
Secure-In-Between-Accesses Database Security

Gregory Valiant
Stanford University

gvaliant@cs.stanford.edu

Paul Valiant
Brown University

pvaliant@gmail.com

Abstract

We introduce a definition of security that applies to databases that maintain dynamic infor-
mation on users such as financial account information, medical records, etc. Such a database
system is secure in between accesses provided 1) users can efficiently access their data, and 2)
while a user is not accessing their data, the user’s information is information theoretically secure
to malicious agents. We propose a realization of such a database system and prove that a user’s
stored information, in between times when it is being legitimately accessed, is information the-
oretically secure both to adversaries who interact with the database in the prescribed manner,
as well as to adversaries who have installed a virus that controls the entire internet-facing server
that stores the database. We stress that the security guarantee is information theoretic and
everlasting: it relies neither on unproved hardness assumptions, nor on the assumption that the
adversary is computationally or storage bounded.

The central idea behind our design of an information theoretically secure database system
is the construction of a “re-randomizing database” that periodically changes the internal rep-
resentation of the information that is being stored. To ensure security, these remappings of
the representation of the data must be made sufficiently often in comparison to the amount of
information that is being communicated from the database between remappings and the amount
of local memory on the database server that a virus may preserve during the remappings. While
this changing representation provably foils the ability of an adversary to glean information, it
can be accomplished in a manner transparent to the legitimate users, preserving how database
users access their data.

The core of the proof of the security is a new analysis of a simple and explicit locally
computable extractor, based on a hypercontractivity inequality, optimized for the relatively
unexplored parameter regime of “nearly full min-entropy” where the min-entropy of the n-bit
input string is n− o(n).

Our analysis of this extractor can also be interpreted as establishing the following com-
munication/data tradeoff for the problem of learning sparse parities from uniformly random
n-bit examples. Fix a set S ⊂ {1, . . . , n} of size k: given access to examples x1, . . . , xt where
xi ∈ {0, 1}n is chosen uniformly at random, conditioned on the XOR of the components of x
indexed by set S equalling 0, any algorithm that learns the set S with probability at least p

and extracts at most r bits of information from each example, must see at least p ·
(
n
r

)k/2
ck

examples, for ck ≥ 1
4 ·
√

(2e)k

kk+3 . The r bits of information extracted from each example can be an

arbitrary (adaptively chosen) function of the entire example, and need not be simply a subset
of the bits of the example.

1 Introduction

A significant portion of our sensitive data, including bank account information, medical records, tax
liabilities, and the contents of one’s inbox, is both accessible online and dynamic in that the data

may change over time, even without any direct knowledge or oversight of the user. The question of
how to maintain access to this dynamic data, while preserving its security, is a challenge of central
importance. Many of the most worrying and expensive hacks to date have not been due to failures
in the transmission of encrypted data, but rather due to large-scale attacks on the database servers
themselves. Stated differently, it is often not the case that a user requests his/her information,
and that information is compromised in transmission; instead, in between a user’s accesses, an
adversary hacks into a database and downloads thousands or millions of sensitive entries. (See
Figure 1 for two such examples.)

There are, perhaps inherently, many risks involved when a user actively accesses or uses sensitive
data, ranging from submitting such information to an unintended website or recipient, insecurity
in transmission (either via an insecurely managed wifi network, or further upstream), to someone
watching your computer screen from the chair behind you. Indeed, it is the mantra of “leakage-
resilient cryptography” that every computation has observable side-effects [31], and thus any time
a user accesses sensitive data, they risk revealing aspects of it. Nevertheless, one might hope that,
at least while one is not accessing or using sensitive information, such information is completely
secure. The hope is that one should not need to worry about information being stolen from that
highschool email account that you haven’t checked in a decade, or from the three bank accounts
that you forgot existed.

We introduce a notion of database security that applies to both static and dynamic data,
which we term secure in between accesses (“SIBA security”) that promises 1) users can easily and
conveniently access their information, and 2) a user does not need to worry about the security of
their information while they are not accessing it—as long as one is not accessing one’s data, it is
information theoretically secure.1 And this security continues to apply even if an adversary has
exogenously produced “hints” that are arbitrary functions of users’ past secret data—for example
even if an adversary knows the users’ data at all previous times, the current data is still information
theoretically secure (and, for example, the adversary cannot detect whether the data has changed).

Definition 1. In a secure in between accesses database with security parameter ε, each user
is initially provided with a secret key S, and can interact with an internet-facing server A that
provides access to the user’s time-varying data ut, where time t is measured in discrete epochs.

We say that a user’s time-varying data is ε-secure-in-between-accesses if, for any adversary E
that has complete control of the server A during each epoch when the user does not access her data,
and where the adversary has complete access to all the other users in the system, there is an efficient
simulator sim (efficient, given black-box access to E), such that for any sequence of user data ui
and any sequence of hints Hi that are (possibly probabilistic) functions of the entire sequence {ui}:
letting V E

t be the view of the adversary after t epochs receiving hint Hi after each previous epoch i,
and letting V sim

t be the view of the simulator who is given the same hints, but never interacts with
the database, then the statistical distance between the pairs of distributions (S, V E

t) and (S, V sim
t)

is at most t · ε.

The closeness of these joint distributions immediately also implies that the marginal of the
second components are close, meaning that the adversary cannot learn anything that they could
not have figured out without access to the database. Further, the closeness of the two pairs of
distributions (S, V E

t) and (S, V sim
t) also implies two different more nuanced kinds of security: if

the adversary somehow learns something about the user’s time-varying data stored in the database

1One simplistic analogy is to the role of a bank. There are many ways to be robbed or defrauded while spending
money; the promise of a bank is that 1) you can easily and conveniently access your money, and 2) you do not need
to worry about your money while you are not using it.

2

Figure 1: Two notices that one of the authors received. In both cases, the personal information was
not stolen in transmission—in fact, in the first case, the author has not attempted to access any
information from that university’s computer system during the past 5 years. A Secure In Between
Accesses database provides strong defenses against such information theft.

(expressed via arbitrary hints Hi, for example, guessing the most significant bits of the user’s bank
balance), then even by comparing these hints to information extracted from the database itself,
the adversary will learn at most t · ε bits of information about the secret key S and therefore
any future bits stored in the database will remain secure; second, if after the database shuts
down, the adversary somehow finds the user’s entire secret key S, this will still give at most
t · ε information about the bits that were formerly stored in the database—this is the notion of
“everlasting security” [4].

We present an instantiation of a SIBA-secure database via the combination of a simple explicit
protocol and a new physical assumption: a traffic counter on the internet connection of the server
that cuts the connection once a certain number of bits, r, have been transmitted in an epoch, and
signals a non-internet-connected back-end server to start a new epoch.

This proposal for a SIBA-secure database seems practically feasible for lower-throughput sys-
tems, such as bank information, medical records, school transcripts, tax documents, etc., which
are some of the settings where the cost of data breaches vastly outweigh the potential cost of data
transmission for reasonable security parameters in our proposed scheme. Thus the emphasis in this
paper is not on high throughput, but rather, on achieving high security for the many extremely
sensitive yet lower-throughput databases on the internet.

The new data protection regulations that have been passed by the European Commission, re-
quire that any entity storing personal data on users both makes that data available to the users,
as well as ensures that such data be stored securely.2 The requirements of these regulations offer
one potentially widespread future use-case for the SIBA security definition. Indeed, one imagines
that typical users might never request their data from many of these user-data-aggregator enti-
ties, or request it only very rarely. In such cases, the strong SIBA security guarantees would be
appropriately robust reassurances.

The central idea behind our design of a SIBA-secure database system is to have the database’s
representation of the information it stores remap periodically in such a way that 1) honest database

2For more information on the data protection regulations, see http://ec.europa.eu/justice/data-protection/.

3

http://ec.europa.eu/justice/data-protection/

users can continue to transparently access their data by XORing together the information at a small
(e.g. k = 10) unchanging set of addresses, but 2) adversaries are information theoretically unable
to piece together information from the different representations in a sufficiently consistent manner
to glean any knowledge. To ensure security, these remappings of the data must occur sufficiently
often in comparison to the amount of information that is being communicated from the database.
Our database’s constantly-changing representation of (possibly unchanged) user data, combined
with the strict monitoring of outgoing communication bandwidth from our server comprise the
conceptual core of our proposal.

The physical hardware needed to implement our SIBA-secure scheme has three components:

• An internet-facing server A that may be vulnerable to being taken over by a virus;

• A back-end secure server B that has copies of the users’ data bits and encryption keys, but
is never connected to the internet;

• A secure but simple “traffic counter” that sits astride the cable connecting A to the internet,
and when the transmitted traffic reaches a limit r, does the following four mechanical steps:
a) it cuts the internet, b) shuts down server A, c) connects the back-end server B to A’s hard
drives, and d) instructs the back-end server B to begin a new epoch (which induces B to
erase A’s hard drives and upload a freshly generated database string datt).

The information theoretic security guarantees do not extend to the accessing and transmission
of a user’s data, or the viewing of the data at the user’s end. At the time of access, a virus in the
database may discover the user’s secret addresses in the database and exploit them. Improving
the security of the data during accessing and transmission can be attempted via standard oblivious
transfer protocols [37, 34, 27] and encryption, though it will lack information theoretic guarantees.
For these reasons, we say that our database is “secure in between accesses”. As long as a user’s
data is not being accessed, its security is information theoretically guaranteed.

Theorem 1 (SIBA-security). We present a database system that stores d time-varying bits, each
as the XOR of k secret locations. The database maintains a length N ≥ 2kd string, and has the
following security guarantee: for each time-varying bit, b, and associated set of k indices, S, any
algorithm that extracts at most r bits of information about the database between epochs can correctly

guess S with probability at most
(N/2
k

)−1
+ t ·

(
2r
N

)k/2 · 4√ kk+3

(2e)k
after t epochs, even for an adversary

that knows all d− 1 other bits and secret keys. Furthermore, the security of bit b is “everlasting”:
suppose this bit takes values b1, . . . , bt−1 for the first t − 1 epochs, and these bits are known to the
adversary ahead of time. If bt is chosen at random from {0, 1}, and the adversary extracts at most
r bits of information from the database during each of the first t epochs, then even if the adversary
is given secret set S after the t+ 1st epoch, the adversary can correctly guess bt with probability at

most 1/2 + t ·
(
2r
N

)k/2 · 4 ·√ kk+3

(2e)k
.

One reasonable setting of parameters would be to use a database string of size N = 2 ·1012 bits,
where each bit stored in the database is represented as the XOR of k = 10 secret locations and
thus the database has a capacity of d = N/2k = 1011 bits of user information, with a new epoch
starting every r = 108 bits transmitted. In this case Theorem 1 guarantees information theoretic
security except with probability < 3 · 10−17, per epoch, for each bit stored in the database.

The above theorem, restricted to the case d = 1, can also be viewed as a communication/data
tradeoff for the problem of learning k-sparse parities over n-bit examples:

4

Corollary 1. Choose a uniformly random set S = {s1, . . . , sk} ⊂ {1, . . . , n} of size k: given
access to a stream of examples x1, . . . , xt where each xi ∈ {0, 1}n is chosen uniformly at random,
conditioned on the XOR of the components of xi with indices in S being bi, any algorithm, given
b1, . . . , bt, that must (even adaptively) compress each example to at most r bits before seeing the

next example can correctly guess the set S with probability at most
(
n
k

)−1
+ t ·

(
r
n

)k/2 · 4√ kk+3

(2e)k
.

This result can be viewed as mapping the intermediate regime between the communication/data
tradeoffs given by Ohad Shamir [41] for the case k = 1 (the “hide-and-seek” problem of detecting a
biased index from otherwise uniformly random length n sequences), and the results in Steinhardt,
Valiant, and Wager [44] for the case k = θ(n), which shows that any algorithm that extracts less
than n− c bits of information from each example, must see at least 2θ(c) examples.

2 Related Work

We briefly survey related work in a number of different areas, including work on information
theoretically secure encryption in the “bounded storage model” [30] and connections with local
extractors [45], work on “leakage-resistant” cryptography in both the “bounded retrieval model” [9,
15] and the continual leakage model [21, 11] and “forward secure storage” [16], and the related
work from the complexity and learning theory communities on tradeoffs between the amount of
information extracted from each data point and the number of data points necessary to learn certain
functions.

Information Theoretic Security and Locally Computable Extractors. While most security
and cryptographic schemes rely on the assumptions that adversaries are computationally bounded
and that certain problems require super-polynomial amounts of computation to solve, there has been
significant attention on devising stronger, unconditional security guarantees based on information
theory. This direction, in some sense, began with the proposal of the “one-time-pad” in the late
1880’s [32] (which was later re-discovered and patented in the 1920’s by Vernam [46]), and Shannon’s
“Communication Theory of Secrecy Systems” [42] in the 1940’s. More recently, Maurer introduced
bounded-storage cryptography, that considered cryptographic protocols with information theoretic
security, under the assumption that the adversary has limited memory [30] (also see the survey [29]).
Bounded memory cryptography typically considers a setting where all have access to some enormous
stream of random bits (for example, random bits that are being continuously broadcast from a
satellite), and that the users interact with the stream by selectively storing certain bits. There
has been a great deal of work in this bounded-storage model, including more recent work on
“everlasting” encryption in this model, in which information theoretic security persists even if the
secret key is divulged at some later point in time (assuming the adversary has bounded storage) [4,
10, 28].

The “everlasting security” analysis was later reframed by Lu in terms of extractors, where
the fact that an extractor “cleans up” a distribution until it is very nearly uniform is recast as
implying that, even if some data about a uniformly-chosen key has leaked to an adversary making
the posterior distribution non-uniform, then an extractor-based encryption scheme will “clean” this
up and yield an output that is exponentially close to uniform, and hence secure [28]. Our work
can be thought of as giving improved guarantees for this style of analysis in the regime where a
sub-constant fraction of the data has leaked.

Our secure database scheme can also be viewed as a new extractor analysis with significantly
improved parameters for the regime of n-bit strings with min-entropy n − o(n). Our extractor
is simple and explicit, consisting of sampling a random set of k locations in the length-n string

5

and returning their XOR. This extractor falls into the “sample-then-extract” category introduced
by Vadhan [45] which identified a general framework for constructing new extractors based on
separately analyzing the processes of a) sampling k random locations and b) applying a smaller ex-
tractor f : {0, 1}k → {0, 1} to compute the final output. However, our extractors have significantly
better properties than are implied by this more general analysis—for a min-entropy of n − r, we
show via a new application of hypercontractivity inequalities that our extractor output’s distance
from uniform is roughly (rn)k/2, whereas the analysis of [45] (and also previous works including [28])

yields a bound of only 2−O(k), with somewhat worse constants and, crucially, no improvement as r
becomes sublinear. We note that here, the emphasis is on minimizing the distance to uniformity,
and maintaining small locality, k, since the distance corresponds to the security guarantee and
k translates to the multiplicative communication overhead in retrieving information in the secure
database scheme. In particular, in our locally computable extractor construction, we are not trying
to minimize the seed length, which is one of the main focuses in [45] and other works on extractors.

At a higher level, our proposal, in which a database monitors the amount of information com-
municated from the database, and refreshes its representation of the data, can be thought of as
replacing the enormous stream of random bits of the bounded storage setting via an interaction
model in which a database may measure the number of bits communicated, and refresh itself ac-
cordingly. From a practical perspective, this is a significantly different interaction model from
previous approaches to information theoretic security and cryptography.

Leakage-Resistant Cryptography and Storage There is a large body of recent work on security
and cryptography in several models that admit some “leakage” of information to the adversary. In
the “Bounded Retrieval Model” [9, 15], the assumption is that an adversary has the ability to leak
at most some fixed amount of information, `, and the question is typically how one can enlarge
the representation of a secret key in such a way that the encryption security is preserved given the
adversary has at most ` bits of leaked information about the key. The challenge is how to enlarge
the secret key without inconveniencing the honest user—specifically, the user would like to be able
to use the key by only querying a small number of indices [2, 1, 12] (we also refer the reader to
the survey [3]). This line of work has typically focused on encryption and secret sharing, with the
emphasis on preserving computational hardness guarantees, rather than the information theoretic
emphasis of this paper.

There has been work in the “continual leakage model”, where it is assumed that an adversary is
capable of leaking at most ` bits every time period. The question then becomes how the honest party
can periodically refresh the secret keys (or key shares in a secret-sharing setting) so as to ensure that
security guarantees persist even as the adversary obtains more and more information [21, 11, 13, 26].
Earlier work on “proactive” secret sharing [22] seeks to tackle a similar setting. These settings are
related to the model we consider, in the sense that both settings assume that we are able to update
the internal representations periodically, ensuring that the amount of information leaked between
updates is bounded. The more recent results on cryptography in the continual leakage model are
generally concerned with refreshing representations of secret keys (as opposed to the cyphertext),
and the security guarantees are based on computational hardness (instead of information theoretic
hardness as in this paper).

We also point out the related work of Micali and Reyzin [31] that considers a different model
of information leakage, according to the assumption that only computation leaks information. This
model is designed to capture side-channel attacks such as detailed measurements of the power drain
during a computation or other physical properties of the machine, as opposed to cyberattacks.
Work in this line considers signature schemes and encryption schemes, and generally leverages this
restriction on the manner in which information may be leaked, rather than assumptions on the

6

quantity of leaked information [36, 17].
Perhaps most relevant to our work is Dziembowski’s work on “Forward Secure Storage” [16],

in which they consider the problem of securely storing a ciphertext—by inflating its size—in such
a way that if a bounded amount of information about the ciphertext is leaked, and then later the
adversary guesses/learns the secret key, then the message is still secure. While the emphasis in our
SIBA security definition is different than that of forward secure storage, our notion can be thought
of as an extension of the latter to the setting where multiple different users are simultaneously
storing information in a single database (ideally without inflating the size of the database linearly
with the number of users), and the database must behave in a forward secure manner during every
time epoch. Dziembowski constructs both a computationally-secure protocol, as well as observes
that information theoretic forward secure storage can be obtained from the everlasting security
guarantees in the bounded storage model. As discussed above, our simple explicit extractors and
analysis in the high n− o(n) min-entropy regime yield improved security parameters in this regime
for the bounded storage model, implying stronger security guarantees in the forward-secure storage
model in the regime in which the amount of information leaked is o(n) where n denotes the storage
size.

Communication/Data Tradeoffs for Learning. Our analysis of the explicit extractor that is
the core of our proof of the information theoretic security of the database system we propose can
be interpreted as a result on the tradeoff between communication and the number of examples
necessary to learn a parity function over uniformly random examples: given uniformly random
n-bit examples subject to the XOR of an unknown subset of k indices is 0, to learn the subset
either one must communicate at least r bits of information about some examples, or observe at
least O

(
(n/r)k/2

)
examples.

There has been significant attention from the learning theory community over the past few
decades on understanding such tradeoffs, perhaps beginning with the work of Ben-David and
Dichterman [7]. In the distributed setting, there has been significant recent work analyzing how
much data is required to learn certain classes of function in the setting in which data is partitioned
across servers, and there are restrictions on the communication between the servers, and/or privacy
constraints (e.g. [5, 14, 47, 18, 8, 44, 41]). In many cases, these results on communication bounded
learning immediately yield analogous statements in the memory bounded streaming setting, where
the learner has limited memory, and is given access to a stream of examples.

The proof of correctness for the everlasting security scheme of Ding and Rabin [10] can be
interpreted as proving a communication/data tradeoff for the problem of learning parities of size
k from random length n examples: either the learner must extract at least n/6 bits of information
from some example, or observe at least exp(k) examples. In [41], Shamir considers learning with
memory and communication constraints, and, among other results, shows that: for the problem
of identifying one significantly biased bit from otherwise uniformly random length n examples,
any learning algorithm with r bits of memory requires O(n/r) examples to correctly identify the
biased index. This corresponds to the problem of learning parities of size k = 1, from random
examples. In [44], the authors establish a correspondence between the problems that are learnable
via algorithms that communicate/extract few bits of information from each example, and those
problems learnable in Kearns’ statistical query model [24]. Additionally, they show that in the
distributed setting in which parties are given examples from a length n instance of parity, either
some parties must communicate θ(n) bits of information about their example, or an exponential
number of examples/parties are required to learn the parity set. They also conjectured a stronger
result, that for any positive ε > 0 and sufficiently large n, any algorithm for learning a random
parity function over length n examples either requires memory at least n2(14 − ε), or must see an

7

exponential number of examples to recover the parity set with high probability. This conjecture was
proved by Raz, with the slightly weaker constant of 1/25 instead of 1/4− ε [39]. Raz also observes
that such a result immediately provides an example of a bounded-storage cryptographic scheme
where a single bit can be communicated given a length n private key, and time n to encrypt/decrypt,
in such a way that it is secure against any adversary with memory less than n2/25. There has been
a significant subsequent push to develop a tight understanding of memory/sample tradeoffs for
other learning settings (see e.g. [19, 25, 38, 6, 33, 43]).

3 SIBA–Security via Re-Randomizing Databases

Our proposed system works as follows: the database can be regarded as an n bit string x, and each
user has a specified set of k indices for each bit to be stored. The user’s bit can be accessed by
computing the XOR of the database values at the specified k indices. Periodically, the database will
replace x with a uniformly random string, subject to the condition that the XOR of the specified
indices is still the desired value. The security of the system rests on the ability of the database to
ensure that a limited number of bits of information have been communicated to the outside world
between these “re-randomizations” of x.

For clarity, we formally describe the proposed system in the case of a single user, “Alice”, who
wishes to access a single fixed bit of information b ∈ {0, 1}.

Box 1: An Information Theoretically Secure Database
The database will consist of n bits, the parameter k denotes the key size, the
parameter r denotes the database refresh rate, and Alice wishes to store bit b ∈
{0, 1}.

Initialization:

• Alice and the database agree on a uniformly random secret, S =
{s1, . . . , sk} ⊂ {1, . . . , n} with |S| = k.

• The database is initialized to a uniformly random bit string x ∈ {0, 1}n such
that b =

∑
i∈S xi mod 2.

Access:

• To access Alice’s bit, b, she requests the values of x at locations i ∈ S, and
computes their XOR.

Maintenance:

• The database counts the total number of bits communicated from the
database (in aggregate across all users.)

• Before this count reaches r, the count resets to 0 and the database “re-
randomizes”: it replaces x with a new x′ ∈ {0, 1}n chosen uniformly at
random conditioned on b =

∑
i∈S xi mod 2. This starts the next epoch.

The crux of the above proposal—that the database “re-randomizes” before too much infor-
mation is transmitted about any given instantiation of the database’s memory—can be easily

8

guaranteed in practice by ensuring that two properties hold. First, that the database is connected
to the world via a communication channel with some known bandwidth, and ensuring that the
database re-randomizes conservatively, assuming that the channel is permanently transmitting at
full capacity. And second, that there is no large tract of database memory that is skipped in the re-
randomizations. Specifically, to ensure that no adversary extracts too much information about the
state of the database at a given time, the database must ensure that any virus that might be present
(on the database itself) is restricted to a limited amount of memory between re-randomizations
(as such memory could be leveraged at a future time to communicate extra information about the
current state of the database).

3.1 Time-Varying Data

The above basic design easily extends to support the setting where Alice’s bit changes over time. Let
bt denote the bit as a function of time, t, and assume that time is delimited in discrete intervals.
The above protocol can be trivially adapted to allow Alice access to the time-dependent bit bt,
by simply ensuring that the database re-randomizes both at each time increment, and when the
communication reaches the database refresh rate parameter, r. With a re-randomization that
occurs at time t, the database string x is chosen uniformly at random conditioned on the XOR
of the indices of x in Alice’s secret set equalling bt. This protocol also extends naturally to the
multi-user setting, and the setting where each user stores multiple bits, with security guarantees
essentially unchanged, provided the length of the database string is greater than 2k times the total
number of bits to be stored across all users. We describe these extensions in Section 4.

3.2 Security Guarantees

The following observation characterizes the security guarantees of the above system in the setting
in which an adversary can only interact with the database by requesting the database values at
specified indices:

Observation 1. After at most t “re-randomizations” of the database, an adversary that only inter-
acts with the database by requesting the database values at r specified indices per re-randomization
can correctly guess Alice’s secret subset S with probability at most t (r/n)k, even if the adversary
knows Alice’s sequence of bits b1, . . . , bt a priori. Furthermore, an adversary who knows Alice’s bit
values at times 1, . . . , i− 1, i+ 1, i+ 2, . . . , t, can distinguish the case that bi = 0 from the case that
bi = 1 with probability at most t (r/n)k .

The above observation follows from noting that for any subset of indices Q ⊂ {1, . . . , n} that
does not contain the entire set S, the bits of the database at indices in Q will be a uniformly
random |Q|-length bitstring, and in particular, is independent of Alice’s current bit bi and all of
her past and future bits.

The power of the above observation is that even an adversary who knows Alice’s data ahead of
time cannot leverage this knowledge to any advantage. In practical terms, for a bank implementing
such a system, this would mean that even if an adversary steals a paper copy of Alice’s bank account
balance and all her historical banking information, the adversary cannot leverage this information
to glean any additional information about Alice’s account, and, for example, will not be able to
detect a change to the account balance, or recover any more historic data than what the adversary
already has. Further, this simple setting has the “everlasting security” property [4] that, if after
the database is shut down, the adversary later learns the locations of Alice’s secret bit locations,
the adversary will not be able to recover any of Alice’s secrets (unless, as happens with probability

9

t(r/n)k, during one of the t periods the adversary had previously got lucky and simultaneously
observed all k of the bits at Alice’s locations).

The following theorem, which is our main result, shows that similar information theoretic secu-
rity persists even in the presence of significantly more pernicious attacks on the database. Suppose
an adversary hacks into the database and installs a virus that allows the adversary to interact with
the database in a more general fashion, rather than simply querying the database value at specified
indices. Even if the virus can compute arbitrary functions of the entire database and transmit these
function evaluations to the adversary, the database will be secure with essentially the same bounds
provided at most r bits have been transmitted between “re-randomizations”. This security holds
even if the adversary has infinite memory and computational power, and can communicate arbitrary
amounts of information to the virus—for example, even in the setting where the adversary is able
to upload a new virus with every re-randomization. Alternatively, instead of assuming a bound of
r communication to the outside world, the same results hold when bounding the communication
of the virus to its future self: the assumption that the database can ensure that no virus preserves
more than r local memory on the database between re-randomizations is practically feasible as the
database simply needs to ensure that there is no very-large tract of memory that is left untouched
during the “re-randomizations”.

Theorem 2 (SIBA-security). Given the database system described in Box 1, with key size k that
maintains an n-bit string, any algorithm that extracts at most r bits of information about the
database between epochs can correctly guess Alice’s secret set, S, with probability at most

(
n
k

)−1
+ t ·(

r
n

)k/2 · 4√ kk+3

(2e)k
after t epochs. Furthermore, the security of Alice’s data is “everlasting”: suppose

Alice stores bits b1, . . . , bt−1 in the database for the first t − 1 epochs, and these bits are known to
the adversary ahead of time. If Alice then chooses bit bt at random from {0, 1}, and the adversary
extracts at most r bits of information from the database during each of the first t epochs, then even
if the adversary is given Alice’s secret set S after the t+1st epoch, the adversary can correctly guess

Alice’s bit with probability at most 1/2 + t ·
(
r
n

)k/2 · 4 ·√ kk+3

(2e)k
.

The proof of Theorem 2 is given in Section 5.

4 Multiple Users and Multiple Bits

We now describe how to incorporate multiple users, each storing multiple bits, in our database
protocol; we do this in such a way that the security guarantees and the total database size are
essentially independent of the number of bits stored. Each (possibly time-varying) bit to be stored
will have its own associated secret set of k indices, disjoint from the sets corresponding to all other
bits (whether from the same user or a different user). To construct a length-N string that stores d
bits collectively, across various users: for each bit bi,t, to be stored in locations Si = (hi,1, . . . , hi,k),
the database independently chooses a random set of k bits of parity bi,t and assigns them to
the locations hi,1, . . . , hi,k in the string; the remaining locations in the string are chosen to be
independent coin flips. The security guarantees on a length-N database storing d bits collectively
across all users result from the following observation: for each secret bit of a user, even assuming
the adversary has complete information about all aspects of all d−1 remaining bits (from this user
and the other users), then the database setup for the remaining secret bit is effectively identical to
the standard setup of Theorem 2 for a database with string length n = N − (d− 1)k.

Thus, provided the size of the database representation, N , is at least n − k bits larger than
k times the number of bits being stored, the security guarantees of Theorem 2 persist. Even

10

in the event that an adversary has prior knowledge of some of the secret sets and bits, with all
but negligible probability, the adversary cannot leverage this knowledge to gain any additional
knowledge:

Corollary 2. Consider a database system as described above that maintains a length N string, has
key size k (per bit stored), and stores a total of d bits b1,t, . . . , bd,t, with the ith bit corresponding
to the XOR of k indices hi ⊂ {1, . . . , n}, where the sets hi are disjoint. The security guarantees of
Theorem 2 hold for n = N − (d− 1)k, for each given bit bi,t and secret set Si, even if the adversary
knows partial or complete information about the remaining d− 1 bits bj,t and secret key sets Sj.

Proof. We consider the case when the adversary has complete information about the remaining
d − 1 bits and secret key sets, as such an adversary can accomplish at least as much as one with
only partial information. Consider ignoring all the bits in the (d− 1)k known secret key locations
h2,1, . . . , hd,k from the database string of length N , the (joint) distribution of what remains is
identical to the construction of a single bit in a database of size n = N − (d− 1)k, since each of the
secret key locations is chosen independently and disjointly, and for each k-tuple of secret locations
the k bits at these locations are chosen independently of the rest of the database, and each bit not
at a secret location is chosen by an independent coin flip.

The above proof can alternatively be viewed as follows: given a database of size n securely
storing a single bit, the adversary could easily simulate having access to a database of size N =
n+(d−1)k securely storing d bits, where the adversary knows everything about the d−1 simulated
secrets (because the adversary simulated adding them to the database). If there were any way to
extract information about one of the bits in the d-bit setting by leveraging partial or complete
information about the other d− 1 bits, then an adversary could simulate this attack in the single-
bit setting, contradicting Theorem 2. Theorem 2 and Corollary 2 are stated in combined form in
the introduction as Theorem 1.

4.1 Decreasing the Key Size

In this multiple-bit setting, as described above, a user will store sk secret indices for every s bits
of information that she wishes to store securely. There are many natural approaches to improving
this scaling of parameters, including analogs of the pseudorandom generators induced by random
walks that were used in a related setting to substantially decrease the key size for a user, so as to
be sublinear in the number of bits she wants to store [28].

5 Proof of Theorem 2

We begin with a high level overview of the proof of Theorem 2. Because our proof relies on
properties of polynomials of random ±1 variables, which lets one express the parity of k bits as a
degree k monomial, for the entirety of this section we will refer to bits as being ±1 valued rather
than 0/1 valued (as was done in the rest of the paper). Given an n-bit database dat from which an
adversary runs an arbitrary computation returning an r-bit output OUTdat, the challenge is to show
that OUTdat gives essentially no information about either of the two aspects of the database we
wish to keep secret: the user’s secret key, specified by k locations h1, . . . , hk; and the user’s secret
itself, which is stored as the XOR of these k locations in the database. Consider the portion of the
hypercube of possible databases dat ← {−1, 1}n that induces a particular output OUT—because
there are only 2r possible r-bit outputs, a typical output OUT must be induced by a relatively
large, 2−r fraction of the hypercube. The main technical step is arguing why, for any large subset

11

of the hypercube, most k-bit parities will return almost exactly as many 1’s as −1’s on this set. In
other words, the only subsets of the hypercube that are biased for many parities are those subsets
that are very small. A singleton set is biased for all parities but consists of a 2−n fraction of the
cube; the set of points whose first k coordinates are 0 is a fairly large fraction of the hypercube, but
is only strongly biased for the k-way parity consisting of exactly the first k bits; in general, large
subsets of the hypercube are very close to unbiased, on a typical parity. We analyze this situation
in Proposition 1.

Given this tool, the single time-step (t = 1) special instance of Theorem 2 follows by the
straightforward argument that, even given r bits of output from the database, the joint conditional
distribution of the k secret locations, and XOR of the values in these locations is very close to
uniform. Following the intuition of [28], this implies both that 1) If the adversary has r bits of
output and somehow knows the user’s secret data, then the secret key is still close to independent
of this information, and thus remains secure; 2) If in addition to the r bits of output, the adversary
somehow, after the database has closed down, learns the user’s secret key, then the user’s secret
data remains independent of this information, and thus has “everlasting” security [4]–namely, with
high probability it is information theoretically impossible to learn Alice’s bit. To obtain the proof
of Theorem 2 for general t, we proceed by induction on t, leveraging the single time-step special
case. The details of this proof overview are given below.

5.1 Large Sets Have Few Biases

In this section we show that for any sufficiently large section of the hypercube, relatively few sized
k parities may have a significant bias. We begin by formalizing the notion of “bias” in a slightly
more general setting.

Definition 2. Given a function f : {−1, 1}n → [0, 2−n] and a k-tuple of indices h ⊂ {1, . . . , n},
the bias of f with respect to h is the average value of the degree k monomial induced by h on the
conditional distribution induced by f . Formally,

bias(h, f) =
1

|f |
∑

x∈{−1,1}n
f(x)

∏
i∈h

xi,

where |f | =
∑

x∈{−1,1}n f(x).

The following proposition shows that no function f : {−1, 1}n → [0, 2−n] can have a significant
bias with respect to too many k-tuples.

Proposition 1. Let S denote the set of all k-tuples of indices in {1, . . . , n} (hence |S| =
(
n
k

)
). For

an even integer k, given a function f : {−1, 1}n → [0, 2−n], the sum over all h ∈ S of the square of
the bias of f with respect to h is bounded as:

∑
h∈S

bias(h, f)2 ≤ 4kk+3(2− log |f |)k

(2e)k
,

where |f | =
∑

x∈{−1,1}n f(x).

Our proof will leverage the following hypercontractivity concentration inequality from [40]
(see [35, 23] for details):

12

Theorem 3 (Thm 1.10 from [40]). For any degree k polynomial P (x) = P (x1, . . . , xn), where the
xi are independently chosen to be ±1,

Pr
x∈{−1,1}n

[|P (x)−E[P (x)]| ≥ λ] ≤ e2 · e−
(

λ2

e2Var[P (x)]

)1/k

,

Additionally, we will leverage the following standard fact about the upper incomplete gamma
function:

Fact 1. Letting Γ(s, α) =
∫∞
t=α t

s−1e−tdt denote the upper incomplete gamma function, for any
positive integer s,

Γ(s, α) = (s− 1)!e−α
s−1∑
i=0

αi

i!
.

Proof of Proposition 1. Define P (x) =
∑

h∈S bias(h, f)
∏
i∈h xi to be the degree k polynomial with

|S| =
(
n
k

)
monomials, with coefficients equal to the biases of the corresponding monomials/sets.

Let s =
∑

h∈S bias(h, f)2 denote the quantity we are trying to bound, and note that

s|f | =
∑

x∈{−1,1}n
f(x) · P (x).

To bound this sum, given the polynomial P , consider the function f∗ : {−1, 1}n → [0, 2−n] with
|f∗| = |f | that maximizes the above quantity. Such an f∗ can be constructed by simply sorting
the points of the hypercube x1, x2, . . . , x2n s.t. P (xi) ≥ P (xi+1), and then setting 1

2n = f∗(x1) =
f∗(x2) = . . . = f∗(xj) for j = |f |/2n, and f(xi) = 0 for all i > |f |/2n. (For simplicity, assume |f |
is a multiple of 1/2n; if this is not the case, then we set j = b|f |/2nc and f∗(xj+1) = |f | − j/2n
and the argument proceeds analogously.) We now bound∑

x∈{−1,1}n
f(x)P (x) ≤

∑
x∈{−1,1}n

f∗(x)P (x) =
∑

λ:∃j≤|f |/2n with P (xj)=λ

λ · Pr
x←{−1,1}n

[P (x) = λ],

where the probability is with respect to the uniform distribution over x ∈ {−1, 1}n. Given any
differentiable function g(λ) that satisfies Prx←{−1,1}n [P (x) ≥ λ] ≤ g(λ), we have

∑
λ:∃j≤|f |/2n with P (xj)=λ

λ · Pr
x←{−1,1}n

[P (x) = λ] ≤
∫ ∞
λ0

λ ·
∣∣∣∣ ddλg(λ)

∣∣∣∣ dλ, (1)

where λ0 is chosen to be the largest value that λ can take, such that g(λ0) ≥ |f |. By Theorem 3,
we may take

g(λ) = e2 · e−
(

λ2

e2Var[P (x)]

)1/k

= e2 · e−
(
λ2

e2·s

)1/k

.

Hence taking λ0 so as to satisfy |f | = e2 · e
−
(

λ20
e2·s

)1/k

, yields

λ0 = (2− log |f |)k/2
(
e2 · s

)1/2
.

13

Plugging this into Equation 1 and noting that λ| ddλg(λ)| = 2
k

(
λ2

e2·s

)1/k
e
−
(
λ2

e2·s

)1/k

, we get the

following:

∑
x

f(x)P (x) ≤ 2e2

k

∫ ∞
λ0

(
λ2

e2 · s

)1/k

e
−
(
λ2

e2·s

)1/k

dλ making the substitution u =

(
λ2

e2 · s

)1/k

= e2
(
e2 · s

)1/2 ∫ ∞
u0

uk/2e−udu for u0 =

(
λ20
e2 · s

)1/k

= 2− log |f |

= e3
√
sΓ(k/2 + 1, u0)

= e3
√
s(k/2)!e−u0

k/2∑
i=0

ui0
i!

≤ e
√
s|f |(k/2)!(k/4)(2− log |f |)k/2.

The above establishes that s|f | ≤ e
√
s|f |(k/2)!(k/4)(2−log |f |)k/2 ≤ 2

√
s|f |(2e)−k/2kk/2+3/2(2−

log |f |)k/2, which implies that s ≤ 4(2e)−kkk+3(2− log |f |)k, as desired.

5.2 Completing the Proof

Equipped with Proposition 1, we now analyze the overall behavior of our secure database. We
begin by proving that the security holds for a single re-randomization of the database, and then
leverage that result via a basic induction argument to show that the security guarantees degrade
linearly with the number of re-randomizations. The argument of this section closely follow the
proof approach of [28].

We begin by considering an adversary that, given the n bits contained in the database, conducts
an arbitrary computation to produce an output OUT that is r bits long, and show that, over
the random choice of the k locations h1, . . . , hk ∈ [n] and the random choice of the database
dat ∈ {−1, 1}n, even given OUT , the joint distribution of 1) the k locations h1, . . . , hk and 2) the
parity of these k locations, is very close to being jointly uniform and independent.

Using the notation 〈OUTdat, h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉 to represent the joint distribution of
these three random variables, and letting Uh and U±1 denote the uniform distribution over the set
S = {h1, . . . , hk} ⊂ [n]k and the uniform distribution on ±1, respectively, we have the following
immediate corollary of Proposition 1, which shows the joint distributions 〈OUTdat, h1 . . . hk, dath1⊕
· · · ⊕ dathk〉 and 〈OUTdat, Uh, U±1〉 are exponentially close. This implies that, even with the hints
provided by r bits of output OUT , 1) knowing the user’s secret data dath1 ⊕ · · · ⊕ dathk gives
exponentially little information about the secret key h1 . . . hk implying that the key can be securely
reused an exponential number of times; and 2) if after the database closes, the secret key h1 . . . hk
is revealed, everlasting security still holds and the adversary has exponentially little information
about the user’s secret data dath1 ⊕ · · · ⊕ dathk , which implies the main results of this paper.

Lemma 1. The statistical distance between the distributions 〈OUTdat, h1 . . . hk, dath1⊕· · ·⊕dathk〉
and 〈OUTdat, Uh, U±1〉 induced by randomly drawing dat← {−1, 1}n is at most

(
r
n

)k/2 · 2kk/2+3/2

(2e)k/2
.

Proof. For a fixed r-bit string OUTdat, consider the function fOUT : {−1, 1}n → [0, 2−n] that on
each string x ∈ {−1, 1}n takes value equal to the joint probability that x is the chosen n-bit string
and that the r bit output string equals OUTdat. Proposition 1 yields that,∑

h∈S
bias(h, fOUT)2 ≤ ck(2− log |fOUT |)k,

14

where ck = 4kk+3

(2e)k
, and |fOUT | =

∑
x∈{−1,1}n fOUT (x).

Combining this result with the Cauchy-Schwarz inequality relating the sum of the elements of
a vector to the sum of the squares of its elements, we have∑

h∈S
bias(h, fOUT) ≤

√(
n

k

)
· ck(2− log |fOUT |)k.

We observe that |fOUT |, by definition, equals the probability that the particular value of OUT
is chosen from among all r-bit strings; further, for this fixed OUT , the statistical distance between
the joint distribution 〈h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉 and the corresponding uniform distribution

〈Uh, U±1〉 equals
(
n
k

)−1 ·∑h∈S bias(h, fOUT).
Thus the desired statistical distance between the distributions 〈OUT, h1 . . . hk, dath1 ⊕ · · · ⊕

dathk〉 and 〈OUT,Uh, U±1〉 is bounded by

E
OUT

√(n
k

)−1
· ck(2− log |fOUT |)k

 =
∑
OUT

|fOUT | ·

√(
n

k

)−1
· ck(2− log |fOUT |)k,

subject to the constraint that
∑

OUT |fOUT | = 1. Since x(2 − log x)k/2 is a concave function of x
for x ∈ [0, 1], the statistical distance is thus maximized when for each of the 2r possible outputs
OUT , the probabilities are all equal: |fOUT | = 2−r. Plugging this in to the above equation gives
the desired bound on the statistical distance:∣∣〈OUTdat, h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉 − 〈OUTdat, Uh, U±1〉∣∣

≤

√(
n

k

)−1
· ck(2− log 2−r)k =

(r
n

)k/2
· 2kk/2+3/2

(2e)k/2
.

We now complete the proof of our main security guarantee, Theorem 2, which we restate below
in the above terminology. We use the notation [t] for an integer t to denote the set {1, . . . , t}.
We show that an adversary repeatedly hijacking the database essentially learns nothing beyond
what the adversary could have learned by staying home and simulating the whole process. This
guarantee holds even if the adversary finds out about all of Alice’s previously stored bits, or, more
generally, receives arbitrary “hints” from an outside source about Alice’s past, present, and future
bits. We proceed to show the information theoretic security of our database scheme by showing
that for any adversary extracting information from the database, there is an analogous simulator
that the adversary could run without any access to the database, whose results are identical with
all but negligible probability. Such simulator constructions were originally developed and employed
in the context of semantic security [20].

Theorem 2 (SIBA-security, restated). For any adversary, there is an efficient simulator S such
that for any sequence of bits bi to be stored at a succession of rerandomization times in the database,
and any sequence of (possibly probabilistic) “hints” Hi that the adversary receives about the (pre-
vious, current, or future) bits in the sequence, then, averaged over the all

(
n
k

)
secret k-tuples of

locations h[k], the statistical distance between the distribution of the view of the adversary after
running on the database for t rounds, receiving hint Hi after each round i versus the view of the
simulator who is given hints H[t] but never interacts with the database, is less than 2t · εr,n,k, where

εr,n,k =
(
r
n

)k/2 ·√4kk+3

(2e)k
is the bound given in Lemma 1 for a single re-randomization.

This theorem has the following immediate interpretations:

15

1. If at the end of t database rerandomizations an adversary is told Alice’s bits b1, . . . , bt, then
it still cannot guess Alice’s secret indices correctly with probability any better than 2tεr,n,k
more than random guessing.

2. If the database represents a uniformly random bit bt ∈ {−1, 1} during the tth re-randomization,
then even if an adversary is told (at the very beginning) the t−1 bits, b1, . . . , bt−1, that Alice
is storing during the first t − 1 database rerandomizations, and even if, subsequent to the
t+ 1st rerandomization, the adversary is told Alice’s secret set of indices, then the adversary
can guess bt correctly with probability at most 2tεr,n,k better than random guessing. This is
the “everlasting security” property.

Proof. We prove the theorem by induction on the number of rerandomizations t, where the t = 0
case corresponds to 0 rounds of the database, where the theorem trivially holds since neither the
real nor simulated adversary has any information.

Assume, by the induction hypothesis, that there is an efficient simulator S that on input H[t−1]
can probabilistically construct a sequence of outputs OUT ′[t−1] that is (averaged over all

(
n
k

)
choices

of secret bit locations h[k]) within statistical distance 2(t − 1)εr,n,k of the distribution of outputs
OUT[t−1] produced by an adversary running for t rerandomizations on the actual database that
encodes Alice’s secret bits b[t] in secret locations h[k]. We couple the random variables OUT[t−1]
and OUT ′[t−1] together so that they differ with probability ≤ 2(t− 1)εr,n,k.

When the adversary is running on the database during the tth rerandomization, it calculates
the tth output via some function OUTt = f(datt, OUT[t−1], Ht), in terms of the current database
(which was randomly drawn so as to encode Alice’s bit bt as the XOR of locations h[k]), the previous
outputs, and whatever “hint” Ht it receives about Alice’s bits. We change the distribution of OUTt
with probability ≤ 2(t−1)εr,n,k if we modify it to a “primed” version OUT ′t = f(datt, OUT

′
[t−1], Ht).

Since OUT ′[t−1] is constructed by the simulator, it is independent of the locations h[k], though

possibly dependent on Alice’s current secret bit bt (through hints the adversary received). Thus
the output OUT ′t = f(datt, OUT

′
[t−1], Ht) is a function of datt, independent of the locations h[k],

possibly dependent on bit bt (and also possibly dependent on previous bits b1, . . . , bt−1 and future
bits bt+1, . . ., though these do not matter here); we thus denote OUT ′t = fbt(datt), where the
function fbt is possibly stochastic. We thus apply Lemma 1 to both fbt=−1 and fbt=1: we interpret
here interpret Lemma 1 as saying that for any function f that outputs r bits, the average over all
choices of secret locations h[k] and both choices of the bit bt of the statistical distance between the
output of f applied to a database generated from h[k] and bt versus the output of f when applied
to a uniformly random string dat← {−1, 1}n is at most εr,n,k.

Since this bound of εr,n,k is averaged over both choices of the bit bt, we bound the statistical
distance for either choice by twice this, 2εr,n,k. Thus, for both bt = −1 and bt = 1 we have that,
averaged over all choices of secret locations h[k], the statistical distance between fbt when evaluated
on a database generated from the secrets h[k] and bt versus when fbt is evaluated on a uniformly
random string dat← {−1, 1}n is at most 2εr,n,k

Thus, our simulator, after having already simulated OUT ′[t−1] (by the induction hypothesis),

next simply draws a random string datt ← {−1, 1}n and lets OUT ′t = f(datt, OUT
′
[t−1], Ht). The

coupling argument shows that the first t−1 outputs are accurately simulated except with probability
≤ 2(t−1)εr,n,k, and provided the first t−1 outputs are accurately simulated, the previous paragraph
shows that the tth output has the desired distribution, up to statistical distance error ≤ 2εr,n,k (in
both the case bt = −1 and the case bt = 1); summing these bounds yields the induction: that
our simulator accurately emulates the first t outputs up to statistical distance error ≤ 2tεr,n,k, as
desired.

16

References

[1] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs. Public-
key encryption in the bounded-retrieval model. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 113–134. Springer, 2010.

[2] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography
in the bounded-retrieval model. In Advances in Cryptology-CRYPTO 2009, pages 36–54.
Springer, 2009.

[3] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the bounded
retrieval model. In International Conference on Information Theoretic Security, pages 1–18.
Springer, 2009.

[4] Yonatan Aumann, Yan Zong Ding, and Michael O Rabin. Everlasting security in the bounded
storage model. Information Theory, IEEE Transactions on, 48(6):1668–1680, 2002.

[5] M.F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication com-
plexity and privacy. In Conference on Learning Theory (COLT), 2012.

[6] Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning from small
test spaces: Learning low degree polynomial functions. arXiv preprint arXiv:1708.02640, 2017.

[7] Shai Ben-David and Eli Dichterman. Learning with restricted focus of attention. In Proceedings
of the sixth annual conference on Computational learning theory, pages 287–296. ACM, 1993.

[8] M. Braverman, A. Garg, T. Ma, H.L. Nguyen, and D.P. Woodruff. Communication lower
bounds for statistical estimation problems via a distributed data processing inequality. arXiv
preprint arXiv:1506.07216, 2015.

[9] Giovanni Di Crescenzo, Richard Lipton, and Shabsi Walfish. Perfectly secure password pro-
tocols in the bounded retrieval model. In Theory of Cryptography Conference, pages 225–244.
Springer, 2006.

[10] Yan Zong Ding and Michael O Rabin. Hyper-encryption and everlasting security. In STACS
2002, pages 1–26. Springer, 2002.

[11] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 511–520. IEEE, 2010.

[12] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 613–631. Springer, 2010.

[13] Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel Wichs. Storing secrets on contin-
ually leaky devices. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 688–697. IEEE, 2011.

[14] J. Duchi, M. Jordan, and M. Wainwright. Local privacy and statistical minimax rates. In
IEEE Symposium on Foundations of Computer Science (FOCS), 2013.

17

[15] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Theory of Cryp-
tography Conference, pages 207–224. Springer, 2006.

[16] Stefan Dziembowski. On forward-secure storage. In Annual International Cryptology Confer-
ence, pages 251–270. Springer, 2006.

[17] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In Foundations of
Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 293–302.
IEEE, 2008.

[18] A. Garg, T. Ma, and H. Nguyen. On communication cost of distributed statistical estimation
and dimensionality. In Advances in Neural Information Processing Systems (NIPS), 2014.

[19] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learn-
ing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 990–1002. ACM, 2018.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual ACM Sympo-
sium on Theory of Computing, STOC ’82, pages 365–377, New York, NY, USA, 1982. ACM.

[21] Shafi Goldwasser and Guy N Rothblum. Securing computation against continuous leakage. In
Annual Cryptology Conference, pages 59–79. Springer, 2010.

[22] Amir Herzberg, Stanis law Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Annual International Cryptology Conference, pages
339–352. Springer, 1995.

[23] Svante Janson. Gaussian Hilbert Spaces. Cambridge University Press, 1997. Cambridge Books
Online.

[24] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[25] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1067–1080. ACM, 2017.

[26] Allison Lewko, Mark Lewko, and Brent Waters. How to leak on key updates. In Proceedings of
the forty-third annual ACM symposium on Theory of computing, pages 725–734. ACM, 2011.

[27] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In Information
Security, pages 314–328. Springer, 2005.

[28] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-line strong extrac-
tors. In Advances in Cryptology (CRYPTO2002), pages 257–271. Springer, 2002.

[29] Ueli Maurer. Information-theoretic cryptography. In Advances in Cryptology (CRYPTO99),
pages 47–65. Springer, 1999.

[30] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Jour-
nal of Cryptology, 5(1):53–66, 1992.

18

[31] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryptog-
raphy Conference, pages 278–296. Springer, 2004.

[32] Frank Miller. Telegraphic code to insure privacy and secrecy in the transmission of telegrams.
CM Cornwell, 1882.

[33] Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded
learning. In Conference on Learning Theory, pages 1516–1566, 2017.

[34] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 448–457. Society for
Industrial and Applied Mathematics, 2001.

[35] Ryan O’Donnell. Analysis of boolean functions, lecture notes (lecture 16).
http://www.cs.cmu.edu/ odonnell/boolean-analysis/.

[36] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 462–482. Springer, 2009.

[37] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

[38] Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS), pages 732–742. IEEE,
2017.

[39] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
J. ACM, 66(1):3:1–3:18, December 2018.

[40] Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for polynomi-
als of independent random variables. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 437–446. SIAM, 2012.

[41] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. In Advances in Neural Information Processing Systems, pages 163–171, 2014.

[42] Claude E Shannon. Communication theory of secrecy systems*. Bell system technical journal,
28(4):656–715, 1949.

[43] Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear re-
gression with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pages 890–901, 2019.

[44] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Conference on Learning Theory (COLT), 2016.

[45] Salil P Vadhan. On constructing locally computable extractors and cryptosystems in the
bounded storage model. In Annual International Cryptology Conference, pages 61–77. Springer,
2003.

[46] Gilbert S Vernam. Cipher printing telegraph systems: For secret wire and radio telegraphic
communications. AIEE, Journal of the, 45(2):109–115, 1926.

19

[47] Y. Zhang, J. Duchi, M. Jordan, and M. Wainwright. Information-theoretic lower bounds
for distributed statistical estimation with communication constraints. In Advances in Neural
Information Processing Systems (NIPS), 2013.

20

	Introduction
	Related Work
	SIBA–Security via Re-Randomizing Databases
	Time-Varying Data
	Security Guarantees

	Multiple Users and Multiple Bits
	Decreasing the Key Size

	Proof of Theorem 2
	Large Sets Have Few Biases
	Completing the Proof

