L1 distance.

Our entropy estimator, when given O( n
ϵ logn ) independent samples from a distribution of sup-

port at most n, will estimate the entropy of the distribution to within accuracy ϵ, with probability
of failure o(1/poly(n)). From the recent lower bounds given in [32, 33], this estimator is optimal,
to constant factor, both in its dependence on n, and its dependence on ϵ. In particular, the inverse-
linear convergence rate of this estimator resolves the main open question of [32, 34], which left
open the possibility that the error decreased only with the square root of the number of samples.

Our distance to uniformity estimator, when given O( m
ϵ2 logm ) independent samples from any

distribution, returns an ϵ-accurate estimate of the L1 distance to the uniform distribution of
support m. This is the first sublinear-sample estimator for this problem, and is constant-factor
optimal, for constant ϵ.

Finally, our framework extends naturally to properties of pairs of distributions, including
estimating the L1 distance and KL-divergence between pairs of distributions. We give an explicit
linear estimator for estimating L1 distance to accuracy ϵ using O( n

ϵ2 log n ) samples from each
distribution, which is constant-factor optimal, for constant ϵ.



1 Introduction

Our algorithmic toolbox is large. Given independent samples from a distribution, one might imagine
a wide gamut of algorithmic strategies for recovering information about the underlying distribution.
When limited by data instead of computational resources, a brute-force search through hypotheses
might be the best option. More specifically, one might be guided by a Bayesian heuristic, or other-
wise try to optimize “likelihood”. More firmly in the realm of polynomial-time algorithms, convex
programming is a powerful tool for rapidly traversing a sufficiently structured search space. At the
far extreme of simplicity, are linear estimators. Given a vector of summary statistics of the samples,
a linear estimator multiplies each entry by a fixed, position-dependent constant and returns the sum.

For the broad and practically relevant class of “symmetric” distribution properties—which in-
cludes entropy, support size, distance to uniformity, and for pairs of distributions, such distance
metrics as L1 distance and KL-divergence—despite the plethora of algorithmic options and a rich
history of study by both the statistics and Computer Science communities, nearly all the proposed
estimators are these algorithmically-hollow linear estimators.

Because of, or perhaps despite, their rather pedestrian nature, linear estimators have many fea-
tures to recommend: they are easy to use, easy to describe, and, because of the especially transparent
fashion in which they use the data, generally easy to analyze. These niceties though make it even
more urgent to resolve the question: “How good are linear estimators?”

Despite much effort constructing linear estimators during the past century, and perhaps even
more effort analyzing these estimators, for many symmetric distribution properties the best known
linear estimators require many more samples than necessary to achieve a desired accuracy of estima-
tion. Specifically, to achieve constant additive error (with high probability) for any of the following
properties: entropy, distinct elements, L1 distance and KL-divergence, existing linear estimators re-
quire Θ(n) samples, where n is a bound on the support size of the distributions being sampled, and
is a natural parameterization of the sample complexities of these estimation problems. Correspond-
ing statements hold for estimating support size and distance to uniformity, for which the sample
complexities are parameterized slightly differently.1

Can one do any better? Yes. Recently, in a break from traditional approaches, we applied the
algorithmic power of linear programming to these estimation tasks, yielding estimators for entropy
and support size that require only O(n/ log n) samples [33, 34]. This intriguing state of affairs
provokes the question:

What richness of algorithmic machinery is needed to effectively estimate these properties?

Answers to this question could serve to guide future endeavors to construct and analyze estimators.
Additionally, questions of this nature lie at the philosophical core of the theoretical approach to
computing.

The main result of this paper is the near-optimality of linear estimators for additively estimating a
subclass of symmetric distribution properties that includes entropy, variants of distance to uniformity,
and support size (which may be viewed as a version of the distinct elements problem). Our proof is
constructive, in that we give a relatively practical and polynomial-time algorithm which, on input
n, k, and the property in question, outputs a linear estimator which, on input k independent samples
from a distribution of support at most n, will almost surely return an ϵ-accurate approximation of
the property value; this estimator is near-optimal in the sense that there exist k′ = k(1− o(1)), and
ϵ′ = ϵ(1 − o(1)) and two distributions of support at most n whose property values differ by ϵ′, yet
which cannot be distinguished given sets of k′ samples, with any fixed probability greater than 1/2.

1The problem of estimating support size is typically parameterized in terms of a lower bound, 1/n on the proba-
bility of any domain element. The problem of estimating the distance to the uniform distribution on m elements is
parameterized by m.
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1.1 Techniques

Intuitively, this result hinges on a new connection between constructing “good” lower bounds, and
“good” linear estimators.

The canonical approach to creating lower bounds for property estimation consists of finding a
pair of distributions, A+, A− with rather different property values, yet which cannot be distinguished
given the specified number of samples. The condition of indistinguishability is very stringent, and
requires showing that the distribution of summary statistics derived from a set of samples from
A+ is close in total variation (L1) distance to the corresponding distribution for samples from A−.
These distributions of summary statistics are complex discrete high-dimensional distributions, which
are not well understood. Recently, in [33] we showed a central limit theorem, and related tools,
that help characterize these distributions in special cases. This limit theorem suggests and enables
a principled approach to constructing lower bounds for property estimation. Here, we show the
perhaps surprising result that despite the effort required to assemble the required tools, the condition
of indistinguishability in this framework can be roughly expressed via an intuitive set of linear
constraints.

Turning, for a moment, to the side of constructing linear estimators, a natural and popular
approach is to represent the “characteristic function” of the property in question as a linear combi-
nation of “Poisson functions” poi(x, i) , e−xxi

i! . [13, 25, 26, 27, 30, 36] Indeed, in [26, 27], Paninski
showed the existence of a sublinear-sample linear estimator for entropy via a simple nonconstructive
proof that applies the Stone-Weierstrass theorem to the set of Poisson functions. We show that the
task of constructing such a representation of a given accuracy can also be framed as a set of linear
constraints.

Thus general techniques for proving property testing upper and lower bounds can both be char-
acterized by linear constraints. One may then ask how the performance of the best such lower bound
compares to the performance of the best such upper bound. Optimizing each notion of performance
relative to the corresponding linear constraints can be expressed as a linear program. Amazingly,
though not unexpectedly, these two linear programs—one for constructing good lower bound example
pairs, and one for constructing good linear estimators, are dual to each other.

The fundamental complication, however, is that the range of parameters for which the lower
bound program will be pertinent, and those for which the estimator program will be pertinent, are
non-intersecting. Intuitively, it is clear that these parameter ranges must be disjoint, as one would
not expect the exact correspondence between optimal lower bounds of this form, and optimal linear
estimators, as would be implied if these programs were dual for pertinent parameters. Thus the main
technical challenge is relating optimal values of the lower bound program to optimal values of the
estimator program corresponding to slightly different parameters. Establishing this relation reveals
some beautiful math involving the exponentials of infinite “Poisson-matrices”.

1.2 Explicit Linear Estimators and Bounds on Sample Complexity

Given that the proof of near-optimality of the linear estimators is via duality, unsurprisingly, it does
not yield any explicit bounds on the sample complexities of these estimation problems. Nevertheless,
inspired by numerical solutions to instantiations of these linear programs, we give an explicit descrip-
tion of a linear estimator for entropy which, given O(1ϵ

n
logn) independent samples from a distribution

of support at most n returns an ϵ-accurate estimate with probability 1− o( 1
poly(n)). Given the recent

lower-bounds on estimating entropy in [33], our linear estimator is optimal, up to constant factor,
both in its dependence on n and its dependence on ϵ. This is the first explicit sublinear-sample linear
estimator for entropy, and the inverse-linear convergence rate settles the main open question in [34],
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which left the possibility that the accuracy of an optimal estimator decreases only as the square root
of the number of samples.

The machinery that we develop for constructing the estimator for entropy is robust and general,
and we believe it can be employed to yield near-optimal estimators for other properties. As a simple
illustration of this, we give an explicit linear estimator for estimating the distance to uniformity.

Given O
(

1
ϵ2
· m
logm

)
independent samples from a distribution of any support, our estimator will

compute the L1 distance to Unif(m) to within accuracy ϵ, with high probability. The lower-bound
construction in [33] can be adapted to reveal that this is tight, to constant factor, for any constant
ϵ. It is worth contrasting the above bounds for approximating distance to Unif(m), with the
asymmetric–error problem of distinguishing a distribution that is uniform on m elements from a
distribution that is at least ϵ away from Unif(m), which has received some attention [10, 19]. For
this asymmetric problem, θ(m1/2) samples suffice and are necessary, though the proper dependence
on ϵ is unclear.

1.3 Further Directions

Finally, we note that our entire framework seems to apply to the setting of properties of pairs of
distributions. Given a set of samples from A, and a set of samples from B, how close are A and B,
in total variation distance (L1 distance), or some other distance metric? This task lies at the heart
of data analysis, and it is both shocking and embarrassing that we do not understand the sample
complexity of this task, or how to estimate this distance near–optimally. We strongly believe but
do not show in this extended abstract that our result showing the optimality of linear estimators
and its proof extend naturally to this setting, and in particular, there exist (previously unknown)
linear estimators that are near-optimal for estimating L1 distance and KL-divergence. As a proof of
concept, we leverage the machinery developed for the linear estimator of entropy to give an explicit
linear estimator for L1 distance, and leverage the lower bounds of [33] to show that it is constant
factor–optimal for any constant accuracy, ϵ.

2 Related Work

Linear programming duality, and, more generally, SDP duality, are beloved tools for showing the
optimality of algorithms. Perhaps the most clear example of this is the celebrated max-flow min-cut
theorem, which reasons that any feasible flow provides a lower bound on the optimal min-cut, and vice
versa. This powerful principle has spawned much work in approximation algorithms [1, 3, 17, 24, 31].
Our use of duality is slightly different—rather than having an algorithm based on a linear program
then using duality to argue that on each instance, the returned value is near optimal, we write a linear
program that searches for algorithms (albeit among this very restrictive class of linear estimators).
We then use duality to argue that the returned algorithm is near optimal.

2.1 Property Estimation

There has been much work on estimating a variety of symmetric distribution properties, with con-
tributions from the statistics, computer science, and information theory communities. The specific
problem of estimating the support size of an unknown distribution (also referred to as the problem
of estimating the number of species in a population, or the “distinct elements problem”) has been
much-studied and arises in many contexts (see [12] for several hundred references). Because arbitrar-
ily many species can lie in an arbitrarily small amount of probability mass, analysis of the sample
complexity of the support size problem is generally parameterized in terms of n, where elements of
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the distribution are restricted to have probability mass at least 1/n. Tight multiplicative bounds of
Ω(n/α2) for approximating the entropy to a multiplicative factor of α are given in [5, 15] though
they are somewhat unsatisfying as the worst-case instance is distinguishing a distribution with sup-
port size one from a distribution of support size α2. The first strong lower bounds for additively
approximating the support size were given in [29], showing that for any constant δ > 0, any esti-
mator that obtains additive error at most (1/2 − δ)n with probability at least 2/3 requires at least
n/2Θ(

√
logn·log logn) samples. Recent work [33] shows a tight bound of O( n

logn), for estimating this
property to accuracy ϵn for any constant ϵ.

For the problem of entropy estimation, there has been recent work from both the computer science
and statistics communities. Batu et al. [6, 7, 8], Guha et al. [20], and Valiant [35] considered the
problem of multiplicatively estimating the entropy. For the problem of additively estimating entropy,
recent work [34] gives an estimator that uses O( n

ϵ2 logn
) samples, and returns an ϵ accurate estimate.

The recent lower bounds in [33] show that O( n
ϵ logn) samples are necessary. Thus the dependence

on n is tight, though the question of whether there exists an estimator achieving an inverse-linear
convergence rate—as opposed to the much slower inverse square root rate—remained.

For the problems of estimating distance to uniformity, and L1 distance, there has been some work
focusing on the asymmetric error setting: namely, distinguishing a uniform distribution from one
that is far from uniform, and in the case of L1 distance, “identity testing”—given samples from a pair
of distributions, distinguishing whether the two distributions are the same, versus having distance
.1. Algorithms for these tasks require θ(n1/2), and θ̃(n2/3) samples, respectively. [9, 10, 19]

There has been much work on estimating the support size (and the general problem of estimating
frequency moments) and estimating the entropy in the setting of streaming, in which one has access
to very little memory and can perform only a single pass over the data [2, 4, 11, 14, 21, 22, 23, 37].

2.2 Linear Estimators for Entropy

Perhaps because of the practical importance of estimating entropy, there has been a long line of
research proposing and analyzing linear estimators for entropy. As an understanding of approaches
to constructing such estimators will prove useful in the remainder of this paper, we briefly describe
some of this work here.

Before describing some of the commonly used estimators, it will be helpful to define the fingerprint
of a set of samples, which, intuitively, removes all the label information from the set of samples.

Definition 1. Given a sequence of samples X = (x1, . . . , xk), the associated fingerprint, denoted
FX , is the “histogram of the histogram” of the samples. Formally, FX is the vector whose ith

component, FX
i is the number of elements in the domain that occur exactly i ≥ 1 times in sample

X. In cases where the sample X is unambiguous, we omit the superscript.

For estimating entropy, or any other property whose value is invariant to relabeling the distribu-
tion support (a “symmetric” property), the fingerprint of a sample contains all the useful information
about the sample: for any estimator that uses the actual samples, there is an estimator of equal per-
formance that takes as input only the fingerprint of the samples (see [6, 10], for an easy proof).
Note that in some of the literature the fingerprint is alternately termed the pattern, histogram, or
summary statistics of the sample.

Perhaps the three most commonly used estimators for entropy are the following [26]:

• The ‘naive’ estimator: the entropy of the empirical distribution, namely, given a fingerprint
F derived from a set of k samples, Hnaive(F) ,

∑
iFi

i
k | log

i
k |.

• The Miller-Madow corrected Estimator [25]: the naive estimator Hnaive corrected to try
to account for the second derivative of the logarithm function, namely HMM (F) , Hnaive(F)+
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(
∑

i Fi)−1
2k , though we note that the numerator of the correction term is sometimes replaced by

various other quantities, see [28].

• The jackknifed naive estimator [16]: HJK(F) , k ·Hnaive(F) − k−1
k

∑k
j=1H

naive(F−j),

where F−j is the fingerprint given by removing the contribution of the jth sample.

These estimators and their many variants generally perform very well provided that all of the
elements of the support occur with large probability. The problem with these estimators can be sum-
marized as their inability to appropriately deal with samples from distributions where a significant
portion of of the probability mass lies in domain elements not represented in the sample. For exam-
ple, given o(n) samples from the uniform distribution on support n, these estimators generally fail
to recover an accurate estimate. In particular, these estimators make no attempt to understand the
(potentially significant) contribution towards the entropy of the distribution that comes from the
“unseen” portion of the distribution. The estimator we explicitly construct in Appendix A, in some
sense, is specifically designed to account for this contribution.

No explicit sublinear-sample estimators were known for additively estimating entropy to within
even a constant. Nevertheless, in [26, 27], Paninski proved the existence of a sublinear-sample
estimator; the proof is non-constructive, via a direct application of the Stone-Weierstrass theorem to
the set of Poisson functions. Our approach falls within this framework, though rather than employing
the powerful but nonconstructive Stone-Weierstrass theorem, we explicitly construct an estimator,
via a Chebyshev polynomials construction.

This framework, which is described in Section 5.2, seems well-known in the literature prior
to [26], even dating back to [25] in the 1950’s. The fundamental difficulty, which we overcome,
essentially comes down to approximating the logarithm function via a linear combination of Poisson
functions (see Appendix A). Such a representation has been attempted in the past, either explicitly
or implicitly in [13, 25, 30, 36], though these works were unable to succeed in producing an accurate
approximation of the logarithm function in the small-probability regime.

3 Definitions and Examples

We state the key definitions that will be used throughout, and provide some illustrative examples.

Definition 2. A distribution on [n] = {1, . . . , n} is a function p : [n]→ [0, 1] satisfying
∑

i p(i) = 1.
Let Dn denote the set of distributions over domain [n].

Throughout, we use n to denote the size of the domain of our distribution, and k to denote the
number of samples that we have access to.

We now define a linear estimator.

Definition 3. A k-sample linear estimator α is defined by a set of at least k coefficients, α =
(α1, . . . , αk). The estimator is defined as the dot product between the fingerprint vector F of a set of
k samples, and the vector α, namely Sk(F) ,

∑k
i=1 αiFi.

We now define the notion of a symmetric property. Informally, symmetric properties are those
that are invariant to renaming the domain elements.

Definition 4. A property of a distribution is a function π : Dn → R. Additionally, a property is
symmetric if, for all distributions D, and all permutations σ, π(D) = π(D ◦ σ).

Analogous to the fingerprint of a set of samples, is what we call the histogram of the distribution,
which captures the number of domain elements that occur with each probability value.
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Definition 5. The histogram of a distribution p is a mapping h : (0, 1] → Z, where h(x) = |{i :
p(i) = x}|.

Since h(x) denotes the number of elements that have probability x, it follows that
∑

x:h(x)̸=0 h(x)
equals the support size of the distribution. The probability mass at probability x is x · h(x), thus∑

x:h(x) ̸=0 x · h(x) = 1, for any histogram that corresponds to a distribution.
It is clear that any symmetric property is a function of only the histogram of a distribution.

Finally, a symmetric property is linear, if the property value is a linear function of the histogram:

Definition 6. A symmetric property π is linear if there exists some function fπ : [0, 1] → R which
we term the characteristic function of π, such that for any distribution A with histogram hA,

π(A) =
∑

x:hA(x) ̸=0

h(x)fπ(x).

We now give several examples of symmetric linear properties:

Example 7. The (Shannon) entropy of a discrete distribution p ∈ Dn with histogram h is given by
H(h) ,

∑n
i=1 p(i)| log p(i)| =

∑
x:h(x)̸=0 h(x)f(x), for the function f(x) , x| log x|.

Example 8. The support size of a discrete distribution p ∈ Dn with histogram h is given by∑
x:h(x) ̸=0 h(x)f(x), for the function f(x) , 1.

Example 9. The total variation distance between a discrete distribution p ∈ Dn with histogram h and
a uniform distribution on s elements can be approximated to within a factor of 2 as

∑
x:h(x)̸=0 h(x)f(x),

for the function

f(x) ,
{
x for x ≤ 1

2s

|x− 1
s | for x > 1

2s .

It will also be essential to have a distance metric between distributions with respect to which the
class of properties in question are continuous:

Definition 10. For two histograms h1, h2, we define the relative earthmover distance between them,
R(h1, h2), as the minimum cost, over all schemes of moving the probability mass of the first histogram
to yield the second histogram, where the cost per-unit probability of moving mass from probability x
to y is | log(x/y)|.

A distribution property π is c-relative earthmover continuous if for all distributions h1, h2, we
have |π(h1)− π(h2)| ≤ c ·R(h1, h2).

A linear property π with characteristic function fπ is c-relative earthmover continuous if for all
x, y ∈ (0, 1] we have |fπ(x)x − fπ(y)

y | ≤ | log(x/y)|.

We provide an example:

Example 11. Consider a sequence of fish species, found as samples from a certain lake, X =
(trout, salmon, trout, cod, cod, whale, trout, eel, salmon). We have FX = (2, 2, 1), indicating that
two species occurred exactly once (whale and eel), two species occurred exactly twice (salmon and
cod), and one species occurred exactly three times (trout).

Suppose that the true distribution of fish is the following:

Pr(trout) = 1/2, P r(salmon) = 1/4,

P r(cod) = Pr(whale) = Pr(eel) = Pr(shark) = 1/16.
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The associated histogram of this distribution is h : R+ → Z defined by h(1/16) = 4, h(1/4) = 1,
h(1/2) = 1, and for all x ̸∈ {1/16, 1/4, 1/2}, h(x) = 0. If we now consider a second distribution
over {a, b, c} defined by the probabilities Pr(a) = 1/2, P r(b) = 1/4, P r(c) = 1/4, and let h′ be

its associated histogram, then the relative earthmover distance R(h, h′) = 1
4 | log

1/4
1/16 |, since we must

take all the mass that lies at probability 1/16 and move it to probability 1/4 in order to turn the first
distribution into one that yields a histogram identical to h′.

3.1 Poisson Samples

To understand the main ideas, it will be helpful to have an intuitive understanding of the distribution
of the fingerprint corresponding to a set of k samples from histogram h. This distribution intimately
involves the Poisson distribution. Throughout, we use Poi(λ) to denote the Poisson distribution

with expectation λ, and for a nonnegative integer j, poi(λ, j) , λje−λ

j! denotes the probability that a
random variable distributed according to Poi(λ) takes value j. Additionally, for integers i ≥ 0, we
refer to the function poi(x, i), viewed as a function of the variable x, as the ith Poisson function.

Given a fingerprint corresponding to a set of k samples from a distribution p, the number of
occurrences of any two elements are not independent; however, if instead of taking k samples, we
chose k′ ← Poi(k) according to a Poisson distribution with expectation k and then take k′ samples
from p, the number of occurrences of each domain element i ∈ [n] will be independent random
variables with distributions Poi (k · p(i)) . This independence is quite helpful when arguing about
the structure of the distribution of such fingerprints.

We provide a clarifying example:

Example 12. Consider the uniform distribution on [n], which has histogram h such that h( 1n) = n,
and h(x) = 0 for x ̸= 1

n . Let k
′ ← Poi(5n) be a Poisson-distributed random number, and let X be

the result of drawing k′ independent samples from the distribution. The number of occurrences of
each element of [n] will be independent, distributed according to Poi(5). Note that FX(i) and FX(j)
are not independent (since, for example, if FX(i) = n then it must be the case that FX(j) = 0, for
i ̸= j). A fingerprint of a typical trial will look roughly like F(i) ≈ n · poi(5, i).

Since k′ ← Poi(k) is closely concentrated around k, one might hope that in terms of most proper-
ties of interest, there is little difference between considering k-sample fingerprints and Poi(k)-sample
fingerprints. The following easy fact, whose proof follows immediately from standard tail bounds for
Poisson distributions, allows us to prove statements about k-sample fingerprints by considering the
structurally more simple Poi(k)-sample fingerprints.

Fact 13. For sufficiently large k, for any estimator that estimates entropy to within error ϵ with
probability at least 1 − δ when given a sample of size k′ ← Poi(k), there is an estimator that has
error at most ϵ with probability at least 1− δ− e−k.9 and takes as input a set of k · (1+o(1)) samples.

We now consider the distribution of the ith entry of a Poi(k)-sample fingerprint, F(i). Since
the number of occurrences of different domain elements are independent, F(i) is distributed as the
sum of n independent 0, 1 random variables Y1, . . . , Yn, where Pr[Yj = 1] = poi(k · p(j), i) is the
probability that the jth domain element occurs exactly i times in sample X. Thus

E[F(i)] =
∑
j∈[n]

poi(k · p(j), i) =
∑

x:h(x)̸=0

h(x) · poi(kx, i),

and from independence, we will have good concentration about this expectation.
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4 Summary of Results

Our main theorem shows that linear estimators are near-optimal for the class of linear symmetric
distribution properties, provided that they satisfy a mild continuity condition:

Theorem 1. Let π be a symmetric linear property that is δ(k)-relative earthmover continuous
on distributions of support n(k). If for some constant c > 0 and parameter ϵ(k) = δ/ko(1), any
distributions of support n whose π values differ by at least ϵ are distinguishable with probability at
least 1

2+c in k samples, then for each k there exists a linear estimator that estimates π on distributions
of support n to within error (1+o(1))ϵ using (1+o(1))k samples, and which has probability of failure
o( 1

poly(k)).

To clarify, the above theorem trivially implies the following corollary:

Corollary 14. Given a symmetric linear property π that is 1-relative earthmover continuous (such
as entropy), if there exists an estimator which on input k independent samples from any distribution
A of support n outputs a value v such that |v − π(A)| < ϵ with probability .51, then there exists a
linear estimator which, given 1.01k samples, outputs a value v′ such that |v′ − π(A)| ≤ 2.01ϵ, with
probability > .9999, provided ϵ ≥ 1

log100 k
and k is sufficiently large.

While Theorem 1 does not yield bounds on the sample complexities of these estimation tasks, in
Appendices A and B we leverage the insights provided by key components of the proof of Theorem 1
to give explicit constructions of linear estimators for entropy, and distance to uniformity. These
estimators significantly improve upon all previously proposed estimators for these properties.

Theorem 2. For any ϵ > 1
n0.03 , the estimator described in Construction 22, when given O( n

ϵ logn)
independent samples from a distribution of support at most n will compute an estimate of the entropy
of the distribution, accurate to within ϵ, with probability of failure o(1/poly(n)).

We note that the performance of this estimator, up to constant factors, matches the lower bounds
shown in [33, 32], both in terms of the dependence on n and the dependence on ϵ. In particular,
this resolves the main open question posed in [34, 32] as to whether the sample complexity increases
linearly versus quadratically with the inverse of the desired accuracy, 1/ϵ.

The machinery developed in the construction of our linear estimator for entropy is quite general
and robust, and we show that it can easily be used to construct an explicit estimator for distance to
uniformity.

Theorem 3. For any ϵ > 1
4 logm , the estimator described in Construction 33, when given O

(
1
ϵ2
· m
logm

)
independent samples from a distribution of any support, will compute the L1 distance to Unif(m)
to within accuracy ϵ, with probability of failure o(1/poly(m)).

This is the first o(m) sample estimator for distance to uniformity, and we note that the lower
bounds shown in [33, 32] imply that for any constant error ϵ, this estimator is optimal, to constant
factor. This tight bound of Θ(m/ logm) on the number of samples required to yield constant error
contrasts with the tight bound of Θ(m1/2) shown in [9, 19] for the related problem of distinguishing
a uniform distribution on m samples from one that has constant distance from such a distribution.

Finally, we note that our entire approach seems to apply to the setting of properties of pairs of
distributions. We strongly believe but do not show in this extended abstract that Theorem 1 and its
proof extend naturally to this setting. As a proof of concept, we leverage the machinery developed
for the linear estimator of entropy to give an explicit linear estimator for L1 distance, and leverage
the lower bounds of [33] to show that it is constant factor–optimal for any fixed accuracy.
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Theorem 4. There is a constant c such that for any ϵ > c√
logn

, the estimator described in Con-

struction 38, when given O( n
ϵ2 logn

) independent samples from each of two distributions of support
at most n, will compute an estimate of the L1 distance between the pair of distributions, accurate to
within ϵ, with probability of failure o(1/poly(n)).

Theorem 5. For any constants 0 < a < b < 1
2 , there exists a pair of distributions with support at

most n such that distinguishing whether their L1 distance is less than a or greater than b requires
O( n

logn) samples.

This is the first sublinear-sample estimator for this fundamental property, and the lower bound
of Theorem 5 improves upon the previous best lower bound of n/2O(

√
logn) shown in [35].

5 Lower Bounds and Estimators

We start by describing an intuitive approach to constructing lower bound instances for the task
of estimating a given linear property, and then describe a natural and well-known approach to
constructing linear estimators. It will then be immediate that these two approaches are related via
linear programming duality. Finally, in Section 5.2.1 we examine the crux of the difficulty in making
this correspondence precise.

5.1 Lower Bounds on Property Estimation

Given a property π, a number of samples k, and an upper bound n on the support size of distributions
in question, we wish to construct lower-bounds via a principled—and in some sense mechanical—
approach. Specifically, we would like to find two distributions A+, A− (of support at most n) which
are extremal in the sense that they maximize δ = |π(A+) − π(A−)| while being indistinguishable
(with high probability) given sets of k independent samples from each. Trivially, such a pair implies
that no algorithm, on input k independent samples from a distribution of support at most n, can
estimate property π to within ±δ/2 with high probability.

At least intuitively, A+ and A− will be difficult to distinguish, given sets of k samples, if their
fingerprint expectations are very similar (relative to the size of the covariance of the distribution
of fingerprints). The central limit theorem for “generalized multinomial” distributions given in [33]
makes this intuition rigorous. Since these fingerprint expectations are simply linear functions of
the histograms, this constraint that A+ and A− should be indistinguishable can be characterized
by a set of linear constraints on the histograms of A+ and A−. Additionally, from Example 8, the
constraint that A+ and A− have support size at most n is a linear constraint on the histograms:∑

x:hA(x)̸=0 hA(x) ≤ n. Since we are concerned with a symmetric linear property, π, which is given

as π(A) ,
∑

x:hA(x)̸=0 hA(x)fπ(x), for some function fπ, our aim of maximizing the discrepancy in

property values, π(A+) − π(A−), is just the task of optimizing a linear function of the histograms.
Thus, at least intuitively, we can represent the task of constructing an optimal lower-bound instance
(A+, A−), as a semi-infinite linear program whose variables are hA+(x), hA−(x), for x ∈ (0, 1].

Before writing the linear program, there are a few details we should specify. Rather than solving
for histogram values hA+(x), it will be more convenient to solve for variables y+x , which are related to
histogram values by y+x , hA+(x) · x. Thus y+x represents the amount of probability mass accounted
for by hA+(x). Thus

∑
x y

+
x = 1 for any distribution A+. For reasons which will become clear, we will

also restrict ourselves to the “infrequently-occurring” portion of the histogram: namely, we will only
be concerned with fingerprint indices up to kc1 , for a parameter c1 ∈ (0, 1), and will only solve for
histogram entries corresponding to probabilities x ≤ 1

2
kc1
k . Finally, to avoid the messiness that comes

with semi-infinite linear programs, we will restrict ourselves to a finite set of variables, corresponding

9



to x values in some set X ⊂ (0, k
c1

2k ) that consists of a polynomially-fine mesh of points, the details
of which are largely irrelevant.

Definition 15. The Lower Bound LP corresponding to parameters k, c1, c2, X, and property π
satisfying π(A) ,

∑
x:h(x)̸=0 hA(x)fπ(x), is the following:

Maximize:
∑

x∈X
fπ(x)
x (y+x − y−x ) Maximize difference in property values,

Subject to: ∀i ≤ kc1 ,
∑

x (y
+
x − y−x ) · poi(xk, i) ≤ k−c2 fingerprint expectations are close,

∀i ≤ kc1 ,
∑

x (y
+
x − y−x ) · poi(xk, i) ≥ −k−c2 fingerprint expectations are close,∑

x∈X y+x + y−x ≤ 2 not too much probability mass,∑
x∈X

y+x
x ≤ n and

∑
x∈X

y−x
x ≤ n A and B have support at most n,

∀x ∈ X, y+x ≥ 0, y−x ≥ 0 probabilities are nonnegative.

We now argue that the intuition for the above linear program is well founded. For any reasonably
well-behaved property π, given a solution to the above linear program y+, y−, with objective function
value v, we can construct distributions A+, A− that are indistinguishable given k samples, and satisfy
π(A+)− π(A−) ≥ v − ϵ for some tiny ϵ. As shifting a property by a constant, π → π + C does not
affect the property estimation problem, for the sake of convenience we assume that the property
takes value 0 on the trivial distribution with support 1, though the following proposition remains
true for rather extreme (though not unbounded) shifts away from this.

Proposition 16. Let π be a δ-relative earthmover continuous property that takes value 0 on the
trivial distribution. Given any feasible point y+, y− to the Lower Bound LP of Definition 15 that has
objective function value v, then, provided kc1 ∈ [log2 k, k1/32] and c2 ≥ 1

2 + 6c1, there exists a pair of
distributions A+, A− of support at most n such that:

• π(A+)− π(A−) > v · (1− o(1))−O(δ · k−c1 log k),

• no algorithm on Poi(k)-samples can distinguish A+ from A− with probability 1−Θ(1).

To construct A+, A− from the solution y+, y−, there are three hurdles. First, y+x , y
−
x must be

rounded so as to be integer multiples of 1/x, since the corresponding histograms must be integral.
Next, we must ensure that A+, A− have total probability mass 1. Most importantly, we must
ensure that A+, A− are actually indistinguishable—i.e. that we can successfully apply the central
limit theorem of [33]—a more stringent condition than simply having similar fingerprint expectations.
These three tasks must be accomplished in a delicate fashion so as to ensure that π(A+)−π(A−) ≈ v.
The explicit construction, and proof of Proposition 16 are included in Appendix D.

5.2 Constructing Linear Estimators

Perhaps the most natural approach to constructing estimators for linear properties, dating back
at least to the 1950’s, [25] and, implicitly, far longer, is to approximate the characteristic function
of the desired linear property as a linear combination of Poisson functions. To see the intuition
for this, consider a property π such that π(A) ,

∑
x:hA(X) ̸=0 hA(x)fπ(x), and assume that there

exist coefficients β = β1, β2, . . . such that, for all x ∈ (0, 1],
∑∞

i=1 βipoi(xk, i) = fπ(x). Thus for a
distribution with histogram h, we have∑

x:h(x)̸=0

h(x)fπ(x) =
∑

x:h(x)̸=0

h(x)
∑
i≥1

βipoi(kx, i) =
∑
i≥1

βi
∑

x:h(x)̸=0

h(x)poi(kx, i) =
∑
i≥1

βiE[F(i)],

10



where E[F(i)] is the expected ith fingerprint entry derived from Poi(k) independent samples. By
linearity of expectation, this quantity is precisely the expected value of the linear estimator given by
the coefficients β, and thus such an estimator would have zero bias. Additionally, since we expect
the fingerprint entries to be closely concentrated about their expectations, such an estimator would
also have relatively small variance, provided that the magnitudes of the coefficients |βi| are small
relative to 1/

√
k. (Roughly, the contribution to the variance of the estimator from the ith fingerprint

entry is the product of |βi|2 and the variance of the ith fingerprint entry.)
For several reasons which will become apparent, instead of approximating the function fπ(x) as∑∞

i=1 βipoi(kx, i), we instead approximate the function fπ(x)
x as the 0-indexed sum

∑∞
i=0 zipoi(kx, i).

These two approaches are formally identical by setting βi =
i
k · zi−1, since x · poi(kx, i) = poi(kx, i+

1) i+1
k .
The following proposition formalizes this intuition, establishing the requisite relationship between

the magnitudes of the coefficients, error in approximating the function fπ(x)
x , and the performance

of the derived estimator. The relatively straightforward proof of this proposition is in Appendix E.

Proposition 17. Let π be a linear symmetric property such that for any histogram h, we have
π(h) ,

∑
x:h(x)̸=0 h(x)x · r(x), for some function r : (0, 1] → R. Given integers k, n, and a set of

coefficients z0, z1, . . . such that if we define the function err : (0, 1]→ R by

r(x) = err(x) +
∑
i≥0

zipoi(xk, i),

and if for positive real numbers a, b, c the following conditions hold:

1. |err(x)| < a+ b
x ,

2. for all j ≥ 1 let βj =
j
k · zj−1 with β0 = 0, then for any j, ℓ such that |j− ℓ| ≤

√
j log k we have

|βj − βℓ| ≤ c
√
j√
k

Then the linear estimator given by coefficients β1, . . . , βk, when given a fingerprint derived from a set
of k independent samples chosen from a distribution of support at most n will estimate the property
value with error at most a+ bn+ c log k, with probability of failure o(1/poly(k)).

We note that the condition on the magnitude of the error of approximation: |err(x)| < a+ b
x , is

designed to take into account the inevitable increase in this error as x→ 0. Intuitively, this increase
in error is offset by the bound on support size: for a distribution of support at most n, the amount of
probability mass at probability x is bounded by nx, and thus provided that the error at x is bounded
by b

x , the error of the derived estimator will be at most nx b
x = nb.

The task of finding these coefficients zi, can be expressed as the following linear program:

Definition 18 (The Linear Estimator LP).

Minimize: 2za + n · (zb+ + zb−) + k−c2
∑kc1

i=0(z
+
i + z−i )

Subject to: ∀x ∈ X,
∑kc1

i=0 poi(xk, i)(z
+
i − z−i ) ≥

fπ(x)
x − (za + zb−

x )

∀x ∈ X,
∑kc1

i=0 poi(xk, i)(z
+
i − z−i ) ≤

fπ(x)
x + za + zb+

x
za ≥ 0, zb+, zb− ≥ 0,∀i ∈ [kc1 ], z+i ≥ 0, z−i ≥ 0

To see the relation between the above definition and Proposition 17, we let the coefficients
zi = z+i − z−i . The parameter a in the proposition corresponds to za in the LP, and the parameter
b in the proposition corresponds to max(zb+, zb−). The first two sets of constraints ensure that
za, zb+, zb− capture the bias of the estimator. The objective function then minimizes this bias, while
also penalizing unduly large coefficients.
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5.2.1 So Close, Yet So Far

The impetus for our main result is the observation that the Lower Bound LP of Definition 15 and
the Linear Estimator LP of Definition 18 are dual linear programs. The complication arises when
considering the allowable settings of the parameters. Intuitively, the Lower Bound LP only begins
to make sense when c2 > 1/2—namely, when the discrepancy in fingerprint expectations of the
implicitly described pair of distributions is less than k1/2, since the standard deviation in fingerprint
entries can never exceed this value. Conversely, the Linear Estimator LP yields reasonable estimators
only when c2 < 1/2, since this corresponds to coefficients at most 1/k1/2, which, coupled with the
variance in fingerprint entries of up to k, would lead to an estimator having constant variance.

Thus, if we hope to leverage the duality of the two linear programs, we must understand how the
solutions are affected by changing parameters. Intuitively, the quality of the best available estimator
should improve as the number of samples to which one has access increases. For some number of
samples, k, given a solution to the Lower Bound LP with objective function value v, we argued that
there is no corresponding solution to the Linear Estimator LP with viable parameters; the above
intuition suggests that by considering the Linear Estimator LP corresponding to k′ > k samples, the
increase in the number of samples would offset the necessary decrease in c2 and might yield a solution
with objective value near v. This hope is well-founded, and we show that, even for k′ = k · (1+ o(1)),
an objective value of v · (2 + o(1)) can be attained. We discuss the high-level approach to proving
this in the following section. (We note that the factor of 2 is an artifact of the duality framework
itself and not of the argument that follows.)

5.3 Matrix Exponentials of Poisson Matrices

The aim of this section is to transform a solution to the Linear Estimator LP into a related estimator
that: 1) has smaller coefficients; 2) takes slightly more samples; and 3) has almost unchanged bias.
Intuitively, we have a vector of Poisson coefficients, z, whose magnitudes exceed

√
k, yet whose linear

combination, the function g : [0,∞)→ R defined as g(x) =
∑∞

i=0 z(i) ·poi(xk, i) closely approximates
fπ(x)
x , and thus, despite its huge coefficients, the resulting function is small and well-behaved. The

task is to transform this into a different linear combination that has smaller coefficients and is almost
equally well-behaved. The principal tool we may leverage is the increased number of samples we have.
While poi(xk, i) captures the Poisson functions corresponding to taking k samples, if we instead take
k
α samples for α < 1, then the corresponding functions are poi(xkα , i), which are “thinner” than the

original Poisson functions. To phrase the intuition differently, if the target function fπ(x)
x is so finely

structured that approximating it with “fat” Poisson functions requires coefficients exceeding
√
k, we

might hope that using “thinner” Poisson functions will lower the required coefficients.
We note that it is straightforward to reexpress a linear combination of Poisson functions in

terms of “thinner” Poisson functions. Intuitively, this is the process of simulating a Poi(k)-sample
estimator using Poi( kα) samples, and corresponds to subsampling. We let zα denote the vector of

coefficients induced from subsampling by α—that is, zα(ℓ) =
∑ℓ

i=0 z(i)Pr[Bin(ℓ, α) = i], where
Bin(ℓ, α) represents the binomial distribution taking ℓ trials each with success probability α. The
question becomes: how does the magnitude of zα decrease with α?

We show that the square of the L2 norm of the vector zα is a quadratic form in z, defined by an
infinite matrix Mα. We are able to analyze these norms because of the fortuitous form of its matrix
logarithm: there exists an infinite tri-diagonal matrix A such that for all α ∈ (0, 1), Mα = 1

αe
(1−α)A.

We show this via the Gauss relations for contiguous hypergeometric functions. Our main result then
follows from the fact that the quadratic form zeαXzᵀ is a log-convex function of α, for arbitrary z
and X. This approach is made rigorous in Appendix F, proving Theorem 1.

12



References

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. volume 46, pages 1204–
1216, 2000.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. Comput. System Sci., 58:137–147, 1999.

[3] S. Arora, E. Hazan, and S. Kale. o(
√
log n) approximation to sparsest cut in Õ(n2) time. In
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A An Optimal Linear Estimator For Entropy

In this section we describe an explicit linear estimator for entropy, which, given as input k =

O
(

n
ϵ logn

)
samples from a distribution of support at most n will return an estimate of the entropy

accurate to within ϵ, with probability of failure o(1/poly(n)). These bounds match the lower bounds
on estimating entropy given in [33] both in terms of the dependence on n, and the dependence on the
desired accuracy, ϵ, and, in particular show that the convergence rate is inverse linear in the number
of samples, as opposed to the slower inverse square root which is generally expected. For clarity
of exposition and because the proof of correctness is quite tedious, we first present the high-level
structure of the estimator and state key lemmas, and then include the more technical proofs in the
following section.

Our estimator is based on an accurate approximation of the logarithm function as a low-weight
sum of the Poisson functions. The key technical insight is the strengthening and re-purposing of a
Chebyshev polynomial construction which was employed in [34] as a component of an ”earthmoving
scheme”. Here, we use this construction to turn the basis of Poisson functions into a more adroit
basis of “skinny” bumps, which are, in a very rough sense, like the Poisson functions compressed
by a factor of log k towards the origin. Intuitively, this superconstant factor is what allows us to
construct a sublinear-sample estimator.

Perhaps the most simplistic attempt to represent the logarithm function as a sum of Poisson
functions is to simply set the coefficient of poi(xk, i) equal to log i

k . This estimator is the “plug-in”
estimator, and returns the entropy of the empirical distribution of the samples. Intuitively, this
estimator should be good for the high-probability region. The following lemma, which we will use
later, characterizes the performance of any “plug-in” estimator. The proof is contained in Section A.1.

Lemma 19. Given a function f : R→ R whose fourth derivative at x is bounded in magnitude by
α
x4 for x ≥ 1 and by α for x ≤ 1, and whose third derivative at x is bounded by α

x3 , then for any real
x,
∑∞

i=0 f(i) · poi(x, i) is within O( α
x2 ) of f(x) +

1
2xf

′′(x).

For the plug-in estimator for entropy, this lemma implies that

log x−
∞∑
i=0

log(i/k)poi(kx, i) =
1

2kx
+O(

1

k2x2
).

In some regimes this error is satisfactorily small, and this estimator is in fact widely used in practice.
However, for x = 1/k the error is constant, and for smaller x the error blows up. Thus for uniform
distributions of support larger than k, the plug-in estimator performs poorly.

How can one improve this estimator? The obvious correction is to account for the second-
derivative term of Lemma 19, corresponding to the term 1

2kx in the above expression for the bias for
entropy. This yields the “Miller-Madow Corrected Estimator”. Nevertheless, the error term is still
constant for x = 1/k, making sublinear-sample estimation impossible. Such error is, in some sense,
to be expected: the first few Poisson functions poi(kx, i) have “width” O(1/k).

A plug-in estimator in terms of a “skinnier” basis than the Poisson functions would make the
estimate correspondingly more accurate. The crux of our estimator is to first show that we can
represent “skinny bumps” as a low-weight linear combinations of Poisson functions. We then employ
these skinny bumps in place of the fat Poisson functions to get correspondingly better estimators.

Perhaps the most useful building blocks for constructing functions that resemble “skinny bumps”
are the trigonometric functions, cos(nx), for n = 0, 1, 2, . . . . Since each Poisson function poi(x, i) is
a degree j polynomial in x, multiplied by an exponential e−x, we instead work with the polynomial
equivalent of the trigonometric functions: the Chebyshev polynomials, where the jth Chebyshev
polynomial Tj is defined so as to satisfy Tj(cos(y)) = cos(j · y).
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Figure 1: A plot of the “skinny” function g2(y) (without the scaling factor). This is the main
ingredient in the Chebyshev bump construction of Definition 20.

Definition 20. The Chebyshev bump scheme is defined in terms of k as follows. Let s = (0.3) log k.
Define g1(y) =

∑s−1
j=−s cos(jy). Define g2(y) =

1
16s

(
g1(y − 3π

2s ) + 3g1(y − π
2s) + 3g1(y +

π
2s) + g1(y +

3π
2s )
)
,

and, for i ∈ {1, . . . , s− 1} define gi3(y) = g2(y− iπ
s )+ g2(y+

iπ
s ), and g03 = g2(y), and gs3 = g2(y+π).

Let ti(x) be the linear combination of Chebyshev polynomials so that ti(cos(y)) = gi3(y). We thus de-
fine s+1 functions, the “skinny bumps”, to be Bi(x) = ti(1− xk

2s )
∑s−1

j=0 poi(xk, j), for i ∈ {0, . . . , s}.
That is, Bi(x) is related to gi3(y) by the coordinate transformation x = 2s

k (1− cos(y)), and scaling by∑s−1
j=0 poi(xk, j). For these bumps, define ci =

2s
k (1− cos( iπs )).

See Figure 1 for a plot of g2(y), illustrating, up to coordinate transformations, a “skinny Cheby-
shev bump.”

The following lemma shows that each of the Chebyshev bumps defined above can be expressed
as a linear combination of the Poisson functions, having relatively small coefficients. The proof of
this lemma is contained in Section A.1.

Lemma 21. Each Bi(x) may be expressed as
∑∞

j=0 aijpoi(kx, j) for aij satisfying
∑∞

j=0 |aij | ≤ k0.4

This lemma will allow us to attempt to approximate the logarithm function using Poisson func-
tions by directly approximating the logarithm function via these conveniently-skinny bumps. We
note that the bound k0.4 on the coefficients is crucial, as the coefficients of our estimator must be
somewhat less than

√
k in order for our k-sample estimator to have sub-constant variance. As the

coefficients of Chebyshev polynomials grow exponentially in their degree, this is what limits us to
the first s = O(log k) Chebyshev polynomials. Thus our approximation of the logarithm function
via the Chebyshev bumps will only apply to the very low-probability region—but this is acceptable,
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since above this region, the more crude approximation via the Poisson functions and Lemma 19 will
suffice.

We are now prepared to define our estimator. We start by defining the coefficients {zi} such that∑
i≥0 zi · poi(xk, i) ≈ log x.

Construction 22. As in the previous definition, let s = (0.3) log k. Define the interpolation function
I : R→ R such that I(y) = 0 for y ≤ s

4 , I(y) = 1 for y ≥ s
2 , and I(y) is continuous, and four-times

differentiable, where for i ∈ 1, . . . , 4, the magnitude of the ith derivative is at most c/si, for some
fixed constant c. Such a function I can be easily constructed.

Consider the function f(y) , I(y)
[

1
2y + log y − log k

]
, and provisionally set zi , f(i). Note that

by Lemma 19 we have accurately represented the logarithm function via the Poisson bumps in the
interval [ s

2k , 1].
We will now use the skinny Chebyshev bumps to approximate the function v(x) defined as

v(x) ,
{
log x− I(2kx) ·

∑∞
i=0 poi(xk, i)f(i) for x ≥ 1

ks

log( 1
ks)− 1 + xsk for x ≤ 1

ks

Thus v(x) is twice differentiable for x > 0, v(x) ≈ 0 for x > s
2k , v(x) = log x for x ∈ (1/ks, s

8k ), and
v(x) is a linear approximation to the logarithm function for x < 1/ks.

Define the coefficient bi of the ith Chebyshev bump Bi, with “center” ci =
2s
k

(
1− cos

(
iπ
s

))
, to

be v(ci). To conclude the construction, letting the ith Chebyshev bump Bi be represented as a sum of
Poisson functions, as guaranteed by Lemma 21: Bi(x) =

∑
j ai,jpoi(xk, j), for each i ∈ {0, . . . , s},

increment zj by
∑

i ai,jv(ci).
Define the linear estimator given by coefficients β1, . . . , βk, where βi , zi−1 · ik .

The following theorem asserts the quality of our estimator:

Theorem (Theorem 2). There are positive constants c1, c2 such that for any ϵ > k−c1 , the estimator
described in Construction 22, when given k independent samples from a distribution of support at
most n = ϵc2k log k, will compute an estimate of the entropy of the distribution, accurate to within
ϵ, with probability of failure o(1/poly(k)).

For ease of exposition we prove the theorem for c1 = 0.03, though we suspect this bound can be
relaxed considerably.

The proof of Theorem 2 rests on the following lemma, which is the Chebyshev-bump analog
of Lemma 19, and shows that if one constructs the naive “plug-in” approximation using the skinny
Chebyshev bumps, instead of the Poisson functions, the approximation is very good. While the proof
of this lemma is somewhat laborious, the guiding intuition is simply that the Chebyshev bumps are
reasonably symmetric and skinny. The proof of Theorem 2, and that of the following lemma are in
Section A.1.

Lemma 23. Given α ≤ β and a twice-differentiable function f(x) : [0, s
2k ]→ R satisfying |f(x)| ≤ γ,

|f ′(x)| ≤ α
x , and |f

′′(x)| ≤ β
x2 , then f(x) can be approximated as

∑
iwiBi(x) for weights wi = f(ci)

for ci =
2s
k (1− cos iπ

s ), with error of approximation at x bounded in magnitude by

O(
γ

(xks)3/2
) +O(

β

xks
) +O(

α

(xks)3/2
) + e−s/7.

Additionally, provided |f(0)| ≥ 1 + |f(1/sk)|, is monotonic decreasing in magnitude for x < 100/ks,
and |f(x)| ≤ 1/

√
x, then for x ≤ 1/ks, the approximation will be in the range [f(100/ks), f(0)].
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A.1 Proofs for the Previous Section

Proof of Lemma 19. Consider the Taylor expansion of f to third order around x, f(i) ≈ a+ b · (i−
x)+c·(i−x)2+d·(i−x)3+e(i), for a = f(x), b = f ′(x), c = 1

2f
′′(x), and d = 1

6f
′′′(x), where the error,

e, is a function which we will analyze later. By assumption, d ≤ α
6x3 . We bound

∑∞
i=β f(i) · poi(x, i)

by thus decomposing f(i). We note that we may take the lower limit of the sum to be 0, since f(i)
equals zero for i < β. We evaluate the first four terms by noting, respectively, that the Poisson
distribution of parameter x has total probability mass 1, has mean x, has variance x, and has third
moment about its mean x, leading to

∑∞
i=0 a · poi(x, i) = a = f(x),

∑∞
i=0 b(i − x) · poi(x, i) = 0,∑∞

i=0 c(i− x)2 · poi(x, i) = cx = 1
2xf

′′(x), and
∑∞

i=0 d(i− x)3 · poi(x, i) = dx ≤ α
6x2 .

We now analyze the error function e(i). We note, by construction, that it and its first three
derivatives are 0 at i = x, while its fourth derivative is everywhere equal to the fourth derivative of
f , which by assumption is bounded by α

i4
. Thus for i ≥ x, the fourth derivative of e(i) is bounded

by α
x4 implying a bound of |e(i)| ≤ α

24x4 (i − x)4 for i ≥ x. Similarly, for i ∈ [x2 , x] we have that
the fourth derivative of f is bounded by 16α

x4 , yielding a bound of |e(i)| ≤ 2α
3x4 (i − x)4 for i ∈ [x2 , x].

For general i < x, we bound e by repeated integration. Since |e′′′′(i)| ≤ α
i4

and e′′′(x) = 0 we may
integrate from i to x to yield |e′′′(i)| ≤ 1

4α(
1
i3
− 1

x3 ), which we crudely bound by 1
4
α
i3
. We repeat this

process, since e′′(x) = e′(x) = 0, to yield, successively, |e′′(i)| ≤ 1
12

α
i2
, and |e′(i)| ≤ 1

24
α
i . We integrate

once more, though without discarding the constant term, to yield |e(i)| ≤ 1
24α(log x − log i), again,

valid for i ≤ x. Instead of using this bound directly, we sum from 1 to x:

x∑
i=1

|e(i)| ≤ 1

24
α

x∑
i=1

(log x− log i) ≤ α

24

∫ x

0
| log x− log i| di = α

24
x.

We now bound e(0). If x < 1 then, directly, since e′′′′ ≤ α, we have |e(0)| ≤ α
24x

4 ≤ α
24x. Otherwise

if x ≥ 1, note from above that |e(1)| ≤ α log x
24 , |e′(1)| ≤ α

24 , |e
′′(1)| ≤ α

12 , |e
′′′(1)| ≤ α

4 , and for all

i ∈ [0, 1], e′′′′(i) ≤ α. This immediately yields a bound that |e(0)| ≤ α
[
log x
24 + 1

24 + 1
24 + 1

24

]
. Since

3 + log x ≤ 2 + x ≤ 3x for x ≥ 1, we have that
∑x

i=0 |e(i)| ≤
α
6x.

Trivially, we use this bound to bound the sum over half the domain:
∑x/2

i=0 |e(i)| ≤
α
6x. In sum,

we will use the bound |e(i)| ≤ 2α
3x4 (i− x)4 for i ≥ x

2 , and
∑x/2

i=0 |e(i)| ≤
α
6x otherwise.

To complete the proof, we note the basic fact that the Poisson distribution dies off super-
polynomially fast away from its mean, relative to its standard deviation. That is, for any positive

integer—we choose 6 here—there is a constant γ such that for all i, x, we have poi(x, i) ≤ γ√
x

∣∣∣ i−x√
x

∣∣∣−6
.

We thus bound
∑∞

i=0 e(i)poi(x, i) piecewise. For i ∈ [x −
√
x, x +

√
x], we have that since

poi(x, i) is a distribution over i, it sums to at most 1 here; since we have the bound here that
|e(i)| ≤ 2α

3x4 (i− x)4, we note that when |i− x| ≤
√
x we have |e(i)| ≤ 2α

3x2 , which is thus also a bound

on
∣∣∣∑x+

√
x

i=x−
√
x
e(i)poi(x, i)

∣∣∣. For i > x+
√
x we use the bound poi(x, i) ≤ γ√

x

∣∣∣ i−x√
x

∣∣∣−6
to see that∣∣∣∣∣∣

∑
i>x+

√
x

e(i)poi(x, i)

∣∣∣∣∣∣ ≤
∑

i>x+
√
x

2α

3x4
(i− x)4 · γ√

x

∣∣∣∣ i− x√
x

∣∣∣∣−6

=
2αγ

3x3/2

∑
i>x+

√
x

1

(i− x)2
= O(

α

x2
).

The same argument yields the same bound for the sum over i ∈ [x2 , x −
√
x]. To bound the

remaining region, when i ≤ x
2 , we note that for this region poi(x, i) ≤ 64γ

x7/2 , and since, as noted,∑x/2
i=0 |e(i)| ≤

α
6x we have that

∑x/2
i=1 |e(i)|poi(x, i) = o( α

x2 ). Combining all the bounds yields that
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|
∑∞

i=1 e(i)poi(x, i)| = O( α
x2 ), and combining this with the bounds from the power series expansion

of f yields
∑∞

i=0 f(i)poi(x, i) equals f(x) +
1
2xf

′′(x) to within O( α
x2 ), as desired.

Proof of Lemma 21. Consider decomposing gi3(y) into a linear combination of cos(jy), for j ∈
{0, . . . , s}. Since cos(−jy) = cos(jy), g1(y) consists of one copy of cos(sy), two copies of cos(jy) for
each j between 0 and s, and one copy of cos(0y); g2(y) consists of 8 copies of g1(y), with some shifted
so as to introduce sine components, but these are canceled out in the formation of gi3(y), which is
a symmetric function for each i. Thus, together with the normalization by 1/16s, each gi3(y) may
be regarded as a linear combination

∑s
j=0 cos(yj)bij where the sth term has coefficient at most 1/s,

and all the remaining terms have coefficients at most 2/s.
Next, under the coordinate transformation x = 2s

k (1− cos(y)), the function cos(yj) becomes the

Chebyshev polynomial Tj(1 − xk
2s ). We note that each term αℓ(xk)

ℓ from this polynomial will ulti-

mately be multiplied by
∑s−1

m=0 poi(xk,m). We reexpress this as xℓ
∑s−1

m=0
xme−x

m! =
∑s+ℓ−1

m=ℓ poi(xk,m) m!
(m−ℓ)! .

We have thus expressed our function as a linear combination of Poisson functions. As we aim to bound
the sum of the coefficients of these Poisson functions, we consider this now:

∑s+ℓ−1
m=ℓ

m!
(m−ℓ)! which we

note equals 1
l+1

(s+ℓ)!
s! since, in general,

∑j
m=i

(
m
i

)
=
(
j+1
i+1

)
. Expressing Tj(z) as

∑j
i=0 βijz

i, we note

that, since we evaluate Chebyshev polynomials at 1− xk
2s , a term βijz

i becomes βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
xℓ,

which, by the previous calculation, contributes βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
1

l+1
(s+ℓ)!

s! to the total Poisson coef-

ficients. Since ℓ ≤ i ≤ s, we have s + ℓ ≤ 2s, from which we see 1
(2s)ℓ

(s+ℓ)!
s! ≤ 1. We thus bound

βij
∑i

ℓ=0

(
i
ℓ

)
1

(2s)ℓ
1

l+1
(s+ℓ)!

s! ≤ βij
∑i

ℓ=0

(
i
ℓ

)
= βij2

i.

We thus desire, for any j ≤ s, to bound
∑j

i=0 βij2
i, where βij are the coefficients of the jth

Chebyshev polynomial. Chebyshev polynomials have coefficients whose signs repeat in the pattern
(+, 0,−, 0), thus we can evaluate this sum exactly as |Tj(2i)|, for i =

√
−1. Explicitly, |Tj(2i)| =

1
2

[
(2−

√
5)j + (2 +

√
5)j
]
≤ (2 +

√
5)j . Since, as we showed above, in each gi3(y) the coefficient of

each cos(jy) term is at most 2/s, and thus our final bound on the sum of Poisson coefficients is
2(2 +

√
5)s < k0.4 as desired.

Lemma 24. For any x,
s−1∑
i=−s

g2(x+
πi

s
) = 1.

Proof. From the above definition, g2(y) is a linear combination of cosines at integer frequencies j,
for j = 0, . . . , s, shifted by ±π/2s and ±3π/s2. Since

∑s−1
i=−s g2(x + πi

s ) sums these cosines over all
possible multiples of π/s, we note that all but the frequency 0 terms will cancel. The cos(0y) = 1
term will show up once in each g1 term, and thus 1 + 3 + 3 + 1 = 8 times in each g2 term, and thus
8 · 2s times in the sum in question. Together with the normalizing factor of 16s, the total sum is
thus 1, as claimed.

Lemma 25. |g2(y)| ≤ 285
y4s4

for y ∈ [−π, π] \ (−3π/s, 3π/s), and |g2(y)| ≤ 1/2 everywhere.

Proof. Since g1(y) =
∑s−1

j=−s cos jy = sin(sy) cot(y/2), and since sin(α + π) = − sin(α), we have the
following:

g2(y) =
1

16s

(
g1(y −

3π

2s
) + 3g1(y −

π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

)
=

1

16s

(
sin(ys+ π/2)

(
cot(

y

2
− 3π

4s
)− 3 cot(

y

2
− π

4s
) + 3 cot(

y

2
+

π

4s
)− cot(

y

2
+

3π

4s
)

))
.
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Note that
(
cot(y2 −

3π
4s )− 3 cot(y2 −

π
4s) + 3 cot(y2 + π

4s)− cot(y2 + 3π
4s )
)
is bounded in magnitude by

(π/2s)3 times the maximum magnitude of d3

dx3 cot(x/2) in the range x ∈ [y − 3π/2s, y + 3π/2s].
Since the magnitude of this third derivative is decreasing for x ∈ (0, 2π), we can simply evaluate the

magnitude of this derivative at y−3π/2s. We thus have d3

dx3 cot(x/2) =
−(2+cos(x))

4 sin4(x/2)
, whose magnitude

is at most 3
4(x/π)4

for x ∈ (0, π]. Thus for y ∈ [3π/s, π], since for such y we trivially have that

y/2 ≤ y − 3π/2s, we have the following bound:

| cot(y
2
− 3π

4s
)− 3 cot(

y

2
− π

4s
) + 3 cot(

y

2
+

π

4s
)− cot(

y

2
+

3π

4s
)| ≤

( π

2s

)3 3

4(y/2π)4
≤ 3π7

2y4s3
.

Since g2(y) is a symmetric function, the same bound holds for y ∈ [−π,−3π/s]. Thus |g2(y)| ≤
3π3

16s·2y4s3 < 285
y4s4

for y ∈ [−π, π]\(−3π/s, 3π/s). To conclude, note that g2(y) attains a global maximum

at y = 0, with g2(0) =
1

16s (6 cot(π/4s)− 2 cot(3π/4s)) ≤ 1
16s

24s
π < 1/2.

Lemma 26. For y ∈ [−π/s, π/s], sufficiently large s, and positive integers a, b ≤ s,

|
b∑

i=−a

(y + πi/s) · g2(y + πi/s)| ≤ 12

s

(
1

a2
+

1

b2

)
.

Proof. We will first show that

|
s−1∑
i=−s

(
sin(y + πi/s) +

sin3(y + πi/s)

6

)
· g2(y + πi/s)| = 0,

and then will use the fact that sin(x) + sin3(x)/6 ≈ x near zero, and that g2(x) decays quickly away
from zero to yield the claim. To begin, note that g2(x) is an even function, and can be written as
a weighted sum of cos(jx), for integers j at most s − 1. Since cos(jx) sin(x) = 1

2 sin((j + 1)x) −
1
2 sin((j − 1)x), and

∑s−1
i=−s sin(j(x+ iπ

s )) = 0, for any integer j ≤ 2s− 1, we have

s−1∑
i=−s

sin(y + πi/s) · g2(y + πi/s) = 0.

Additionally, sin3(x) = 3 sin(x)−sin(3x)
4 , and by the above, cos(jx) sin(3x) = 1

2 sin((j+3)x)− 1
2 sin((j−

3)x), and thus for s > 3, by the above,

s−1∑
i=−s

sin3(y + πi/s) · g2(y + πi/s) = 0.

Next, note that |x− sin(x)− sin3(x)/6| ≤ 3x5/40, and thus from the above,

|
s−1∑
i=−s

(y + πi/s) · g2(y + πi/s)| ≤
s−1∑
i=−s

|g2(y + πi/s)| · |3(y + πi/s)5/40|.

We now leverage the bounds on |g2(y)| from Lemma 25. For the at most 5 terms in the above sum for

which y+πi/s ∈ (−3π/s, 3π/s), since g2(y) ≤ 1/2, we get a contribution of at most 5
2
35π5

40s5
≤ 4700

s5
. For
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the remaining terms, we have |g2(x+πi/s)| ≤ 285
(x+πi/s)4s4

, and thus the contribution of the remaining

terms, since |y| < π/s, is at most 2
∑s

i=2
855(πi/s)

40s4
≤ 43 log s

s5
. Thus for sufficiently large s,

|
s−1∑
i=−s

(y + πi/s) · g2(y + πi/s)| ≤ 1

s4
.

To conclude, the claim clearly holds for a = 1 or 2, and for a ≥ 3 we have

s∑
i=a

|(y + πi/s) · g2(y + πi/s)| ≤
s∑

i=a

(y + πi/s)
285

(y + πi/s)4s4

≤ 285

π3s

s∑
i=a−1

1

i3
<

23

2a2s
.

Lemma 27. For y ∈ [−π/s, π/s], sufficiently large s, and positive integer a ≤ s,

|
a∑

i=0

(y + πi/s)2 · g2(y + πi/s)| ≤ 152

s2
.

Proof. From our bounds on g2 given in Lemma 25, have the following:

|
a∑

i=0

(y + πi/s)2 · g2(y + πi/s)| ≤ 3 · 1
2
· 3

2π2

s2
+

a∑
i=3

(y + iπ/s)2
285

(y + iπ/s)4s4

≤ 27π2

2s2
+

285

π2s2

∞∑
i=3

1

(i− 1)2
≤ 152

s2
.

Lemma 28. For y ∈ [−π/s, π/s], sufficiently large s, and positive integers a, b, c, d such that c ≤
a ≤ s and d ≤ b ≤ s, and a twice-differentiable function f : [−aπ

s , bπs ] → R satisfying |f ′(0)| ≤ α,
maxy∈[−cπ/s,dπ/s] |f ′′(y)| ≤ β, and maxy |f(y)| ≤ γ,

|
b∑

i=−a

g2(y +
iπ

s
)f(y +

iπ

s
)− f(0)| ≤ 12γ

(
1

c3
+

1

d3

)
+

12α

s

(
1

c2
+

1

d2

)
+

304β

s2
.

Proof. We first bound the contribution of the terms with i ∈ −a, . . . ,−c, d, . . . , b. Using the bounds
on |g2| from Lemma 25, we have

|
∑

i∈−a,...,−c,d,...,b

g2(x+
iπ

s
)f(x+

iπ

s
)| ≤ γ

285

π4

( ∞∑
i=c

1

(i− 1)4
+

∞∑
i=d

1

(i− 1)4

)
≤ 10γ(1/c3 + 1/d3).

We now consider
∑d

i=−c g2(y+
iπ
s )f(y+

iπ
s ). We express each f(y+ iπ

s ) in terms of the first order

Taylor expansion about 0, and note that |f(y + iπ
s )− (f(0) + (y + iπ

s )f
′(0))| ≤ (y + iπ

s )
2β. Thus we

have the following:

|
d∑

i=−c

g2(y +
iπ

s
)f(y +

iπ

s
)−

d∑
i=−c

g2(y +
iπ

s
)

(
f(0) + (y +

iπ

s
)f ′(0)

)
| ≤ β

d∑
i=−c

g2(y +
iπ

s
)(y +

iπ

s
)2

≤ 2β
152

s2
from Lemma 27.
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We now turn to analyzing the term involving the Taylor approximation:

d∑
i=−c

g2(y +
iπ

s
)

(
f(0) + (y +

iπ

s
)f ′(0)

)
=

d∑
i=−c

g2(y +
iπ

s
)f(0) + f ′(0)

d∑
i=−c

g2(y +
iπ

s
)(y +

iπ

s
).

To analyze the first term above, by Lemma 24,
∑s

i=−s gs(y + iπ
s )f(0) = f(0). Additionally, by

Lemma 25,
∑s−1

d+1 gs(y +
iπ
s ) ≤

∑∞
d

285
π4i4
≤ 2

d3
, and analogously,

∑−c−1
−s gs(x+ iπ

s ) ≤
2
c3
. Thus

|f(0)−
d∑

i=−c

g2(y +
iπ

s
)f(0)| ≤ 2f(0)(

1

c3
+

1

d3
).

To analyze the second term, by Lemma 26,

|
d∑

i=−c

(y +
iπ

s
)f ′(0)g2(y +

iπ

s
)| ≤ 12

s
f ′(0)

(
1

c2
+

1

d2

)
.

The desired statement now follows from adding up the above bounds.

Lemma 29. For y ∈ [0, π/2], sufficiently large s, and twice-differentiable function f satisfying
|f(y)| ≤ γ, |f ′(y)| ≤ α

y and |f ′′(y)| ≤ β
y2
,

|f(y)−
s∑

i=0

gi3(y)f(
iπ

s
)| ≤ 100000

(
γ

y3s3
+

β

y2s2
+

α

y3s3

)
.

Proof. From Lemma 25, we have g03(y)f(0) + gs3(y)f(π) ≤ 2γ 285
y4s4

.

Next, define iy , ⌊ysπ ⌋, and let δy := y− iyπ
s . Thus δy ∈ [0, π/s]. For any j ∈ −iy + 1, . . . , s− iy − 1,

we have

g
iy+j
3 (y) = g2(y −

(iy + j)π

s
) + g2(y +

(iy + j)π

s
)

= g2(δy −
jπ

s
) + g2(δy +

(2iy + j)π

s
).

Defining the function ry(w) = f(y − w), we have the following:

s−1∑
i=1

gi3(y)f(
iπ

s
) =

s−1∑
i=1

(
g2(y −

iπ

s
) + g2(y +

iπ

s
)

)
ry

(
−( iπ

s
− y)

)

=

s−1∑
i=1

(
g2(δy +

(iy − i)π

s
) + g2(y +

iπ

s
)

)
ry

(
δy +

(iy − i)π

s

)

=

iy−1∑
j=−s+iy+1

g2(δy +
jπ

s
)ry(δy +

jπ

s
) +

s−1∑
i=1

g2(y +
iπ

s
)ry

(
δy +

(iy − i)π

s

)
.

The idea now is that Lemma 28 guarantees that the first term above is roughly ry(0) = f(y),
and it is easy to show that the second term above will be very small. We start by bounding the
magnitude of the second term, using the bound on g2 given in Lemma 25:

s−1∑
i=1

g2(y +
iπ

s
)ry

(
δ +

(iy − i)π

s

)
≤ γ/i3y.
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We now consider the first term above, and apply Lemma 28 with a = c = |−s+iy+1|, d = ⌊iy/2⌋,
and b = iy − 1 to yield:

|f(y)−
iy−1∑

j=−s+iy+1

g2(δy +
jπ

s
)ry(δy +

jπ

s
)| ≤ 24γ

i3y
+ 16·304

s2
β
y2

+ 2·12
si2y

α
y ,

from which the desired claim follows.

Fact 30. (From [18]) For λ > 0, and an integer n ≥ 0, if n ≤ λ,

n∑
i=0

poi(λ, i) ≤ poi(λ, n)

1− n/λ
,

and for n ≥ λ,
∞∑
i=n

poi(λ, i) ≤ poi(λ, n)

1− λ/(n+ 1)
.

Lemma 31. For x ≤ s
2k , 1−

∑s−1
i=0 poi(xk, i) ≤ e−s/6.

Proof. This discrepancy is maximized at x = s
2k , and by tail bounds of Poissons and Fact 30, this is

at most
∞∑
i=s

poi(s/2, i) ≤ 2poi(s/2, s) ≤ e−s/6.

Proof of Lemma 23. Recall from Definition 20 that Bi(x) is related to gi3(y) by the coordinate trans-
formation x = 2s

k (1 − cos(y)), and scaling by
∑s−1

j=0 poi(xk, j). By Lemma 31 we can ignore the

scaling factor for x ≤ s
2k and lose only s · (1 + log ks) · e−s/6 < e−s/7 in approximation, since there

are s skinny bumps, and in Construction 22 each skinny bump has a coefficient of magnitude at
most maxx |v(x)| = 1 + log ks+ e−s/7. To represent f(x) as a linear combination of Bi(x)’s, we will
represent r(y) as a linear combination of gi3(y)’s, where r is chosen so that r(y) = f(2sk (1− cos(y))).
Note that

|r′(y)| ≤ |f ′(
2s

k
(1− cos(y)))

2s

k
sin(y)|

≤ αk

2s(y2/3)

2s

k
y since for y ∈ [0, π/2], 1− cos(y) ≥ y2/3, and sin(y) ≤ y.

=
3α

y
.

Similarly,

|r′′(y)| ≤ |f ′′(
2s

k
(1− cos(y)))(

2s

k
sin(y))2 + f ′(

2s

k
(1− cos(y)))(

2s

k
cos(y))|

≤ 9β

y2
+ α ≤ 30β

y2
.

Thus by Lemma 29, we can approximate r(y) as a linear combination of gi3(y) to within error
O( γ

y3s3
) +O( β

y2s2
) +O( α

y3s3
) + e−s/7. For y ∈ [0, π/2], note that (1− cos(y)) ∈ [y2/3, y2/2] and thus
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the error in the corresponding approximation of f(x) via the linear combination of Bi(x)’s will have
error at most

O(
γ

(
√

3xk
2s )3s3

) +O(
β

(
√

3xk
2s )2s2

) +O(
α

(
√

3xk
2s )3s3

) + e−s/7,

= O(
γ

(xks)3/2
+O(

β

xks
) +O(

α

(xks)3/2
) + e−s/7,

as desired.
We now turn to bounding the approximation of f(x) for small x ≤ 1/ks, which thus equates to

bounding the approximation of r(y) via the gi3(y)’s for y < 2/s. The desired lemma now follows from
noting that the approximation of r(y) for such values of y is a convex combination of r(iπ/s) for
i ∈ 0, 1, 2, . . . , where the weight on r(0) is trivially seen to be at least .1, and the contribution to the
approximation from gj3 for j ≥ 100 is bounded by

∑
j≥101 g

j
3(y)r(iπ/s) ≤ .1, from Lemma 25 and the

assumption that |f(x)| ≤ 1/x.5.

Proof of Theorem 2. Consider the function f(x) , I(x)
[
log x− log k + 1

2x

]
, and note that it satisfies

the conditions of Lemma 19, with α = O(1), and thus

|
∞∑
i=0

f(i) · poi(x, i)−
(
f(x) +

1

2
xf ′′(x)

)
| ≤ O(1/x2).

For x > s/2, we have I(x) = 1 and thus for such x

f(x) +
1

2
xf ′′(x) = log x− log k +O(

1

x2
).

Thus via the change of variables y = x
k , we have that for y ∈ [ s

2k ,∞],

| log y −
∞∑
i=0

poi(yk, i)f(i)| ≤ O(
1

k2y2
).

Thus we have accurately represented the logarithm function via the Poisson bumps in the interval
[ s
2k , 1].

We now consider the Chebyshev-bump approximation of the function v(y) defined above as

v(y) ,
{
log y − I(2ky) ·

∑∞
i=0 poi(yk, i)f(i) for y ≥ 1

ks

log( 1
ks)− 1 + ysk for y ≤ 1

ks

Note that v(y) satisfies the conditions of Lemma 29 with γ < log(sk) + 2 and α, β = O(1). Thus
v(y) can be accurately represented by

∑
iBi(y)v(ci), yielding that for sufficiently large k,

|
s∑

i=1

Bi(y)v(ci) +

∞∑
i=1

poi(yk, i)f(i)− log(y)| ≤


log(y) + log(ks) +O(1) for y ≤ 1

ks

O( 1
yks) + e−s/7 for y ∈ ( 1

ks ,
s
2k )

O( 1
k2y2

) for y ≥ s
2k .

We will now apply Proposition 17 with a = O(ϵ), b = O(ϵ/n), and c = k−0.09. Note that by
Lemma 21, the coefficients are sufficiently small and vary sufficiently slowly, satisfying the second
condition of Proposition 17. For the first condition of Proposition 17, it suffices to show that err(y) ≤
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ϵ for y ≥ 1
n , and err(y) ≤ ϵ

yn for y ≤ 1
n . To show this, consider setting n = ϵks. For y ≤ 1/ks, since

y < 1/n, we have

(ny) (log(y) + log(ks) +O(1)) ≤ (ϵksy) (log(ksy) +O(1))

≤ ϵ (log(ksy)ksy +O(1)ksy)

≤ ϵO(1),

and thus the error in this region is good enough to yield an O(ϵ) estimator. For y ∈ ( 1
ks ,

s
2k ),

e−s/7 = O(k−.04) = o(ϵ), and for y > 1/n, we have error of approximation of the logarithm function
at most O(n/ks) = O(ϵ), and if y < 1/n = 1/ϵks, we have ny ·O(1/yks) = O(ϵ), which is sufficient
to yield an O(ϵ) estimator. Finally, in the region y ≥ s

2k , if y > 1/n, which implies that ϵ > 1/yks,
we have error O(1/k2y2) = O(1/yks) · s

yk . Because of our bound on y, s/yk ≤ 2, and thus this error

is O(1/yks) = O(ϵ). In the case that y ≤ 1/n, we have ny ·O(1/k2y2) ≤ ϵksO(1/k2y) = O(ϵs/ky) ≤
O(ϵ), again because of our bound on y. Thus the above approximation scheme of the logarithm
function is sufficiently accurate to yield O(ϵ)-error estimators of entropy for distributions of support
at most O(ϵk log k).

B Testing Uniformity

The machinery developed in the previous section for constructing our estimator for entropy is
quite robust. Here, we leverage this machinery—in particular, the “Chebyshev Bump” scheme—to
yield a linear estimator for distance to uniformity. While distance to uniformity is not a linear
property, there exists a linear property that is easily seen to be a 2-approximation:

Fact 32. The total variation distance between a discrete distribution p ∈ Dn with histogram h and
a uniform distribution on m elements, denoted by D(h,Unif(m)), can be approximated to within a
factor of 2 as

∑
x:h(x)̸=0 h(x)fu(x), for the function

fu(x) ,
{
x for x ≤ 1

2m

|x− 1
m | for x > 1

2m .

To see the intuition behind this, note that to calculate the distance between a distribution p
and the uniform distribution on m elements, one takes the m elements pi of h that have the highest
probability, and computes the cost of changing each of their probability masses to 1

m , namely |pi− 1
m |,

and then adds to this the cost of changing every other mass pi to 0, namely |pi|. This is lower-bounded
and 2-approximated by the cost of sending every element that is below 1

2m down to 0, and sending
every element above 1

2m to 1
m , as defined in Fact 32.

As for estimating entropy, we will use the Chebyshev bump construction of Definition 20 to help
approximate the function fu(x)

x via a sum of Poisson functions, then apply Proposition 17.

Construction 33. Let s = (0.3) log k. Define the interpolation function I : R → R such that
I(x) = 0 for x ≤ s

4 , I(x) = 1 for x ≥ s
2 , and I(x) is continuous, and four-times differentiable, where

for i ∈ 1, . . . , 4, the magnitude of the ith derivative is at most c/si, for some fixed constant c. Such
a function I can be easily constructed.

Consider the function g(x) , I(kx)fu(x)x , and provisionally set zi , g( ik ). We will now use the

skinny Chebyshev bumps to approximate the function v(x) = (1− I(kx))fu(x)x .
Define the coefficient of the ith Chebyshev bump Bi, with “center” ci =

2s
k

(
1− cos

(
iπ
s

))
, to be

v(ci). To conclude the construction, letting the ith Chebyshev bump Bi be represented as a sum of
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Poisson functions, as guaranteed by Lemma 21: Bi(x) =
∑

j ai,jpoi(xk, j), for each i ∈ {0, . . . , s−1},
increment zj by

∑
i ai,jv(ci).

Define the linear estimator given by coefficients β1, . . . , βk, where βi , zi−1 · ik .

The following theorem asserts the quality of our estimator:

Theorem (Theorem 3). For any ϵ > 1
4 logm , the estimator described in Construction 33, when given

O
(

1
ϵ2
· m
logm

)
independent samples from a distribution of any support, will compute the L1 distance

to Unif(m) to within accuracy ϵ, with probability of failure o(1/poly(m)).

The lower-bound construction in [33] shows that this is tight for constant ϵ; in particular, for
any constant ϵ > 0, there is a constant c such that for sufficiently large m, there exist two distri-
butions A,A′ such that D(A,Unif(m)) < ϵ, D(A′, Unif(m)) > 0.49, but distributions A,A′ are
indistinguishable (with probability at least 2/3,) given c m

logm samples.
We note that, in contrast to the estimator for entropy, the estimator for distance to uniformity

does not need any assumption on the support size of the distribution being sampled. Additionally,
the convergence rate is as the inverse of the square root of the number of samples, as opposed to the
much faster inverse linear relationship of the estimator for entropy. Intuitively, this is because the
function fu(y) has a kink at probability y = 1/m, as opposed to the smooth logarithm function.

The proof of Theorem 3 is considerably easier than for our estimator of entropy:

Proof of Theorem 3. Consider setting m = ϵ2k log k, for some ϵ > 4
logm , and thus the portion of

fu(x)/x approximated exclusively by the Poisson bumps (ie x > s
2k ) corresponds to x > 1

m , and

in this range fu(x)/x = 1 − 1
xm . In particular, the function fu(x/k)

x/k has jth derivative bounded

in magnitude by O( k
mxj+1 ), for constant j, and thus satisfies the conditions of Lemma 19 with

α = O( k
ms), and thus the approximation in this regime is accurate to O( k

msx2 )+O(x2
k

mx3 ) = O( k
mx2 ),

which is maximized by minimizing x, in which case the error is O( k
ms2

) = O( 1
ϵ2 log3 k

), which is at

most O(ϵ), as in the case that ϵ = 1/ log k.
We now consider the error in approximation from the skinny bumps (ie for x < s

2k . In this regime,
the function fu(x)/x is O( 1

mx2 )-Lipschitz for x > 1/2m. By Lemma 25 (arguing that the functions gi3
decay super quadratically), Lemma 31, and the change of coordinates, the width of the Chebyshev

bumps centered at x are O(
√
xk log k
k log k ); thus the error of approximation is the product of this width

and the Lipschitz constant, yielding O( 1
ϵ2(xk log k)3/2

). This is maximized by minimizing x, and thus

taking x = O(1/m) yields error O(ϵ), as desired. Since fu(x)/x = 1 is constant for x < 1/2m, the
error in this small regime is o(ϵ). Thus the error of approximating the function fu(x)/x is O(ϵ). To
conclude, since the coefficients of the approximation are sufficiently small (bounded via Lemma 21
as in the estimator for entropy), we may now apply Proposition 17 to yield the claim.

C Properties of Pairs of Distributions

Perhaps unsurprisingly, our very general framework for constructing constant-factor optimal estima-
tors for symmetric properties of distributions can also be extended to yield constant-factor optimal
estimators for symmetric (label-permutation invariant) properties of pairs of distributions, which in-
cludes properties such as variational distance (L1 distance), and Kullback–Leibler divergence between
two distributions.

For these properties, one is given as input a set of k1 samples from distribution A, and k2 samples
from distribution B. In analogy with the case for properties of a single distribution, we note that for
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both lower and upper bounds, up to constant factor it suffices to consider the Poissonized setting in
which one takes Poi(k1) samples from A, and Poi(k2) samples from distribution B.

Definition 34. The fingerprint F of a set of k1 samples from A and k2 samples from B is a k1×k2
matrix, whose entry F(i, j) is given by the number of domain elements that are seen exactly i times
in the samples from A and exactly j times in the samples from B.

Definition 35. The histogram hA,B : [0, 1]2 → N ∪ 0 of a pair of distributions A,B is defined by
letting hA,B(x, y) be the number of domain elements that occur with probability x in distribution A
and probability y in distribution B.

As in the case with symmetric properties of single distributions, symmetric properties of pairs of
distributions are functions of only the histogram of the pair of distributions, and given any estimator
that takes as input the full set of k1 samples from A and k2 samples from B, there is an estimator
of equivalent performance that takes as input the fingerprint F derived from such a set of samples.

Definition 36. A property π is a linear property of a pair of distributions if there exists a function
f : [0, 1]2 → R such that

π(A,B) =
∑

(x,y):hA,B(x,y)̸=0

h(x, y)f(x, y).

For properties of single distributions, Proposition 17 shows that if one can accurately approximate
f(x)/x as a sum of poisson functions poi(xk, i) with well-behaved coefficients, then the corresponding
estimator will be accurate, when given a set of Poi(k) samples. Here, we show that if the function
f(x,y)
x+c·y can be accurately approximated by

∑
i,j≥0 βi,j · poi(kx, i) · poi(cky, j), then the corresponding

property can be accurately approximated given k samples from A and ck samples from B. For clarity
of exposition, we only state the proposition for c = 1, and we give the analog of Proposition 17.

Proposition 37. Let π be a linear symmetric property of pairs of distributions such that for any his-
togram hA,B corresponding to a pair of distributions A,B, we have π(A,B) ,

∑
(x,y):hA,B(x,y)̸=0 hA,Bfπ(x, y),

for some function fπ : [0, 1]2 \ {(0, 0)} → R. Given integers k, n and a set of coefficients zi,j for all
integers i, j ≥ 0, we define the function err : [0, 1]2 \ {(0, 0)} → R by

fπ(x, y)

x+ y
= err(x, y) +

∑
i,j≥0

zi,jpoi(kx, i)poi(ky, j).

For all integers i, j ≤ k with (i, j) ̸= (0, 0), define βi,j , zi−1,j
i
k +zi,j−1

j
k . If, for positive real numbers

a, b, c, the following conditions hold:

• |err(x, y)| < a+ b
x+y ,

• for any (i, j), (i′, j′) such that |i− i′| ≤
√
i log k, and |j− j′| ≤

√
j log k, we have |βi,j −βi′,j′ | ≤

c
√
i+

√
j√

k
,

then the linear estimator given by coefficients βi,j when given a fingerprint derived from a set of k
independent samples from A and k independent samples from B, that are distributions of support at
most n, will estimate the property value with error at most a+ bn+ c log k, with probability of failure
o(1/poly(k)).
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Proof.

π(A,B) =
∑

(x,y):h(x,y)̸=0

h(x, y)fπ(x, y)

=
∑

(x,y):h(x,y)̸=0

h(x, y)(x+ y) · err(x, y) +
∑

(x,y):h(x,y) ̸=0

∑
i,j≥0

βi,jh(x, y)poi(kx, i) · poi(ky, j)(x+ y).

We first analyze the second term in the above expression:∑
(x,y):h(x,y) ̸=0

∑
i,j≥0

βi,jh(x, y)poi(kx, i) · poi(ky, j)(x+ y)

=
∑

(x,y):h(x,y)̸=0

∑
i,j≥0

βi,j (h(x, y)xpoi(kx, i)poi(ky, j) + h(x, y)poi(kx, i) · y · poi(ky, j))

=
∑
i,j≥0

βi,jh(x, y)

(
i+ 1

k
poi(kx, i+ 1)poi(ky, j) +

j + 1

k
poi(kx, i)poi(ky, j + 1)

)
=

∑
i≥1,j≥0

βi−1,jE[F(i, j)] i
k
+

∑
i≥0,j≥1

βi,j−1E[F(i, j)] j
k
.

Thus this term is simply the expected value of our linear estimator. Note that we started with
an approximation that used all the products of the Poisson functions, even poi(xk, 0) ·poi(yk, 0), and
yielded an expression which is the sum of all fingerprint expectations except the (0, 0)th–specifically,
the sum involves exactly those fingerprint entries which we have access to.

This expected value of the estimator, together with the bounds on the magnitude of the the error
term, derived from the first conditions of the proposition as was done in Proposition 17, yields that
the estimator has bias at most a + bn. Additionally, exactly as in the proof of Proposition 17, the
bounds on the variation in the coefficients given by the second condition yield the desired bounds on
the variance of the estimator.

We now describe an explicit linear estimator for L1 distance.

Construction 38. Let s = 1
15 log k, and for i, j ≤ s, let Bi,j ,

∑
i′,j′ ai,i′aj,j′poi(xk, i

′)poi(yk, j′),
be our “2-dimensional Chebyshev bumps,” where ai,i′ is defined to be the coefficient of poi(xk, i′) in
the expression of Bi as a sum of poi(xk, j), for Bi as defined in Definition 20.

Let fL1(x, y) , |x − y|, be the characteristic function of L1 distance, and let r(x, y) , fL1
(x,y)

x+y .
Define the interpolation function I(x, y) such that I(x, y) = 0 for x + y ≤ s

4k , and I(x, y) = 1 for

x+ y ≥ s
3k , where I has partial derivatives bounded in magnitude by O(ks ). Note that such a function

clearly exists.
We define the coefficients zi,j := I( ik ,

j
k ) · r(

i
k ,

j
k ), for i, j satisfying i+ j ≥ s/4.

We now use the skinny bumps Bi,j to represent (1−I(x, y))·r(x, y). Define ci =
2s
k (1−cos(iπ/s)),

and let γi,j = (1 − I(ci, cj)) · r(ci, cj), be the “Chebyshev bump” coefficients. To conclude the con-
struction, by Lemma 21 we can represent this linear combination of Chebyshev bumps as a linear
combination of the Poisson bumps.

Theorem (Theorem 4). There is a constant c such that for any ϵ > c√
logn

, the estimator described

in Construction 38, when given O( n
ϵ2 logn

) independent samples from each of two distributions of
support at most n, will compute an estimate of the L1 distance between the pair of distributions,
accurate to within ϵ, with probability of failure o(1/poly(n)).
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The proof of this theorem is nearly identical to that of Theorem 3; given k = n
ϵ2 logn

, we leverage

the skinniness of the Chebyshev bumps, as guaranteed by Lemma 25, and use the fact that
fL1

(x,y)

x+y

is bounded by 1 everywhere, and has partial derivatives at (x, y) bounded in magnitude by 1
x+y .

Note that s = 1
15 log k, which by the proof of Lemma 21 guarantees that the magnitude of the sum

of the coefficients in the representation of Bi,j as a sum of poi(x, i′) · poi(y, j′) is bounded by at most
(2(2+

√
5)s)2 ≤ k0.2, and thus we may apply Proposition 37 with a = O(ϵ), b = O(ϵ/n), and c = k−.1,

yielding the theorem.

C.1 Lower Bounds for L1 Distance

Theorem (Theorem 5). For any constants 0 < a < b < 1
2 , distinguishing for a pair of distributions

with support at most n whether their L1 distance is less than a or greater than b requires O( n
logn)

samples.

Proof. In [33, 32] we exhibited, for any sufficiently small ϕ, a pair of distributions, pn, pn/2 on support
n such that are ϕ-close in the relative earthmover—and hence the L1 sense—to uniform distributions,
respectively, on n and n

2 elements, yet are indistinguishable in k samples. Construct such distributions
for ϕ < min{a, 12 − b}. Consider now the task of distinguishing, for random permutations σ1, σ2, the

pair of distributions (σ1(p
n), σ2(p

n)) from the pair (σ1(p
n/2), σ2(p

n)), where we consider that the
application of a permutation relabels its elements.

Assume for the sake of contradiction that these pairs are distinguishable given k samples from
each. We could thus construct a tester that distinguishes pn from pn/2 by, on being given k samples
from one or the other, simulating the application of this hypothetical algorithm on these k samples,
and k samples constructed ad hoc from a random permutation of pn, and returning “pn” if the L1

distance is small, “pn/2” otherwise.
Thus we have the desired contradiction and no such tester can exist.

D Proof of Proposition 16

In this section we show that a solution y+, y− to the Lower Bound LP of Definition 15, for appro-
priate parameters, corresponds to a pair of distributions p+, p− of support n whose property values
differ by roughly the objective value of the linear program and which are indistinguishable to prop-
erty testers. We demonstrate indistinguishability by following the outline of the corresponding result
in[33]. In fact, the Lower Bound LP can be seen as mechanizing the approach of [33]. Whereas in that
paper there was a single explicit pair of distributions for which the goal was an indistinguishability
result, the analysis there, while quite involved, essentially relied on nothing beyond the conditions
of our Lower Bound LP. In the current paper, we thus outline how this analysis can be applied in
this generality. We refer the reader to [33] for the full details and motivation for the approach. We
omit several details here.

The essential approach is: 1) round y+ and y− to distributions p+, p− where the constraints
of the linear program imply that p+ and p− will have almost identical expected fingerprints; 2)
invoke Lemma 20 of [33] to see that the fingerprint distributions will thus also have almost identical
covariances; 3) invoke the central limit theorem (Theorem 4) of [33] to conclude that the distributions
of fingerprints are essentially multivariate Gaussian distributions of almost matching expectation and
covariance, and hence indistinguishable. We briefly review each step in turn.

The bounds of the central limit theorem work well when the distributions have variance that is
“large in every direction”. (In other words, the covariance matrix has a large minimum eigenvalue.)
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To ensure this, we add a “fattening” step to the rounding procedure of step 1–see Definition 17 of [33]
and the related discussion. Essentially, all that is needed is to add a positive integer ϕ to each of
the histogram entries i

k for i ∈ [kc1 ]. Lemma 19 of [33], adapted to our context by replacing log k
there with kc1 , yields that if all these entries were 1, the minimum variance of the first kc1 fingerprint
entries would be at least 1

6k
−9c1/2; thus with ϕ entries the minimum variance is at least ϕ

6·k9c1/2 . The
extra details of rounding histogram entries to integer values, ensuring that each distribution has at
most n entries, and has total probability mass 1, are straightforward.

The second step, of leveraging Lemma 20 from [33], relies on the following trivial corollary of
that result, implicit in that paper:

Corollary 39. Given two distributions p+, p− such that when taking Poi(k) samples from p+, p−

respectively the expectations of the fingerprints match to within kϵ, element-by-element, for some
ϵ > 0, then the covariance matrices of the fingerprints match to within O(k

√
ϵ| log ϵ|), element-by-

element.

Finally, apply the central limit theorem, which states that the distribution of the first kc1 finger-
prints may be approximated by a Gaussian of corresponding mean and covariance, up to statistical

distance O(k
4c1/3

σ1/3 log n), where σ2 is the minimum variance of the fingerprint distribution, in any

direction, which we have bounded above as ϕ

6·k9c1/2 . Thus, for example, letting ϕ = ω(k25c1/2 log6 n)
yields o(1)–closeness. Details are below. (We will actually use a somewhat larger ϕ in the proof of
the following result so as to ensure further properties not mentioned in this introduction.)

Proposition (Proposition 16). Let π be a δ-relative earthmover continuous property that takes value
0 on the trivial distribution. Given any feasible point y+, y− to the Lower Bound LP of Definition 15
that has objective function value v, then, provided kc1 ∈ [log2 k, k1/32] and c2 ≥ 1

2 + 6c1, there exists
a pair of distributions p+, p− of support at most n such that:

• π(p+)− π(p−) > v · (1− o(1))−O(δ · k−c1 log k),

• no algorithm on Poi(k)-samples can distinguish p+ from p− with probability 1−Θ(1).

Proof. We prove the lemma for the case δ = 1, as otherwise, we may divide the property by δ, and
only the objective of the linear program will be affected, and thus both sides of the first claim of the
proposition are proportional to δ, and nothing else is affected.

We note that 1-relative earthmover continuity implies that |fπ(x)x | ≤ | log x| for any x. Further,

for the range under consideration, x ∈ X = (0, k
c1

2k ), this implies |fπ(x)| ≤ x| log x| < kc1
2k log k.

For the case when n < k1−2c1 , we thus have the LP constraint
∑

x∈X
y+x
x ≤ n implies that

the corresponding portion of the objective function is bounded as
∣∣∣∑x∈X

fπ(x)
x y+x

∣∣∣ ≤ nkc1
2k log k ≤

1
2k

−c1 log k, implying that the objective value of the LP is at most twice this, and thus that the
proposition may be trivially satisfied by the pair consisting of any distribution and itself.

The other trivial case is when (for n ≥ klog k) there exists some x ≥ 1
n for which |fπ(x)x | ≥ log2 k.

Let x+ be the number in the interval [ 1n ,
1
k3
] that maximizes fπ(x)

x , and let x− be the number that
minimizes this. It is straightforward to see that relative earthmover continuity implies that, for

the optimum (y+x , y
−
x ) of the linear program,

∑
x∈X

fπ(x)
x y+x ≤

fπ(x+)
x+ + 3 log k and

∑
x∈X

fπ(x)
x y−x ≥

fπ(x−)
x− − 3 log k, implying that fπ(x+)

x+ − fπ(x−)
x− ≥ v · (1 − o(1)). Thus the uniform distributions on,

respectively, 1/x+ and 1/x− elements will have property values that differ by v · (1 − o(1)), and
further, will have indistinguishable fingerprint distributions (statistical distance O(1/k) from each
other), as in either case, no element will be seen more than once in Poi(k) samples, except with
O(1/k) probability.
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Otherwise, if neither of the above two cases apply, then we derive the distributions p+, p− directly
from the linear program solution (y+, y−), via “fattening and rounding”, applying Corollary 39 and
then the central limit theorem from [33] to prove indistinguishability.

We first analyze what corresponds to “total probability mass” in each of y+, y−. Note that
for any positive λ,

∑∞
i=0 poi(λ, i) = 1. Consider combining the first two LP constraints into, for

each i ∈ {0, . . . kc1},
∣∣∑

x∈X(y+x − y−x ) · poi(xk, i)
∣∣ ≤ k−c2 , and then summing over i < kc1 to yield∣∣∑

x∈X(y+x − y−x )
(∑

i<kc1 poi(xk, i)
)∣∣ ≤ kc1k−c2 . Since X consists only of elements less than kc1

2k ,
and by assumption, kc1 ≥ log2 k, Poisson tail inequalities yield that for any such x, we have 1 >∑

i<kc1 poi(xk, i) > 1 − o( 1
poly(k)). Thus

∑
x∈X y+x and

∑
x∈X y−x are at most 2kc1k−c2 + o( 1

poly(k))

apart. Our first modification to y+, y− is to take whichever one has the higher sum and decrease
its entries arbitrarily until the two sums are equal. Since poi(xk, i) ≤ 1 in general, this will affect
each constraint by at most 2kc1k−c2 + o( 1

poly(k)), and will affect the objective function by at most

O(kc1k−c2 log2 k). Next, multiply each of the entries in y+, y− by the largest number less than 1 that

would make
∑

x∈X y+x ≤ 1 − k−2c1 and
∑

x∈X
y+x
x ≤ n − k1−3c1 − 1, along with the corresponding

statements for y−. We note that the LP constraints imply this scaling is by 1 − o(1). Since before
this scaling we had for each i ≤ kc1 that |

∑
x(y

+
x − y−x ) · poi(xk, i)| ≤ 3kc1k−c2 , after scaling both

y+, y− by the same number less than 1, this will remain true. The final steps of the transformation
are to round each of y+, y− into histograms h+, h− with integral entries, though which will not have
total probability mass 1; fatten: for each i ∈ [kc1 ] increment h+i/k and h−i/k by ϕ = k1−4c1 ; to make
each histogram have total probability mass 1, let m be the probability mass that must be added
to each (which will be the same for each, by construction), and increment both h+m and h−m by 1.
(There are some details involved in rounding appropriately, but the analysis is straightforward, and
neither the objective value term nor the constraint terms corresponding to the difference in expected
fingerprints will be affected by more than o(kc1k−c2).)

Thus h+, h− are now histograms of distributions, each having support at most n. Since poi(xk, i) =
i+1
xk · poi(xk, i+1), we have, since h+x , h

−
x correspond to rounded versions of y+x

x , y
−
x
x , that the LP con-

straints for a certain i yield bounds on the i + 1st fingerprint entries, specifically, the fact that
|
∑

x(y
+
x − y−x ) · poi(xk, i)| ≤ 3kc1k−c2 implies that that the expected fingerprint entries up to kc1

must match to within 3k1+c1−c2 . Corollary 39 yields that the fingerprint covariances must thus
match to within O(k1−(c2−c1)/2 log k). Further, since there are ϕ = k1−4c1 elements in each distri-
bution at each probability i

k for i < kc1 , Lemma 19 of [33] implies that the minimum covariance

of either fingerprint distribution, in any direction, is at least Ω(k1−17c1/2). Thus the central limit
theorem yields that the statistical distance of each fingerprint distribution from the Gaussian of

corresponding mean and covariance is O( k4c1/3

k(1−17c1/2)/6
log n) < O(k

3c1
6√
k
log n). We note that, while we

cannot bound n directly, we note that distribution h+ is indistinguishable (statistical distance O( 1k )
from a distribution obtained by modifying it so that no probabilities lie below 1

k3
. Thus if we mod-

ify both h+, h− in this fashion before applying the central limit theorem, we have effectively made
n ≤ k3, and thus, for c1 ≤ 1

20 we have O(k
3c1
6√
k
log k3) = o(1).

We have thus shown that h+, h− are indistinguishable from Gaussians of corresponding mean and
covariance. Comparing multivariate Gaussians is straightforward, and we appeal to Proposition 32
of[33] to see that two Gaussians are indistinguishable when the smallest covariance in any direction
is ω(1) times larger than both the square of the distance between their means, and the product of
the dimension (kc1) and the largest pairwise discrepancy between any entries of the two covariance
matrices. The smallest covariance has been bounded by Ω(k1−17c1/2); the element-wise difference
between the means is at most O(k1+c1−c2) implying that the square of their Euclidean distances is
at most O(k2+3c1−2c2). To ensure that the squared distance between the means is o(1) times the
smallest covariance, it is enough to let c2 ≥ 1

2 + 6c1. Finally, the pairwise discrepancy between the
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two covariance matrices was bounded above by O(k1−(c2−c1)/2 log k), which, plugging in our bound
for c2 yields O(k3/4−5c1/2 log k; the condition that this times the dimension (kc1) is o(1) times the
minimum covariance in any direction yields that, since by assumption kc1 ≥ log2 k, it is enough to
set c1 ≤ 1

32 , yielding the desired indistinguishability.

Many of the steps in the analysis here can be tightened considerably, as most of the tools we
use were developed in a different paper for a different context[33]. However, for our present pur-
poses of deriving asymptotic bounds without much concern for the constants involved, they serve
well.(???promote this to somewhere in the body of the paper?)

E Proof of Proposition 17

Proposition (Proposition 17). Let π be a linear symmetric property such that for any histogram h,
we have π(h) ,

∑
x:h(x)̸=0 h(x)x · r(x), for some function r : (0, 1] → R. Given integers k, n, and a

set of coefficients z0, z1, . . . such that if we define the function err : (0, 1]→ R by

r(x) = err(x) +
∑
i≥0

zipoi(xk, i),

and if for positive real numbers a, b, c the following conditions hold:

1. |err(x)| < a+ b
x ,

2. for all j ≥ 1 let βj =
j
k · zj−1 with β0 = 0, then for any j, ℓ such that |j− ℓ| ≤

√
j log k we have

|βj − βℓ| ≤ c
√
j√
k

Then the linear estimator given by coefficients β1, . . . , βk, when given a fingerprint derived from a set
of k independent samples chosen from a distribution of support at most n will estimate the property
value with error at most a+ bn+ c log k, with probability of failure o(1/poly(k)).

Proof of Proposition 17. To start, consider that instead of k samples, we are given k′ ← Poi(k)
samples from the distribution. Trivially, if we prove the proposition in this setting, then, because
k′ = k with probability at least 1

O(
√
k)
, and our probability of failure is o(1/poly(k)), the conditional

probability of failure given exactly k samples must also be o(1/poly(k)). Thus, for the remainder of
the proof, assume we are given k′ ← Poi(k) samples.

The proof consists of two parts, we first argue that the first condition above guarantees that
the expected value of the estimator is within a + bn of the true property value—thus the resulting
estimator has small bias. We then argue that the second conditions above implies, via tail bounds,
that the value of the estimator will be very closely concentrated about its expectation.

For a histogram h corresponding to a distribution of support at most n, we have the following:

r(h) =
∑

x:h(x)̸=0

h(x)x · r(x)

=
∑

x:h(x)̸=0

h(x)x

err(x) +
∑
i≥0

zipoi(xk, i)


=

∑
i≥0

βi+1
k

i+ 1

∑
x:h(x)̸=0

h(x)x · poi(xk, i)

+
∑

x:h(x)̸=0

h(x) · x · err(x) . (1)
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We start by bounding the magnitude of the second term (the error term). Since
∑

x h(x) ≤ n,
and

∑
x h(x)x = 1, we have∑

x:h(x)̸=0

h(x)x · err(x) ≤
∑

x:h(x)̸=0

h(x)x · a+
∑

x:h(x)̸=0

h(x)x · b
x
≤ a+ nb.

We now turn to the first term in Equation 1. Observe that

x · poi(xk, i) = x
(xk)ie−xk

i!
=

(xk)i+1e−xk

(i+ 1)!

i+ 1

k
= poi(xk, i+ 1)

i+ 1

k
.

Additionally,
∑

x:h(x) ̸=0 h(x)poi(xk, j) is simply E[Fj ], the expected jth fingerprint entry given
Poi(k) samples from h. Thus the first term in Equation 1 becomes:∑

i≥0

βi+1
k

i+ 1

∑
x:h(x)̸=0

h(x)x · poi(xk, i) =
∑
i≥0

βi+1

∑
x:h(x)̸=0

h(x)poi(xk, i+ 1) =
∑
i≥1

βiE[Fi],

which is simply the expected value of our estimator. Thus the bias of the estimator is at most a+bn,
as desired.

We now argue that with high probability the error will be tightly concentrated about this bias.
We note that for λ ≥ 1, the probability of a Poisson distribution Poi(λ) taking a value outside the
range λ ±

√
λ log k decays super-polynomially fast with k. Thus letting j = ⌊λ⌋, we thus also have

that Poi(λ) will lie outside j±
√
j log k with o(1/poly(k)) probability. Thus, with all but o(1/poly(k))

probability, each element in the support of the distribution such that k · p(i) ≥ 1 will be sampled a
number of times that lies in the interval j ±

√
j log k, for j = ⌊k · p(i)⌋. Thus from Condition 2 of

the proposition, each such element will contribute to the property estimate a number in an interval

of radius c
√
j√
k
≤ c

√
k·p(i)√
k

= c
√

p(i) and hence diameter at most 2c
√

p(i). With a view towards

applying Hoeffding’s inequality, we bound the sum of the squares of the diameters of these intervals:∑
i:p(i)≥1/k 4c

2 · p(i) ≤ 4c2. Thus Hoeffding’s inequality says that the contribution of the elements of

probability at least 1/k to the estimate will be within
√
4c2 log k4 = c log k

2 of its expectation, except

with 2 · e−
log2 k

8 = o(1/poly(k)) probability.
Next we consider those elements for which p(i) < 1

k . We note that for λ < 1 and ℓ ≥ 1 we have

poi(λ, ℓ) = λℓe−λ

ℓ! ≤ λ
ℓ! . Thus the total probability that any element of probability less than 1/k

appears more than log k times is at most
(∑

ℓ>log k
1
ℓ!

)∑
i k · p(i). The first term is o(1/poly(k)),

and the second term equals k, leading to a total bound of o(1/poly(k)). Similar to above, we may
use the bound from Condition 2 of the proposition, for j = 1 to say that, except with this negligible
probability, each such element with p(i) < 1

k contributes to the property estimate a value in an
interval of radius c√

k
. We further bound the variance of each such contribution: since an element

of probability p(i) < 1
k will likely be seen 0 times, and in fact will be seen a nonzero number of

times only with probability less than k · p(i), the variance of each such contribution will be at
most k · p(i) · (2 c√

k
)2 = 4c2 · p(i), which must thus sum to at most 4c2. Thus we have a sum of

independent random variables each in an interval of diameter 2c√
k
and having total variance at most

4c2. Bennett’s inequality says that in such a case, with a sum of independent random variables of
total variance σ2, each bounded to be within m of its mean, then the probability that the sum is
more than t away from its mean is at most 2 exp(− σ2

m2 · ϕ(mt
σ2 )) where the function ϕ is defined as

ϕ(x) = (1+x) log(1+x)−x. In our present case, we consider the probability that the contribution to
the estimate from the small distribution elements deviates from its mean by more than c log k

2 , yielding
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a bound of 2 exp(−k · ϕ( log k
4
√
k
). Since for x ≤ 1, ϕ(x) > x2

3 , our bound becomes 2 exp(− log2 k
48 ), which

is negligible.
Thus in either case, the probability of deviating from the expectation by more than c log k

2 is
negligible in k, so thus the total estimate will never deviate by more than c log k from its expectation,
except with negligible probability. Thus the error of our estimator is at most a + bn + c log k, with
o(1/poly(k)) probability of failure.

F Matrix Exponentials of Poisson Matrices

Given a vector of Poisson coefficients, z, indexed from 0 through ∞, we may associate it with the
real function g : [0,∞) → R defined as g(x) =

∑∞
i=0 z(i) · poi(x, i). As we use it in this paper,

the input of the function g is typically scaled by the number of samples, as in g(xk). Consider
the task we call “resampling”, that is, given coefficients z and a constant α, finding a vector zα
that yields a corresponding gα such that g(αx) = gα(x) for all x ≥ 0. That is, if z is the vector
of coefficients for a k-sample estimator, zα will be a vector of coefficients for a k

α sample estimator
that has identical expected estimates. (See Proposition 17.) Constructing such an estimator for
α < 1 is straightforward—intuitively, taking more samples can never hurt. More specifically, given a
Poisson process Poi( xα) that returns an integer ℓ, namely, “ℓ Poisson events have occurred”, we may
simulate a Poisson process Poi(x) by, for each “event”, accepting it with probability α and otherwise
ignoring it; that is, when the Poisson process Poi( xα) returns ℓ, our simulation of Poi(x) returns i ≤ ℓ

with probability αi(1−α)ℓ−i
(
ℓ
i

)
, that is, the probability that a binomial distribution with parameter

α returns i heads out of ℓ samples. Symbolically, poi(x, i) =
∑∞

ℓ=i poi(
x
α , ℓ)α

i(1 − α)ℓ−i
(
ℓ
i

)
. To

ensure
∑∞

i=0 z(i) · poi(x, i) =
∑∞

ℓ=0 zα(ℓ) · poi(
x
α , ℓ) for all x, we expand and then change the order of

summation:

∞∑
i=0

z(i) · poi(x, i) =
∞∑
i=0

∞∑
ℓ=i

z(i)poi(
x

α
, ℓ)αi(1− α)ℓ−i

(
ℓ

i

)

=

∞∑
ℓ=0

poi(
x

α
, ℓ)

ℓ∑
i=0

z(i)αi(1− α)ℓ−i

(
ℓ

i

)

which implies that we should set zα(ℓ) =
∑ℓ

i=0 z(i)α
i(1 − α)ℓ−i

(
ℓ
i

)
, as we do in the following con-

struction.

Construction 40 (Resampling). Given a vector z, indexed from 0 through ∞, let zα be the resam-
pled version of z, defined as zα(ℓ) =

∑ℓ
i=0 z(i)α

i(1− α)ℓ−i
(
ℓ
i

)
. We define z1 , z.

Lemma 41. Resampling a vector z by factor α to yield zα satisfies
∑∞

i=0 z(i)·poi(x, i) =
∑∞

ℓ=0 zα(ℓ)·
poi( xα , ℓ) for all x ≥ 0.

To bound the size of the coefficients as α decreases, we prove the following general structural
result, which is central to this section.

Proposition 42. For arbitrary vector z of finite support and for α ∈ (0, 1], let zα be the α-resampled
version of z, and let || · ||2 denote the L2 norm. Then

√
α||zα||2 is log-convex in α. Further, letting

g denote the function represented by z, that is, g(x) =
∑∞

i=0 z(i) · poi(x, i), then the limit as α
approaches 0 of

√
α||zα||2 equals the L2 norm of g.

We first set up some preliminaries that will help us characterizes the behavior of ||zα||2.
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Definition 43. Define the matrix Mα for α ∈ (0, 1) by Mα(i, j) =
∑∞

ℓ=0

(
ℓ
i

)(
ℓ
j

)
αi+j(1 − α)2ℓ−i−j,

and the matrix A such that A(i, i) = 1 − 2i, A(i, i + 1) = A(i + 1, i) = i + 1 for all i ≥ 0 with zero
entries otherwise, where both matrices are indexed by the nonnegative integers.

We note that Mα is chosen so that, trivially, ||zα||22 = zMαz
ᵀ. We relate Mα to the much simpler

matrix A by the following lemma, in terms of matrix exponentiation.

Lemma 44. Mα = 1
αe

(1−α)A.

Proof. Note that d
dα

1
αe

(1−α)A = −A 1
αe

(1−α)A − 1
α2 e

(1−α)A, so we prove the result by showing that
d
dαMα = −AMα − 1

αMα, and noting that when α = 1 we have that 1
αe

(1−α)A equals the identity
matrix, which is easily seen to equal limα→1Mα. We treat this as our initial condition.

We first evaluate Mα(i, j). Assume for the moment that i ≤ j. Thus the sum that defines
Mα(i, j) only has nonzero terms for ℓ ≥ j, so we may substitute m = ℓ − j and sum over m
going from 0 to infinity instead. We aim to represent the terms using rising factorial notation,
namely, for a number x, let (x)m denote x(x + 1)(x + 2) · . . . · (x + m − 1). Further, aiming to
use only an argument of m in the rising factorial notation for the mth component of the sum, we

note that
(
ℓ
j

)
=
(
m+j
j

)
= (j+1)m

m! and
(
ℓ
i

)
=
(
m+j
i

)
=

(i+1)m+j−i

(m+j−i)! = (j+1)m
(j−i+1)m

(
j
i

)
. Thus Mα(i, j) =

αi+j(1 − α)j−i
(
j
i

)∑∞
m=0

(j+1)m(j+1)m
(j−i+1)mm! (1 − α)2m, where we may immediately read off the sum as the

hypergeometric function 2F1(j + 1, j + 1, j − i+ 1; (1− α)2). Thus for i ≤ j,

Mα(i, j) = αi+j(1− α)j−i

(
j

i

)
2F1(j + 1, j + 1, j − i+ 1; (1− α)2).

We now turn to the claim, that AMα + 1
αMα + d

dαMα = 0. Because of the structure of A,
the (i, j)th entry of AMα equals iMα(i − 1, j) + (1 − 2i)Mα(i, j) + (i + 1)Mα(i + 1, j). Further, to
evaluate the derivative of Mα, we note that in general, we have the Gauss relation d

dt2F1(x, y, z; t) =
z−1
t (2F1(x, y, z − 1; t)− 2F1(x, y, z; t)). Combining everything yields a linear combination of the

hypergeometric functions 2F1(j + 1, j + 1, j − i; (1 − α)2), 2F1(j + 1, j + 1, j − i + 1; (1 − α)2), and

2F1(j + 1, j + 1, j − i + 2; (1 − α)2) which equals zero because of the corresponding Gauss relation
between these three contiguous hypergeometric functions. (A slightly different linear combination
arises for the border case where i = j, but again, the Gauss relations are sufficient.)

We now prove our main proposition.

Proof of Proposition 42. Since by construction, ||zα||22 = zMαz
ᵀ, and by Lemma 44 Mα = 1

αe
(1−α)A,

we have that (
√
α||zα||2)2 = ze(1−α)Azᵀ. Substituting 1 − α → α yields that this is a log-convex

function of α provided zeαAzᵀ is. Denote f(α) = zeαAzᵀ. We note that since the second derivative

of the logarithm of a positive function f equals f ′′·f−f ′2

f2 , we have that f is log-convex provided

f ·f ′′ ≥ f ′2. Since the vectors z are constant, we may differentiate eαA and post- and pre-multiply by
z. By definition, d

dαe
αA = AeαA, and thus further d2

dα2 e
αA = A2eαA. We note that the power series

representation eX ,
∑∞

i=0
Xi

i! implies, since A is symmetric, that A commutes with eαA. Since the

square of e
1
2
αA equals eαA, we may thus reexpress the first derivative of f as ze

1
2
αAAe

1
2
αAzᵀ, and the

second derivative as ze
1
2
αAA2e

1
2
αAzᵀ. Letting vα , ze

1
2
αA, since all the matrices are symmetric, we

thus have that f(α) = vvᵀ, f ′(α) = vAvᵀ, and f ′′(α) = vA2vᵀ, and the desired relation f · f ′′ ≥ f ′2

is the Cauchy-Schwarz inequality: f ′(α)2 = (vAvᵀ)2 ≤ |vA|2|v|2 = (vAAvᵀ)(vvᵀ) = f ′′(α) · f(α).
Finally, we show that for g(x) =

∑∞
i=0 z(i) ·poi(x, i), we have limα→0

√
α||zα||2 = ||g||2. Note that

zα(ℓ) =
∑ℓ

i=0 z(i)Bin(ℓ, α, i), where Bin(ℓ, α, i) denotes the probability that a binomial distribution
with parameter α will draw i heads from ℓ trials. Recall that as α approaches 0, the binomial
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distribution becomes very well approximated by the Poisson process of parameter αℓ, yielding zα(ℓ) ≈∑
i z(i)poi(αℓ, i) = g(αℓ). Thus limα→0 α ·

∑
ℓ zα(ℓ)

2 =
∫
g(x)2dx = ||g||22, yielding the claim.

We have thus shown that
√
α||zα||2 varies log-concavely with α; to complete the analysis of its

behavior for α ∈ (0, 1) we need to understand its behavior at the endpoints. The Linear Estimator
LP provides us, in rough form, with bounds on both the size of the coefficients z(i), and the size
of the function the coefficients represent, g(x) =

∑∞
i=0 z(i) · poi(x, i)—that is, intuitively, bounds

for the α = 1 and α = 0 cases respectively. However, we must eliminate one odd possibility before
proceeding: for very small x, the linear program essentially bounds the linear combination of poisson
functions as a multiple of 1/x. The function 1/x, however, has infinite L2 norm, so a 1/x blowup
would in fact be unworkable. Fortunately, this kind of blowup is in fact overly pessimistic: a linear
combination of Poisson functions with bounded coefficients cannot “blowup” like 1/x at the origin;
the following lemma characterizes this.

Lemma 45. Given a vector z of coefficients that induces a function g(x) =
∑∞

i=0 z(i) · poi(x, i),
where for each i, |z(i)| is at most some bound b, and |g(x)| ≤ 1

x , then the L2 norm of g is O(log b).

Proof. We note that
∫∞
1 g(x)2dx ≤ 1, so we need only bound the blowup as x approaches 0. We

reexpress g(x)2 as a sum of “thin” Poisson functions, g(x)2 =
∑∞

ℓ=0 ω(ℓ)poi(2x, ℓ) via poi(x, i) ·
poi(x, j) = poi(2x, i+ j)2−(i+j)

(
i+j
i

)
, and note that the new coefficients are bounded by b2 since for

any index ℓ, we have ω(ℓ) =
∑ℓ

i=0 2
−ℓ
(
ℓ
i

)
z(i)z(ℓ− i), and

∑ℓ
i=0 2

−ℓ
(
ℓ
i

)
= 1.

We may further alter g(x)2 so that it is still expressible by Poisson functions as: g(x)2e−2x =∑∞
ℓ=0 ω(ℓ)poi(2x, ℓ)e

−2x =
∑∞

ℓ=0 ω(ℓ)2
−ℓpoi(4x, ℓ). Since |ω(ℓ)| ≤ b2, we may cut off this sum at ℓ =

2 log2 b without altering its value by more than 1. Define h(x) =
∑2 log2 b

ℓ=0 ω(ℓ)2−ℓpoi(4x, ℓ). We note
that the integral of h differs from the integral of g(x)2e−2x by less than 1, since

∫∞
0 poi(4x, ℓ)dx = 1

4 ,
and thus the integral of the ℓth term of the sum is bounded by 1

4b
22−ℓ, so the terms beyond 2 log2 b

will contribute at most 1
4 to the integral.

We express h as e−4xP (x) where P is some polynomial of degree 2 log2 b. We may thus approx-
imate

∫ 1
0 h(x)2 to within factor e4 by

∫ 1
0 P (x)dx. Gauss-Legendre quadrature trivially implies that

if a polynomial of degree d is bounded on the interval [ 1
d2
, 1], then its integral over [0, 1] is bounded

identically. Since by assumption, |h(x)| ≤ e−2x 1
x2 + 1, where the final 1 captures the error from

truncating at 2 log2 b, setting d = 2 log2 b yields the desired result.

Finally, we assemble the pieces to transform a solution to the linear program into a near-optimal
estimator, using Proposition 17 for the final step. The following construction will yield a vector of
“Poisson coefficients,” in terms of a parameter α and a solution to the linear estimator LP, that
will yield, under Proposition 17, a k

α -sample estimator whose performance—when α converges to 1
suitably—will be good enough to yield Theorem 1.

Construction 46. Given a solution z = z+ − z− to the linear estimator LP for a property repre-
sented as fπ, letting ϵ = 2 log k

kc1 , for parameter α ∈ (0, 1), construct the α-scaled estimator as follows:

Attenuate the coefficients, defining z̃(i) , z(i) · (1 − ϵ)i. Resample z̃ by α to yield z̃α, as in Con-

struction 40. Finally, construct the Poisson coefficients zE(i) , z̃α(i) + (1 − e−ϵαi)fπ(
(i+1)α

k ) k
(i+1)α

for i ≤ k.

For the next proposition, it will simplify the analysis to scale the property π under consideration
so that it is 1-relative earthmover continuous, and shift it so that it takes value 0 on the trivial
distribution with support 1: π(“1”) = 0. Clearly such a transform will not affect the behavior of
linear estimators that are correspondingly transformed.
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Proposition 47. Let z = z+ − z− be a solution to the linear estimator LP that has objective
value v for a property π that is 1-relative earthmover continuous and takes value 0 on the trivial
distribution, where kc1 ∈ [log2 k, k1/4] and c2 < 1. Then Proposition 17 when applied to the re-
sults of Construction 46 for α ∈ (12 , 1) will yield a k

α -sample estimator with error v · (1 + o(1)) +

O(kαc2+(3/2−α)c1−1/2 log4 k+ k−c1/2 log2 k) and probability of failure o( 1
poly(k)) provided v ≤ log2 k; if

v > log2 k then the “estimator” that returns 0 always will have error at most v · (1 + o(1)).

Proof. Defining the linear combination of Poissons g(x) ,
∑kc1

i=0 poi(xk, i)z(i), we first note that if
we attenuate the coefficients, as in the construction, letting z̃(i) , z(i) · (1 − ϵ)i and consider the
corresponding linear combination of Poissons, g̃(x), then g and g̃ are related as g̃(x) ,

∑kc1
i=0 z(i)(1−

ϵ)i e
−xk(xk)i

i! = g(x · (1− ϵ))e−ϵkx. We then resample this vector by α to yield z̃α. Our first task is to
bound the coefficients here. We do this using the log-convexity of the resampling operation, as shown
by Proposition 42. Explicitly, Proposition 42 implies

√
α||z̃α||2 ≤ ||z̃||α2 · ||g̃||

1−α
2 . We must bound

each term on the right hand side. For the first term, we note that because each term in the objective
function of the linear program is non-negative, the objective value v thus bounds the portion of the
objective function k−c2

∑kc1
i=0 |z(i)|. Thus the L1 norm of z is at most v ·kc2 , which hence also bounds

the L1 norm of the attenuated coefficients, z̃; further, the L1 norm of a vector bounds its L2 norm,
so we have ||z̃||2 ≤ v · kc2 .

Bounding the second term, ||g̃||2 takes a bit more work. Consider the characteristic function of
the property, fπ. By assumption, f(1) = 0. Further, relative-earthmover continuity imposes the
condition |fπ(x)/x−fπ(y)/y| ≤ | log x

y |; letting y = 1 yields |fπ(x)|/x ≤ | log x|. We note that for the

range of x considered in the linear program, x ∈ (0, k
c1

2k ), we may crudely bound | log x| < kc1
kx log k.

For each such x, the linear program bounds the positive error of the Poisson approximation by za+ zb+

x

and the negative error by za + zb−

x , where the objective function penalizes large za, zb+, zb− via the
term 2za+n · (zb++ zb−). We consider two cases. For n < k1−c1 we note that if we replace the triple
(za, zb+, zb−) by (0, zb+ + za

n , zb− + za

n ) then the objective function remains unchanged, and further,

each of the linear program constraints becomes looser, as, since x < 1
n , we have z

a+ zb+

x ≤ 0+ zb++za/n
x

with the corresponding statement for zb−. Thus at optimum, we may assume za = 0. Since as noted
above, |fπ(x)x | <

kc1
kx log k, we have that letting zb+ = zb− = kc1

k log k and all the other variables
being 0 is a feasible point of the linear program with objective value n(zb++ zb−) and thus the since
all variables of the linear program are restricted to be nonnegative, the sum zb+ + zb− = 2kc1

k log k
bounds both zb+ and zb− at the optimum of the linear program. Thus at optimum, the bound in
each constraint of the linear program may be bounded as za + zb±

x ≤ 2kc1
xk log k. We analyze this in

a moment.
For the other case, when n ≥ k1−c1 , we note that the bound in each constraint of the linear

program may be bounded as za + zb±

x ≤ 2za + zb++zb−

x
n

k1−c1
≤ 2za+n·(zb++zb−)

xk1−c1
≤ v

xk1−c1
. Thus for

both cases we have the bound za + zb±

x ≤ kc1
xk max{2 log k, v}. Adding this to the above bound

|fπx | ≤
kc1
xk log k yields a bound on the right hand sides of each constraint in the linear program,

namely a bound on g, the left hand side of the linear program constraints, of |g(x)| ≤ kc1
xk (v+3 log k)

for x ∈ (0, k
c1

2k ). To bound |g(x)| for x ≥ kc1
2k we note that g is a linear combination of Poissons with

coefficients as high as v · kc2 , and may thus reach as high as v · kc2 . We note, however, that we are
dealing with the attenuated version of g, namely, as derived above, g̃(x) = g(x · (1− ϵ))e−ϵkx where
ϵ = 2 log k

kc1
. Thus at x = kc1

2k the attenuation is already e− log k = 1
k , and will clearly decay at least as

fast as 1
x beyond this. Thus, for all x, we have g̃(x) ≤ 2kc1

xk (v+3 log k), where the 2 is a crude bound
on 1

1−ϵ . Thus if we scale g̃ by 1
2kc1 (v+3 log k) so that it is bounded by 1

kx and apply Lemma 45 to
g̃(xk)

2kc1 (v+3 log k) , we thus have a bound on the L2 norm of g̃ of ||g̃||2 = O(2kc1(v+3 log k) log(v · kc2)) =
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O(kc1 log3 k) for v < log2 k.
Thus, as discussed at the beginning of the proof, we may combine this bound and the bound

||z̃||2 ≤ v · kc2 via log-convexity to yield a bound on the L2 norm of the resampled coefficients:√
α||z̃α||2 = O(kαc2+(1−α)c1 · log3 k). We will consider cases where α ∈ (12 , 1), so we may drop the√
α term from the left hand side while preserving the asymptotic expression.
As each element of z̃α must be at most the L2 norm of the whole, we have the element-by element

bound of |z̃α(i)| = O(kαc2+(1−α)c1 log3 k). We are now in a position to analyze the application of

Proposition 17 to the coefficients zE(i) = z̃α(i)+(1−eαϵi)fπ(
(i+1)α

k ) k
(i+1)α , where for i > k we extend

this definition by letting zE(i) = zE(k).
We first analyze the second condition of Proposition 17, where we separately bound the con-

tributions from z̃α and from the remaining term. We have just derived the bound |z̃α(i)| =
O(kαc2+(1−α)c1 log3 k), and we use this for i ≤ 2kc1 . Our aim is to find a bound c such that for

all j, ℓ between 1 and 2kc1 such that |j − ℓ| ≤
√
j log k we have c >

√
k√
j
| jk z̃α(j − 1)− ℓ

k z̃α(ℓ− 1)|. We

note that j√
j
= O(kc1/2), and that ℓ√

j
≤ j+

√
j log k√
j

= O(kc1/2), which implies that we may set c to

be O(kc1/2) times our just-derived bound on |z̃α(i)|, namely, c = O(kαc2+(3/2−α)c1−1/2 log3 k).
For the case where one of j, ℓ is greater than 2kc1 we now derive a bound on how z̃α(i) decays for

large i. As each original coefficient z(i) is bounded by v · kc2 , each attenuated coefficient is bounded
as |z̃(i)| ≤ v · kc2(1 − ϵ)i. Assume for the moment that each coefficient equals exactly this. The
corresponding linear combination of Poissons is hence g̃(x) = v · kc2e−ϵkx; resampling by α factor
replaces x with αx, which has the effect of replacing ϵ by αϵ, yielding coefficients v · kc2(1 − αϵ)i.
Since resampling involves a positive linear combination of the coefficients, we thus have the bound

|z̃α(i)| ≤ v · kc2(1 − αϵ)i. As v < log2 k and (1 − αϵ)i < e−αϵi = e−
2αi log k

kc1 , then for α ≥ 1
2 , c2 < 1,

and i > kc1 we have |z̃α(i)| < log2 k and decaying by another factor of k for each addition of kc1 to
i. Thus, trivially, the c from above applies to this region.

We now examine the contribution to the second condition of Proposition 17 from the remain-

ing term of zE , namely (1 − e−αϵi)fπ(
(i+1)α

k ) k
(i+1)α . As above, we desire a bound c′ >

√
k

α
√
j
|(1 −

e−αϵ(j−1))fπ(
jα
k )− (1− e−αϵ(ℓ−1))fπ(

ℓα
k )| for pairs j, ℓ ≥ 1 such that |j − ℓ| ≤

√
j log k. For the case

that j ≤
√
k, we use the bound fπ(x) ≤ x| log x|, the trivial bound (1 − ey) < 1 for any y, and

the triangle inequality to yield a bound of c′ = O(k−1/4 log k). For j >
√
k, we note that e−αϵ(j−1)

and e−αϵ(ℓ−1) are both negligible in k, and thus it is sufficient to bound
√
k

α
√
j
|fπ( jαk ) − fπ(

ℓα
k )|. To

bound this change in fπ, recall that for general x, y we have |fπ(x)/x− fπ(y)/y| ≤ | log x
y |, yielding

|fπ( jαk )− j
ℓfπ(

ℓα
k )| = O( jαk | log

ℓ
j | = O(

√
j log k
k ). We add this to the bound | ℓ−j

ℓ fπ(
ℓα
k )| = O(

√
j log2 k
k ).

Combining, yields a bound of c′ =
√
k

α
√
j
O(

√
j log2 k
k ) = O( log

2 k√
k
). We note that, since α ∈ (12 , 1) and

c2 >
1
2 , the bound derived earlier of c = O(kαc2+(3/2−α)c1−1/2 log3 k) is at least O(k−1/4 log3 k), which

thus subsumes the two just derived bounds of respectively O(k−1/4 log k) and O( log
2 k√
k
). Thus we

take c = O(kαc2+(3/2−α)c1−1/2 log3 k) for the bound on the second condition of Proposition 17.
We now turn to the first condition of Proposition 17, essentially examining the bias of the

estimator. We must compare fπ(x)
x to the linear combination of Poissons

∑
i≥0 zE(i) · poi(

xk
α , i). We

consider each of the two terms of zE separately, and start by comparing the fraction of our target
(1 − e−ϵkx)fπ(x)x to the combination of Poissons corresponding to the second term of zE , namely
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∑
i≥0(1− e−αϵi)fπ(

(i+1)α
k ) k

(i+1)α · poi(
xk
α , i). Since

∑
i≥0 poi(

xk
α , i) = 1, we may thus bound

∑
i≥0

∣∣∣∣(1− e−αϵi)fπ

(
(i+ 1)α

k

)
k

(i+ 1)α
− (1− e−ϵkx)

fπ(x)

x

∣∣∣∣ · poi(xkα , i)

≤

∑
i≥0

∣∣∣e−αϵi − e−ϵkx
∣∣∣ fπ(x)

x
· poi(xk

α
, i)

+

∑
i≥0

(1− e−αϵi)poi(
xk

α
, i)

∣∣∣∣fπ ((i+ 1)α

k

)
k

(i+ 1)α
− fπ(x)

x

∣∣∣∣


We bound each of the sums separately, noting throughout that α ∈ (12 , 1). Recalling that ϵ = 2 log k
kc1 ,

we bound the first sum for x ≤ 1
ϵk by noting that since e−y has derivative at most 1 for positive

inputs, we have |e−αϵi− e−ϵkx| ≤ αϵ|i− kx
α |. Since

∣∣∣fπ(x)x

∣∣∣ ≤ | log x|, the first sum is thus bounded by

αϵ| log x| times the expected distance of Poi(xkα ) from its mean, which is bounded by the square root

of its variance, namely
√

kx
α , yielding a bound on the first sum of O(ϵ

√
kx| log x|). We apply this

bound for x ≤ 1
ϵk ; since |x log x| is an increasing function of x for x < e−1, we evaluate this bound by

plugging in x = 1
ϵk to yield O(k−c1/2 log3/2 k). For x > 1

ϵk , we note that poi(
xk
α , i) is negligible unless i

is within a factor of 2 of xk
α . Thus for ϵi ≥ ϵkx

2a we bound |e−αϵi−e−ϵkx| ≤ αϵ|i− kx
α |e

−ϵkx/2, and thus,

corresponding to the above bound on the first sum, we now have a bound of O(ϵ
√
kx| log x|e−ϵkx/2).

Because of the exponential term, this expression is maximized for x = O( 1
ϵk ), and as above we may

bound the first sum as O(k−c1/2 log3/2 k).

For the second sum, consider x > 1
k
√
ϵ
. We note that |fπ(y)y − fπ(x)

x | ≤ | log
x
y |, which, when y

is within a factor of two of x is bounded as 2 |y−x|
x . Since with all but negligible probability, when

i is drawn from Poi(xkα ) we will have (i+1)α
k within a factor of 2 of x, we have a bound for this

case of
∣∣∣fπ ( (i+1)α

k

)
k

(i+1)α −
fπ(x)
x

∣∣∣ ≤ 2 |(i+1)α/k−x|
x = 2 |(i+1)−xk/α|

xk/α . Further, 1 − e−αϵi ≤ αϵi ≤ 2xk
α ,

and is also at most 1. Thus we can bound the second term by O(min{1,ϵkx}
xk times the expected

distance of Poi(xkα ) from its mean; this latter quantity is bounded by O(
√
xk), yielding a bound

on the second sum of O(min{1,ϵkx}√
xk

). The expression inside the asymptotic notation is maximized

when x = 1
ϵk , yielding a bound on the second sum of O(

√
ϵ) = O(k−c1/2 log1/2 k) for x > 1

k
√
ϵ
.

Otherwise, for x ≤ 1
k
√
ϵ
we analyze the second sum in two parts, noting that, since i ≥ 0, we have

(i+1)α
k ≥ α

k , yielding that
∣∣∣fπ ( (i+1)α

k

)
k

(i+1)α

∣∣∣ ≤ | log α
k | < 1 + log k. Since (1− e−αϵi) ≤ αϵi, we have∑

i≥0(1 − e−αϵi)
∣∣∣fπ ( (i+1)α

k

)
k

(i+1)α

∣∣∣ · poi(xkα , i) ≤ (1 + log k)αϵ · E[Poi(xkα )] = ϵxk(1 + log k). For

x < 1
k
√
ϵ
this is O(

√
ϵ log k) = O(k−c1/2 log3/2 k). The remaining part of the second sum we easily

bound as
∑

i≥0(1− e−αϵi)
∣∣∣fπ(x)x

∣∣∣ · poi(xkα , i) ≤ αϵ
∣∣∣fπ(x)x

∣∣∣∑i≥0 i · poi(
xk
α , i) = ϵxk

∣∣∣fπ(x)x

∣∣∣ ≤ ϵxk| log x|.
This last expression is increasing in x, and hence we have a bound for x ≤ 1

k
√
ϵ
of O(

√
ϵ log k) =

O(k−c1/2 log3/2 k). Thus we have shown that the portion of zE other than z̃α contributes to the linear

combination of Poissons a function that is within O(k−c1/2 log3/2 k) of (1− e−ϵkx)fπ(x)x .

It remains to compare the remaining portion of zE with the remaining fraction of fπ(x)
x , namely,

compare
∑

i≥0 z̃α(i) · poi(
xk
α , i) to e−ϵkx fπ(x)

x . We start the analysis by considering the vector z re-

turned by the linear program, which, for positive numbers a, b satisfies
∣∣∣fπ(x)x −

∑
i≥0 z(i) · poi(xk, i)

∣∣∣ ≤
a+ b

x , for x ∈ [0, k
c1

2k ], where the objective value of the linear program, v, is guaranteed by the linear
program to be at least as large as a+ bn.
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As argued above, attenuating z to form z̃(i) , z(i) · (1 − ϵ)i transforms the linear combination
of Poissons g(x) ,

∑kc1
i=0 poi(xk, i)z(i) into g̃(x) = g(x · (1− ϵ))e−ϵkx. Thus g̃(x) is within a+ b

x(1−ϵ)

of e−ϵkx fπ(x(1−ϵ))
x(1−ϵ) , where fπ(x(1−ϵ))

x(1−ϵ) is within | log(1 − ϵ)| of fπ(x)
x . By the triangle inequality, g̃(x)

is thus within a + O(ϵ) + b·(1+O(ϵ))
x of e−ϵkx fπ(x)

x , provided x(1 − ϵ) ∈ [0, k
c1

2k ]. Otherwise, we have

x > kc1
2k , implying e−ϵkx ≤ e− log k = 1

k , which is small enough to wipe out any discrepancy that may
occur in this region. Specifically: since the Poisson coefficients sum to at most kc2v ≤ k log2 k, and
since any Poisson distribution of parameter λ has each probability bounded by O( 1√

λ
), we have that

for x > kc1
2k , the linear combination of Poissons g(x) must be at most O(k1−c1/2 log2 k), implying

g̃(x) = O(k−c1/2 log2 k) in this range. Trivially, e−ϵkx fπ(x)
x = O( log kx ). Thus for arbitrary positive x

we have that g̃(x) is within a+O(k−c1/2 log2 k)+ b·(1+O(k−c1 log k))
x of e−ϵkx fπ(x)

x . Resampling z̃ to z̃α
is exact, with g̃(x) =

∑
i≥0 z̃α(i) · poi(

xk
α , i), so thus these bounds apply to

∑
i≥0 z̃α(i) · poi(

xk
α , i) as

well, as desired.
We thus invoke Proposition 17. For the first condition, we have shown that

∑
i≥0 zE(i) ·poi(

xk
α , i)

approximates fπ(x)
x to within a + O(k−c1/2 log2 k) + b·(1+O(k−c1 log k))

x , where a + bn ≤ v. We have

shown that the second condition applies for c = O(kαc2+(3/2−α)c1−1/2 log3 k). Thus Proposition 17
yields that: the linear estimator zE estimates the property π to within error v · (1 + o(1)) +
O(kαc2+(3/2−α)c1−1/2 log4 k + k−c1/2 log2 k) using k

α samples, with probability of failure o( 1
poly(k)),

provided v ≤ log2 k.
The proof will be complete upon analyzing the unusual but essentially trivial case of v > log2 k.

Note that any distribution of support at most n must have relative earthmover distance from the
trivial distribution (support on 1 element) at most logn, and thus property value between ± log n.
Thus if n < v · k3 then the “estimator” that always returns 0 will always have error at most log v +
3 log k = v · (1 + o(1)). We consider the case when n ≥ v · k3. Let π+, π− denote respectively the

maximum and minimum value of fπ(x)
x for x ∈ [ kn ,

1
vk2

], with x+, x− denoting respectively the values
at which π+, π− are attained. For this range of x, the Poisson functions take very limited values:
poi(xk, 0) = e−xk ∈ [1 − 1

vk , 1], and thus the remaining Poissons sum up to at most 1
vk . Thus since

the coefficients of the vector z are at most v · kc2 ≤ vk, we may use the triangle inequality to bound
the difference between the expected estimates returned in the “ + ” and “ − ” case:

∑
i≥0 z(i) ·

|poi(x+k, i)− poi(x+k, i)| ≤ 4. Letting e+ be the expected estimate returned in the “ + ” case,
we consider the constraints corresponding to x+ and x− from the linear program: |π+ − e+| ≤
za+ max{zb+,zb−}

x+ and |π−− e+| ≤ 4+ za+ max{zb+,zb−}
x− . Since v = 2za+n · (zb++ zb−), we note that

x ≥ k
n implies zb++zb−

x± ≤ v
k , and we have, letting π± denote either π+ or π− that |π±−e+| ≤ v

2+
v
k+4.

Thus by the triangle inequality we have |π+−π−| ≤ v+ 2v
k +8. Consider the relative earthmover cost

of taking an arbitrary distribution of support at most n, and making all its probabilities lie in the
interval [ kn ,

1
vk2

]. We note that trivially, this is at most max{log k, log vk2} = log v+2 log k. Thus the
interval encompassing all possible values π might take has diameter at most v+2v

k +8+2(log v+2 log k)
and contains 0. Hence the “estimator” that always returns 0, without looking at any samples, will
be accurate to within v · (1 + o(1)) for v = ω(log k), as desired.

Theorem (Theorem 1). Let π be a symmetric linear property that is δ(k)-relative earthmover con-
tinuous on distributions of support n(k). If for some constant c > 0 and parameter ϵ(k) = δ/ko(1),
any distributions of support n whose π values differ by at least ϵ are distinguishable with probability
at least 1

2 + c in k samples, then for each k there exists a linear estimator that estimates π on distri-
butions of support n to within error (1 + o(1))ϵ using (1 + o(1))k samples, and which has probability
of failure o( 1

poly(k)).
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Proof of Theorem 1. Without loss of generality, we assume δ = 1, as we may replace π, ϵ, δ by
π
δ ,

ϵ
δ , 1 respectively, and scaling the property by 1

δ simply scales the estimation error correspondingly.
Further, without loss of generality, we assume that the property has value 0 on the trivial distribution
of support 1, as the property estimation problem is unaffected by constant shifts.

Let c1, as a function of k, be such that it converges to 0 as k increases, yet large enough that
k−c1/2 log2 k = o(min{ϵ, 1}). Let c2 = 1

2 + 6c1. Consider k large enough so that c1 ≤ 1
32 . Propo-

sition 16 implies that, for these parameters, any solution to the Lower Bound LP with objective
value v induces a pair of indistinguishable distributions whose property values differ by at least
v · (1 − o(1)) − O(k−c1 log k), which must thus be smaller than than ϵ, as defined by the theorem.
Thus v ≤ ϵ · (1 + o(1)).

We then apply Proposition 47 to conclude that, for any α ∈ (12 , 1) there exists a
k
α -sample estima-

tor that has o( 1
poly(k)) probability of failure, and error at most v·(1+o(1))+O(kαc2+(3/2−α)c1−1/2 log4 k+

k−c1/2 log2 k). As already noted, v ≤ ϵ · (1 + o(1)), and by assumption, k−c1/2 log2 k = o(ϵ). For
the remaining (middle) term, we note that since c2 = 1

2 + 6c1 we have αc2 + (3/2 − α)c1 − 1/2 ≤
1
2(α − 1) + 13

2 c1. Setting α = 1 − 15c1 yields that this expression is at most −c1, yielding that

kαc2+(3/2−α)c1−1/2 log4 k ≤ k−c1 log4 k. By assumption, this is o(min{ϵ, 1}2) = o(ϵ). Thus, the esti-
mator guaranteed by Proposition 47 has total error at most ϵ·(1+o(1)), as desired. Since α = 1−o(1),
the estimator uses at most k · (1 + o(1)) samples.
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