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Abstract

We introduce a framework for statistical estimation that leverages knowledge
of how samples are collected but makes no distributional assumptions on the
data values. Specifically, we consider a population of elements {1, . . . , n} with
corresponding values x1, . . . , xn. We observe the values for a sample set A ⊂
{1, . . . , n} and wish to estimate some statistic of the values for a target set B ⊂
{1, . . . , n}whereB could be the entire set. Crucially, we assume that the setsA and
B are drawn according to some known joint distribution (A,B) ∼ P over pairs of
subsets of {1, . . . , n}. A given estimation algorithm is evaluated based on its worst-
case, expected error where the expectation is with respect to the distribution P from
which the sample A and target set B are drawn, and the worst-case is with respect
to the data values x1, . . . , xn. Within this general framework we give an efficient
algorithm to find an estimator for the target mean, as a weighted combination of
the input sample—where the weights are a function of the distribution P and the
identities of the elements in the sample and target sets A,B. We show that the
worst-case expected error achieved by this estimator is at most a multiplicative π/2
factor worse than the optimum for such estimators. A component of this algorithm
can also be used to approximate the worst-case expected error of a given estimator.
The algorithm and proof leverage a surprising connection to the Grothendieck
problem. We extend these results to the setting of linear regression, where each
datapoint is not a scalar but a labeled vector (xi, yi) ∈ Rd+1. Our framework,
which makes no distributional assumptions on the data values but rather relies on
knowledge of the data collection process via the distribution P , is a significant
departure from the typical statistical estimation framework and introduces a uniform
algorithmic analysis for the many natural settings where membership in a sample
may be correlated with data values, such as when probabilities of sampling vary as
in “importance sampling”, when individuals are recruited into a sample via a social
network as in “snowball sampling” or “respondent-driven sampling” [12, 14] or
when samples have chronological structure as in “selective prediction” [10, 21].
We experimentally demonstrate the benefit of this framework and our algorithm in
comparison to standard estimators, for several such settings.

1 Modeling Data Collection

For many real-world estimation or prediction problems, it is not unreasonable to assume that data
values are drawn independently from some underlying distribution. Correspondingly, there is an
enormous body of work developing algorithms suited for such settings as well as for related settings
with slightly weaker assumptions such as exchangeability or assumptions found in various models in
robust statistics or robust learning. By contrast, there are also many settings in which we know very
little about the underlying data values, and any sort of distributional assumption would be problematic.
For such settings, however, we might have some knowledge or control over the process by which
data is collected. How can we design algorithms for estimating basic statistics that are optimal for a
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given data collection process? For which data collection processes is accurate estimation or learning
possible, even for worst-case data? Surprisingly, there seems to be little work on such questions.

We introduce a general framework in which to study these questions. Consider a set of n indices
{1, ..., n} with corresponding values x = {x1, ..., xn}, and a distribution P over pairs of subsets
(A,B) where A,B ⊂ {1, ..., n}. We call A the sample set and B the target set. At inference time, a
pair is drawn (A,B) ∼ P and we are given access to the data values in x indexed by set A, namely
xA. Our task is to use A,B, and xA to estimate some statistic of the values indexed by set B, σ(xB).
For example, if σ() is the arithmetic mean and B = {1, ..., n}, then our goal is to use the sample to
estimate the population mean.

Given an estimator, we consider the worst-case, expected error. The worst-case is with respect to
the data values {xi}, and the expectation is with respect to the distribution over subsets P . This
model corresponds to the setting where we have knowledge of the sample collection process, but do
not make distributional assumptions on the data values. Throughout, we will be interested in both
the question of evaluating the worst-case expected error of a given estimator, as well as the more
challenging task of computing the best estimator for a given P—namely the estimator that minimizes
this worst-case expected error under the sampling distribution P .

Below, we illustrate how this framework captures common data collection processes including
processes in which certain individuals are biased towards or against being sampled, processes with
dependencies such as "snowball sampling" or "chain sampling" where membership in the sample
is governed by stochastic processes (e.g. over a social network), and settings where samples must
satisfy chronological constraints (e.g. one uses a sample from the past to make predictions about a
target in the future). We begin with a standard example.

Example 1 (Independent Samples). Consider the setting where the distribution P corresponds to
including each element i ∈ {1, . . . , n} in the sample set A independently with probability p, and the
goal is to estimate the mean of the target set B = {1, . . . , n}. In this setting, provided the data values
x1, . . . , xn are bounded (or have bounded variance in the sense that 1

n

∑
i x

2
i = O(1)), then the

sample mean will concentrate, and even for worst-case datasets, the estimator that simply returns the
sample mean will have expected squared error O( 1

pn ). In the related setting where each i is included
in the sample independently, but with a possibly distinct probability pi, the worst-case expected error
framework corresponds to not making assumptions on how the data values xi vary with the sampling
probabilities pi. An estimator for this setting with small worst-case expected error will have good
performance even if the xi’s are, for example, correlated with the pi’s in a pernicious way.

The example above illustrates one way in which accurate estimation is possible, even for worst-case
data: namely if the sample mean (and target mean) concentrates. The following example illustrates
that accurate prediction can still be possible, even for a distribution for which the target and sample
means have constant variance with respect to the randomness in (A,B) ∼ P . This example captures
a setting where the distribution, P , respects chronological constraints, in the sense that, for any
target/sample sets that have non-zero probability under P , if i is in the sample set and j is in the
target set, i < j. Such constraints mirror the many settings where the sample set corresponds
to past data, and the target set corresponds to data that will be received in the future. Here, the
worst-case component of our framework corresponds to not making assumptions that the world is
“stationary”—future elements might not be like past elements.

Example 2 (“Selective Prediction”). Consider the joint sample/target distribution P corresponding
to the following process: a time t is drawn uniformly from {1, . . . , n − 1}, and the sample set
is {1, . . . , t}. Then w is drawn uniformly from {1, 2, 4, 8, . . . , 2logn−1} and the target set is {t +
1, . . . ,min(t+ w, n)}. This prediction task corresponds to choosing a day at random, and deciding
to make a prediction about the average change in the stock market over the next w days. In this
setting, the main results in [10, 21] imply that if the data values are all bounded, then there exists
an estimator for the target mean whose worst-case expected squared error is O(1/ log n), and that
this is optimal to constant factors. The prediction algorithm achieving this performance is extremely
simple: when asked to predict the mean of the next w data items after t, return the mean of the most
recent w sample values, 1

w

∑t
i=t−w+1 xi. The surprising aspect of this example is that subconstant

expected error is achievable, despite there being no distributional assumptions on the values and
hence no guarantees that future data are like past data. The randomness in both time t and the
window length w of the target set (which define the distribution P ) are both essential for achieving
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subconstant worst-case expected accuracy: if either t or w is any fixed value, then the worst-case
estimation error becomes constant.

A third example that fits cleanly within our framework is the class of data collection schemes
referred to as snowball sampling, respondent driven sampling or chain sampling [12, 14]. In such a
scheme, people who have contributed data are asked (or incentivized) to recruit their acquaintances
to contribute data, and the pool of respondents grows, like a snowball. These schemes are frequently
used to collect data from sensitive populations, such as drug users. Our framework provides a natural
way to design and evaluate estimators for data collected via such sampling processes:
Example 3 (Snowball Sampling). Suppose elements {1, . . . , n} are located at nodes of a social
network. A sample is drawn by independently selecting one (or several) indices; each element in the
sample then repeatedly “recruits” each of its friends in the social network (say independently with
probability p). The sample will then correspond to the elements that have been recruited in the first t
iterations of this “viral" process. The target set could correspond to those nodes recruited in iterations
t+1, . . . t+w for some horizon w, or the target set could be the entire population, {1, . . . , n}. How
do structural properties of the underlying social network translate into positive or negative results on
the worst-case expected performance of standard estimators, or an optimal estimator? And how does
such an optimal estimator leverage knowledge of the network structure? While we do not have simple
rules-of-thumb for these questions, our main results apply to such snowball sampling processes, and
we evaluate our algorithm empirically in such a setting in Section 3.

While the notion of worst-case expected error is in terms of a sampling distribution, P , one of the main
motivations for this framework is to guide the choice of estimator for the many real-world settings
in which the actual sampling distribution is unknown. In such settings, one could construct various
different plausible P ’s—for example capturing different hypothetical types of correlation in inclusion
in the sample, different response rates for different hypothetical demographic groups, etc. Using the
worst-case expected error framework, one could then rigorously evaluate the stability of potential
estimators with respect to these various “plausible" P ’s. This may prove to be a useful alternative to
the more standard approach of evaluating estimators with respect to different assumptions on the data
values.

1.1 Summary of Results

Our main results are efficient algorithms for approximately computing the worst-case expected error
of a given estimator with respect to a given distribution P (or sample access to P ), and for finding
an estimator that approximately minimizes this error with respect to P . We state these results in
the setting where the statistic of interest is the mean of the target set. Such results immediately
extend to yield analogous statements for any statistic that can be expressed as the average of some
functional of each data point (e.g. the variance, or higher moments). We further apply these results in
a black-box fashion to yield results in the setting where each datapoint is a labeled vector (xi, yi), and
the “statistic” of interest is the optimal linear regression model β for the target set, so that yi ≈ x>i β.

Our results in the mean estimation setting focus on semilinear schemes, in which estimates can be
expressed as a linear combination of the sample values, where the linear coefficients can depend
arbitrarily on the indices (but not values) of the sample and target sets A,B and the distribution P .
Definition 1. A semilinear estimation algorithm, L, is a mapping from a set of sample elements
A = (α1, . . . , α|A|) ⊂ {1, . . . , n} and set of target elements B = (β1, . . . , β|B|) ⊂ {1, . . . , n} to a
list of |A| weights, w1, . . . , w|A| that may depend on A, B, and P . The estimate produced by L when
given the sample values xA = {xα1 , ..., xα|A|} is

∑|A|
i=1 wixαi .

Intuitively, semilinear algorithms work by mapping the sample/target sets to linear coefficients of the
sample values, effectively specifying separate linear estimators for each possible sample/target pair
(A,B) supported on P . A good semilinear algorithm will produce a set of estimators such that there
is no assignment to values x that incurs high error on many of the possible sample/target sets. Such
an algorithm will have low worst-case expected error, which is our goal.

Although the class of semilinear algorithms is a restriction, it is a natural starting point for studying
this general framework. Additionally, nearly all estimation algorithms that we are aware of fall
into this class. The sample mean is trivially semilinear; the more surprising constant-factor optimal
scheme in the selective prediction setting of Example 2 produces a semilinear algorithm where the
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weights depend on the target indices, not just on the sample indices (recall that the returned estimate
is the average of the w highest-indexed sample values, where w is the size of the target set). In the
setting of “importance sampling” where each element i is included in the sample independently, with
probability pi, standard estimators are also semilinear in that they return a weighted mean of the
sample values where the weight of xi is typically a function of pi. Our notion of semilinear in this
setting is even more general, in that the weights given to a sample value xi can depend arbitrarily on
both pi, as well as the other probabilities {pj 6=i} and the specific set of sampled indices.

Our main result is that there exists an efficient algorithm which, given sample-access to the joint
sample/target distribution P , returns a semilinear estimation scheme whose worst-case expected error
is within a constant factor of the optimal such scheme for P .
Theorem 1. Let P denote a distribution over pairs of subsets (A,B) of {1, . . . , n}, and let ε > 0
be a fixed error parameter. There is an algorithm L which, given sample-access to P and given
sets A = (α1, . . . , α|A|) and B = (β1, . . . , β|B|), takes poly(n, 1/ε) samples from P , runs in time

poly(n, 1/ε), and returns a list of |A| weights, wL(A,B)
1 , . . . , w

L(A,B)
|A| , with the following guarantee:

For any values x = {x1, . . . , xn} with |xi| ≤ 1 and with high probability over L’s samples from P ,
the expected squared difference between the estimate

∑|A|
i=1 w

L(A,B)
i xαi

and the mean of the target
set 1
|B|
∑|B|
i=1 xβi is within an additive ε and multiplicative π/2 factor of the worst-case expected

error of the optimal semilinear algorithm. Formally,

E
(A,B)∼P


 |A|∑
i=1

w
L(A,B)
i xαi

− 1

|B|

|B|∑
i=1

xβi

2


≤ ε+ π

2

 inf
L′ :(A,B)→{wL

′
(A,B)

i }
sup

(x
′
1,...,x

′
n):|x

′
i|≤1

E
(A,B)∼P


 |A|∑
i=1

w
L

′
(A,B)

i x
′

αi
− 1

|B|

|B|∑
i=1

x
′

βi

2

 .

As a component of our proof of this theorem, we give an efficient algorithm which approximates the
worst-case expected error of any semilinear algorithm to within this multiplicative π/2 factor (see
Proposition 1 for a formal statement). This approximation factor of π

2 is optimal in the sense that
there exist a semilinear estimator and distribution P for which estimating the worst-case expected
error to within a π

2 factor is NP-hard. We discuss this in Section 2.1.

While we focus on semilinear schemes, these are not necessarily optimal (see Appendix D for details):
Fact 1. There exists a distribution P for which the optimal semilinear mean estimation scheme
achieves a worst-case expected squared error that is larger than the worst-case expected squared
error of the optimal (unconstrained) scheme.

As we discuss in Section 1.3, one open question is to understand the severity of this gap between
semilinear versus arbitrary estimation algorithms. We conjecture this gap is bounded by a small
constant; the most extreme gap that we know of, found via an automated search, is a factor of 1.004.

Linear Regression. We also consider the following natural extension of our results to the setting of
d-dimensional linear regression. As above, there is a joint distribution P over sample/target subsets
A,B ⊂ {1, . . . , n}. Each index i has an associated labeled vector, (xi, yi) with xi ∈ Rd and yi ∈ R.
For a sample/target pair A,B, we observe the data points (xi, yi) for i ∈ A, and the task is to return
a linear regression model β̂ that has small error when applied to the (unobserved) datapoints indexed
by the target set B. Specifically, letting βB denote the least-squares regression model for the target
set {(xi, yi)}i∈B , the goal is to return β̂ ≈ βB .

The following theorem leverages Theorem 1; the algorithm and proof are given in Appendix E.
Theorem 2. Consider the regression setting described above corresponding to a sample/target
distribution P , with the additional guarantee that each coordinate of the features xi and labels yi
are scaled so as to have magnitude at most 1. Let αP be the mean squared error guaranteed by
Theorem 1 for the (scalar) mean estimation setting. There is a polynomial-time algorithm which,
given A,B, the datapoints {(xi, yi)}i∈A and sample-access to P , with probability 1 − δ returns
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regression coefficients β̂ such that ‖β̂ − βB‖ ≤ 3

√
αP d3/δ

σ2
d

, for any δ > 0; here βB is the true
vector of least-squares coefficients for {(xi, yi)}i∈B , and σd denotes the smallest singular value of
the covariance 1

|B|
∑
i∈B xix

>
i . In the case that the features {xi}i∈B are known for the target set

(and only the yi’s are unknown) then we have the improved bound that, except with δ probability,

||β̂ − βB || ≤
√
αP d/δ

σd
.

1.2 Related Work

There has been significant recent effort developing algorithms for estimation and learning with strong
performance guarantees beyond the idealized setting of data drawn i.i.d. from a fixed distribution.
This includes the recent body of work on robust learning and statistics. Building off a long line
of work from the statistics community (see e.g. [15, 24]), the models considered in these works
assume that datapoints are drawn independently from some distribution of interest, and then an α
fraction of datapoints are corrupted arbitrarily/adversarially. (Some of these works also consider
the slightly weaker contamination model where the α fraction of arbitrary data is specified before
the 1 − α fraction of i.i.d. data is drawn.) Recent work has developed computationally efficient
algorithms for basic estimation and learning tasks in these settings, beginning with estimating the
mean and covariance of a high-dimensional Gaussian [8, 19], and subsequently considering more
general optimization problems over data, including linear regression [4, 23, 18, 16]. While this line
of work relaxes the typical assumption that all datapoints are drawn i.i.d. from a distribution, these
works still rely on the assumption that a significant fraction of the data is drawn from a well-behaved
distribution. From a technical perspective, these works typically proceed by analyzing the structure
of the 1 − α fraction of i.i.d. datapoints, and then showing that the adversarial datapoints cannot
completely obscure this structure. In this sense, the distributional assumptions on the 1− α fraction
of “good” data are critically leveraged.

There is also a line of recent work developing algorithms that work on truncated data [6, 7] which
captures one commonly arising class of dataset that deviates from the i.i.d. setting. Here, the
assumption is that data is drawn independently from a “nice” distribution—a high-dimensional
Gaussian in the case of [6]—but then the dataset is truncated, revealing only the portion that
lies within some specified set. The challenge is that this conditioning often significantly skews
the statistics of the data. Work on learning from truncated samples differs significantly from the
framework considered in our work, in that the positive results in [6, 7] leverage assumed structure of
the underlying data: the Gaussian assumption in [6], and for [7] the assumptions of an underlying
noisy linear model and that the truncation procedure is only a function of the label of each datapoint.

Beyond the dependencies that truncation introduces, recent work also considers regression in a setting
with more complex dependencies, that models the type of dependence that may arise when datapoints
correspond to nodes within a network [5]. In that work, the authors revisit the standard noisy linear
regression model with labels yi = θTxi + εi, and the standard logistic regression model where
Pr[yi = 1] = 1/(1 + exp(θTxi)). Instead of assuming that the εi and logistic outcomes are drawn
independently, they consider the case where these are generated in a correlated fashion, corresponding
to a known/fixed covariance matrix with an unknown strength parameter. Despite these dependencies,
the authors provide an efficient algorithm for learning the model, θ, in this setting, that still achieves
the error guarantees of the independent settings, provided some mild assumptions are satisfied.

Finally, it is worth clarifying the distinction between our framework and the on-line learning frame-
work. As with our framework, much of the work in on-line learning makes no assumptions about
the underlying data, and often assumes that the underlying data is adaptively responding to our
predictions. Beyond this, however, the frameworks are quite different: our framework considers
the task of making a single prediction, as opposed to a sequence of predictions. Additionally, we
are measuring the performance of algorithms against all algorithms in their class, instead of in
comparison to some set of fixed benchmarks.

1.3 Discussion and Open Directions

We introduce a framework for understanding statistical estimation where we make no assumptions
on the data values themselves, but model the process P by which sample and target datasets are
collected. Within this framework, an estimator is evaluated based on its worst-case expected error,
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where the worst-case is with respect to the data values, and the expectation is with respect to the
selection of the sample and target sets according to P . We present algorithms for approximating the
worst-case expected error of an estimator with respect to P , and for computing an estimator that
approximately minimizes this error, within a broad class of estimators. In addition to the strong
theoretical guarantees, this algorithm yields estimators that seems to perform extremely well on
several natural synthetic settings where samples are drawn from nontrivial sampling distributions.

There are a number of natural open directions prompted by this work. Can the algorithms be adapted
to have a runtime independent of n? The framework and definition of worst-case expected error
certainly applies to the case where the underlying domain is infinite (instead of {1, . . . , n})—can
efficient algorithms be developed for that setting? If data values are constrained to an `1 or `2
ball (as opposed to the `∞ ball corresponding to our assumption that each value is bounded), are
simpler algorithms possible? What is the gap between the worst-case expected error of the best
semilinear mean estimation algorithm and the best unconstrained scheme? It also seems worth
considering specific classes of distributions from the perspective offered by our framework. For
example, for P corresponding to snowball sampling over a social network, what network properties
imply subconstant estimation error? Are there variants of snowball sampling that yield significantly
better or worse values of the expected estimation error for worst-case data?

Finally, it seems worthwhile extracting high-level interpretable properties of P that imply the
existence of estimators with subconstant (or inverse polynomial) error, or properties that imply that
the worst-case expected error will be constant for any estimator. For the many cases where we have
control over how data is collected, such properties could serve to guide the design of these data
collection pipelines.

2 Algorithms and Connection to the Grothendieck Problem

Given elements {1, . . . , n} from which both the sample and target sets are drawn, the main component
of our model is a joint distribution P on the sample and target sets (A,B). Such a joint distribution
can be approximated to arbitrary accuracy as an unweighted distribution over a list of pairs (Ai, Bi),
and for ease of notation, we adopt this representation here.
Definition 2. A joint sample/target distribution over a universe of n elements is specified by a list
P of pairs (Ai, Bi) of some length m, where for each i ∈ {1, . . . ,m} the sets Ai, Bi are subsets of
{1, . . . , n}. To sample from this distribution, choose a uniformly random i ∼ {1, . . . ,m} and let Ai
be the sample indices, and Bi be the target indices. For values {x1, . . . , xn}, the sample values will
be xAi

and the target values will be xBi
.

Given a sample setA and target setB from such a distributionP , for values x1, . . . , xn the algorithmic
challenge is to predict a desired attribute of the target values xB , using knowledge of the sample
values xA along with the indices A and B. We first focus on the case where the values are real
numbers and the goal is to compute the arithmetic mean of the target values. Our objective is to
minimize the root-mean-squared error of the estimate of the mean, relative to the scale of the data,
maxi |xi|. Since semilinear estimators scale linearly with the data, this is equivalent to normalizing
the data by dividing through by maxi|xi|, and then minimizing the mean squared error subject to the
data bound |xi| ≤ 1, which is the approach we adopt throughout.
Definition 3. For an estimation algorithm f(xA, A,B) taking as inputs the sample values along
with the indices of the sample and target sets, we define the worst-case expected performance for
distribution P , to be the maximum over values x1, . . . , xn of the mean squared error of its estimate:

max
x1,...,xn∈[−1,1]

1

m

m∑
i=1

(f(xAi , Ai, Bi)−mean(xBi))
2
.

For semilinear estimators the following notation will simplify the analysis.
Definition 4. Given a sample/target distribution P = (A1, B1), . . . , (Am, Bm), a semilinear esti-
mation algorithm consists of a vector ai ∈ Rn for each i ∈ {1, . . . ,m}, where the support of ai is a
subset of Ai. Thus the estimate f(xAi

, Ai, Bi) is simply evaluated as the vector-vector product aTi x.

Correspondingly, we reexpress mean(xBi
) = bTi x by defining for each Bi a corresponding vector

bi ∈ Rn, where bi(j) = 1
|Bi| for j ∈ Bi and 0 otherwise. Thus the performance of a semilinear
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estimation algorithm (ai) equals

max
x1,...,xn∈[−1,1]

1

m

m∑
i=1

(
(ai − bi)Tx

)2
= max
x1,...,xn∈{−1,1}

xT

(
1

m

m∑
i=1

(ai − bi)T (ai − bi)

)
x. (1)

In the second expression above, we (equivalently) restrict the range of each xj to the endpoints
{−1, 1} since the expression being maximized is a positive semidefinite quadratic form of x, and thus
each xj may be moved to one of the endpoints of its range without decreasing the objective function.
Definition 5. Given a sample/target distribution P = (A1, B1), . . . , (Am, Bm), the performance of
the best semilinear estimator is

1

m
min

ai:{j:ai(j) 6=0}⊆Ai

max
x1,...,xn∈{−1,1}

m∑
i=1

(
(ai − bi)Tx

)2
.

2.1 Worst-Case Performance of a Fixed Semilinear Estimator

Here we consider the challenge of optimizing Equation 1: given a fixed semilinear estimator, how
good is it? As noted above, the matrix in the parentheses in the second expression of Equation 1 is
positive semidefinite. In fact, for appropriate coefficients ai, we can make the matrix 1

m

∑m
i=1(ai −

bi)
T (ai−bi) be an arbitrary positive semidefinite matrix (though possibly at the cost of an “unnatural"

estimation algorithm). Thus the problem of computing or estimating the performance of a given
estimation algorithm is identical to what is known as the positive semidefinite Grothendieck problem.
Since the Grothendieck problem includes MAX-CUT, which is NP-hard, evaluating the performance
of a fixed estimator is also NP-hard. Further, as was recently shown by Briët, Regev, and Saket, it is
NP-hard even to approximate the semidefinite Grothendieck problem to within a factor of π2 [17, 3].
Thus, even for a fixed semilinear estimator, we cannot hope to approximate its performance—given
by Equation 1—to better than a factor of π2 in polynomial time.
However, analogously to the Goemans-Williamson semidefinite relaxation of MAX-CUT, we consider
the semidefinite relaxation of the semidefinite Grothendieck problem, replacing each scalar variable
xj with a vector vj in the n-dimensional unit ball. The proof of the following proposition is given in
a self-contained fashion in Appendix A, and is based on the analysis of the randomized rounding
scheme from Nesterov [20]. In this appendix we also provide some additional explanation and
background on the Grothendieck problem and relaxation.
Proposition 1. Given a sample/target distribution P = (A1, B1), . . . , (Am, Bm), the problem of
evaluating the performance p of a semilinear estimator, specified by vectors a1, . . . , am ∈ Rn, is
NP-hard to estimate to within a multiplicative factor of π2 . However, letting M = 1

m

∑m
i=1(ai −

bi)(ai − bi)T , the optimum of the convex (semidefinite) program

max
V psd, V(j,j)≤1

n∑
j,k=1

M(j,k)V(j,k) (2)

is in the interval [p, π2 p], and can be found in polynomial time by semidefinite programming.

2.2 Computing a Near-Optimal Semilinear Estimator

While Section 2.1 analyzed the problem of evaluating the performance of a fixed semilinear estimator,
here instead we aim to find a near-optimal semilinear estimator. This is a challenging setting for
optimization, as even evaluating the objective function, to within a factor of π

2 , is NP-hard (as
discussed in Section 2.1). However, as we will see, the convex (semidefinite) relaxation derived in
Section 2.1 not only lets us approximate the performance of a fixed estimator to a π

2 factor, but also
provides the crucial structure enabling us to find a semilinear estimator whose performance is within
a π

2 factor of the best possible semilinear estimator.
Theorem 3. Algorithm 1, given a description of the joint distribution of sample and target sets
(A1, b1), . . . , (Am, bm), runs in polynomial time, and returns coefficients for a semilinear estimator
whose expected squared error is within a π

2 factor of that of the best semilinear estimator. The value
of the objective function achieved by V̂ is m times the Proposition 1 SDP bound on the mean squared
error of the best semilinear estimator.
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Algorithm 1 SDP Algorithm yielding π
2 -approximation to the best semilinear estimator

Input: A joint distribution P of sample and target sets, expressed as a list of pairs
(A1, b1), . . . , (Am, bm), where each Ai ⊂ {1, . . . , n} is the indices of the sample set in the ith
pair, and each bi is a vector with uniform values over the target set in the ith pair, as in Definition 4.

For an n× n matrix V and a set Ai ∈ {1, . . . , n}, let VAi
denote V restricted to the rows in Ai, and

let VAi,Ai
denote V restricted to both rows and columns in Ai.

1. Compute the concave maximization

V̂ = argmax
V psd,Vj,j≤1

m∑
i=1

bTi (V − V T(Ai)
V −1(Ai,Ai)

V(Ai))bi (3)

2. For each i ∈ {1, . . . , n}, let ai when restricted to the coordinates Ai equal V̂ −1(Ai,Ai)
V̂(Ai)bi,

and 0 on the remaining coordinates. Output a1, . . . , am.

The function inside the sum in Step 1 can be reexpressed as a standard semidefinite program, using
the Schur complement to reexpress the matrix inverse—which is done automatically, for example, in
the CVXPY package, as used in our code for the experiments in Section 3. The inverse in Step 2
to compute the linear coefficients can be interpreted as a pseudoinverse V̂ +

(Ai,Ai)
in cases where it

would otherwise be singular.

The proof of Theorem 3 is given in Appendix B. While Algorithm 1 takes as input the entire
description of the joint sample/target distribution, such a description might be (1) unavailable in
practice and/or (2) have support size m that is exponentially large. In Appendix C we modify this
algorithm to use only a polynomial number of samples from distribution P , addressing both issues
mentioned above, establishing Theorem 1.

3 Empirical Evaluation

We illustrate the empirical performance of Algorithm 1 for estimating the target mean in three natural
settings in which membership in the sample may be perniciously correlated with the underlying
data values. The SDP formulation for estimating the worst-case expected squared error of a fixed
semilinear estimator in Proposition 1 allows us to compare our algorithm with natural baseline
estimators. These experiments are based on our implementation of Algorithm 1 using the Python
CVXPY package [9, 1] with the MOSEK solver [2]—our code is available at https://github.
com/justc2/worst-case-randomly-collected.

Importance Sampling: We consider a set of n = 50 elements where the ith element is included
in the sample set independently with probability pi, with p1, . . . , p25 = 0.1 and p26, ..., p50 = 0.5.
The target set is the entire population, i.e. the goal is to estimate the population mean. Table 1
compares the performance of the estimator given by our framework with two standard baselines:
inverse proportional reweighting and subgroup estimation. For inverse proportional reweighting, the
estimate is given by the weighted mean of the values in the sample set where the weight for value xi
is 1/pi. For subgroup estimation, the estimator separately computes the sample mean for i ≤ 25 and
i > 25 and then returns the average of these two values. We empirically evaluate the above estimators
in terms of expected squared error on the following data values, which are designed to illustrate
the strengths and weaknesses of the above estimators. For constant values, all values are 1; for
intergroup variance, x1, . . . , x25 = 1 and x26, . . . , x50 = −1; for intragroup variance, xeven = 1
and xodd = −1; and for worst-case, the approximate worst case error is given by solving the SDP
relaxation described in Section 2.1 (note that in this setting the approximation error is negligible).

Even in this simple setting with independent sampling, our algorithm (“SDP Alg”) gives roughly a
two-fold improvement over the baselines in terms of worst-case expected error. While both inverse
proportional reweighting and subgroup estimation are unbiased, they have high variance in some
of the settings. As inverse proportional reweighting is non-adaptive to the sample size (it always
assigns the same weights to the elements), the size of the sample set has a large impact on bias of the
estimate. Subgroup estimation is adaptive, but if we only get a few samples from one of the groups, it
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Data Values Inv. Prop. Reweighting Subgroup Estimation SDP Alg
Constant (xi = 1) 0.100 0.018 0.051

Intergroup Variance 0.100 0.018 0.053
Intragroup Variance 0.100 0.121 0.052

Worst-Case Bound (via SDP) 0.101 0.122 0.053

Table 1: Importance Sampling Experiment: Comparison of expected squared errors of our approach (SDP
Alg) and two standard unbiased estimators, across three different assignments to underlying data, together with
worst-case bounds given by our SDP. See text for details of the setting.
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assigns high weights to those samples, which contribute a high variance. SDP Alg is adaptive to the
sampling process, keeping the error small in all cases, by effectively regularizing its estimate to avoid
over-reliance on any small number of elements.

Snowball/Chain Sampling: In this experiment, an underlying set of n = 50 points is drawn
uniformly from the 2D unit square. A sample is generated by first including a randomly selected
point; then, iteratively, each point in the sample “recruits” two of its five closest neighbors, until the
desired sample size is reached. The upper left pane of the figure depicts this process. The target set is
the entire population of n individuals. We compare the average squared error of our mean estimation
algorithm (labeled SDP Alg) versus that of the naive estimator that returns the sample mean. We
consider two settings: 1) the true values are spatially-correlated and are given by the sum of the x
and y coordinates of the point (bottom left pane), and 2) the worst-case values for this sampling
distribution, approximated by the SDP relaxation from Section 2.1 (bottom middle pane). In both
cases, our algorithm outperforms the baseline estimator: by 2–4× for spatially-correlated values
(even though our algorithm was not optimizing for this case!) and by 4–7× for worst-case values.

Selective Prediction: The selective prediction setting, described in Example 2 and considered in
[10, 21], corresponds to chronological prediction problems in which samples from the past are used
to make estimates about data in the future. These previous works show that the estimator which, to
predict the mean of a target set of size w outputs the mean of the most “recent” w points in the sample,
achieves worst-case expected squared error O( 1

logn ), where n is the total number of elements, and
that this is asymptotically optimal. The bottom right pane of the figure compares that estimator with
our algorithm, illustrating that both approaches scale with O( 1

logn ) but that our algorithm yields a
2–3× reduction in error.
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Broader Impact

The question of how to extract accurate statistics based on nonuniform/biased samples is of utmost
societal importance. And this basic question is still far from solved—one need only look to the
consistent errors across political polls, or more recent discussion on estimating the rate of COVID
exposure based on different strategies for recruiting participants and then “correcting” for these
biased samples. The vast majority of work on accurate estimation is based on strong distributional
assumptions on the data values. The risk is that when these assumptions do not hold, the estimates
and their confidence bounds, are meaningless. In this work, we introduce a very general framework
that allows one to ask (and answer) the question of whether a given data collection procedure can
admit an estimation algorithm which will be accurate, even for worst-case data values. We hope
that this framework, which we refer to as worst case analysis for randomly collected data, will offer
better estimators in some settings, and offer new perspectives on collecting and inferring information
from data samples.
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A Proof of Proposition 1

In this section we give a self-contained proof of Proposition 1, restated here for convenience:

Proposition 1 Given a sample/target distribution P = (A1, B1), . . . , (Am, Bm), the problem of
evaluating the performance p of a semilinear estimation algorithm specified by vectors a1, . . . , am ∈
Rn is NP-hard to estimate to within a multiplicative factor of π2 . However, lettingM = 1

m

∑m
i=1(ai−

bi)
T (ai − bi), the optimum of the convex (semidefinite) program

max
V psd, V(j,j)≤1

n∑
j,k=1

M(j,k)V(j,k)

is in the interval [p, π2 p], and can be found in polynomial time by standard semidefinite programming
algorithms.

The proof of this proposition leverages the connection to the positive semidefinite Grothendieck
problem:
Definition 6. The positive semidefinite Grothendieck problem, given an n× n positive semidefinite
matrix M is to evaluate:

max
x1,...,xn∈{−1,1}

xTMx (4)

(Note that this problem is sometimes phrased as the optimization over a pair of vectors x, y, of the
expression xTMy, though for positive semidefinite M , an optimum will always be attained when
x = y.)

The positive semidefinite Grothendieck problem includes MAX-CUT as a special case, since, for an
undirected graph G, its Laplacian L is positive semidefinite, and for any vector x ∈ {−1, 1}n that
labels its vertices, the value of xTLx will equal the total degree of the graph plus the size of the cut
induced by the labels of x. Thus, since MAX-CUT is NP-hard, evaluating the performance of a fixed
estimator is also NP-hard. Further, Håstad showed that it is NP-hard to even approximate MAX-CUT
to within a multiplicative factor of 17

16 [13]. For the more general case of the semidefinite Grothendieck
problem considered here, Khot and Naor showed the unique-games hardness of approximating the
optimum to within a factor of π

2 ; this result was recently strengthened by Briët, Regev, and Saket
to show it is in fact NP-hard to get an approximation ratio better than π

2 [17, 3]. Thus, even for a
fixed semilinear estimation algorithm, we cannot hope to approximate its performance—given by
Equation 1—to within a factor of π2 .

Analogously to the Goemans-Williamson semidefinite relaxation of MAX-CUT, we consider the
semidefinite relaxation of the semidefinite Grothendieck problem, replacing each scalar variable xj
with a vector vj in the n-dimensional unit ball.
Definition 7. Given an n × n positive semidefinite matrix M , the semidefinite relaxation of the
positive semidefinite Grothendieck problem is to evaluate:

max
vj∈Rn:||vj ||≤1

n∑
j,k=1

M(j,k)(v
T
j vk) (5)

or, equivalently, letting “psd" denote the property of a matrix being positive semidefinite,

max
V psd, V(j,j)≤1

n∑
j,k=1

M(j,k)V(j,k)

Crucially, the set of positive semidefinite matrices is convex, so thus the optimization problem of
Definition 7 (in its second form) maximizes a linear function over a convex set, and thus can be
computed in polynomial time.

Goemans and Williamson famously showed, via a randomized rounding scheme, that the gap between
MAX-CUT and the result of the induced positive semidefinite relaxation is bounded by a factor of
1.14 [11]. For the more general setting here, of arbitrary positive semidefinite matrices instead of
graph Laplacians, Nesterov showed a bound of π2 [20]. We include a self-contained derivation here,
for the sake of completeness.
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Since scaling a single vector vj affects Equation 5 in a convex quadratic manner, there will always be
an optimum of Equation 5 where ||vj || = 1 for all j. We assume this, for simplicity, when describing
the randomized rounding procedure below.

Definition 8. Given n unit vectors vj ∈ Rn, for j ∈ {1, . . . , n}, the Goemans-Williamson ran-
domized rounding procedure chooses a random direction r, and for each vector vj returns a scalar
xj = sign(rT vj).

Proposition 2. Given an n× n positive semidefinite matrix M , and n unit vectors v1, . . . , vn ∈ Rn,
the value of the relaxed Grothendieck problem,

∑n
j,k=1M(j,k)(v

T
j vk) is at most π2 times the expected

value of the original Grothendieck problem evaluated on scalars x1, . . . , xn ∈ [−1, 1] obtained from
v1, . . . , vn by the Goemans-Williamson randomized rounding procedure, E[

∑n
j,k=1M(j,k)xjxk].

Thus for any objective value that can be achieved in the relaxed problem, with vectors v1, . . . , vn,
the original problem can achieve an objective value at least a 2

π fraction of it, since it does so in
expectation over scalars x1, . . . , xn obtained by the randomized rounding procedure.

Proof of Proposition 2. As in the analysis of the Goemans-Williamson randomized rounding scheme
for MAX-CUT, note that the expected value E[xjxk] = Er[sign(rT vj)sign(rT vk)], where r is a
randomly chosen direction. Because of the rotational symmetry of the distribution of r, we may
equivalently rotate vj and vk into the plane, from which we can see that, for r also projected into
the plane, sign(rT vj)sign(rT vk) equals 1 when r is within π

2 radians of both vj , vk or neither of
them. For a randomly chosen r in the plane, this happens with probability 1− 1

π θj,k, where θj,k is
the angle between vj , vk, yielding that E[xjxk] = 1− 2

π θj,k.

As θj,k may be computed as arccos(vTj vk), we may express the expected objective value after
randomized rounding as

E[
n∑

j,k=1

M(j,k)xjxk] =

n∑
j,k=1

M(j,k)(1−
2

π
arccos(vTj vk))

Recall our overall aim, to show that this value times π
2 is greater than or equal to∑n

j,k=1M(j,k)(v
T
j vk). Subtracting these two quantities means that we need to show that the follow-

ing quantity is nonpositive:

n∑
j,k=1

M(j,k)(v
T
j vk −

π

2
+ arccos(vTj vk)) (6)

The power series expansion of arccos(y) starts arccos(y) = π
2 − y +

∑
`≥3 c` y

` where all the
remaining coefficients c` are nonpositive, and converges on the entire interval y ∈ [−1, 1]. Thus
Equation 6 equals

n∑
j,k=1

M(j,k)

∑
`≥3

c`(v
T
j vk)

`

 (7)

Since the matrix with (j, k) entry vTj vk is positive semidefinite for any vectors v1, . . . , vn, and since
elementwise raising a positive semidefinite matrix to a positive integer power yields another positive
semidefinite matrix, Equation 7 can be reexpressed as

∑
`≥3
∑n
j,k=1M(j,k)N

(`)
(j,k) for some negative

semidefinite matrices N (`), which is thus clearly less than or equal to 0, as desired.

Combining the lower bounds and upper bounds of this section immediately yields Proposition 1.

B Proof of Theorem 3

For ease of exposition, we restate the Theorem 3:

13



Theorem. Algorithm 1, given a description of the joint distribution of sample and target sets
(A1, b1), . . . , (Am, bm), runs in polynomial time, and returns coefficients for a semilinear estimator
whose expected squared error is within a π

2 factor of that of the best semilinear estimator. The value
of the objective function achieved by V̂ is m times the Proposition 1 SDP bound on the mean squared
error of the best semilinear estimator.

Proof. Proposition 1 describes a convex optimization problem to approximate to within a factor of π2
the performance of an estimator specified by vectors a1, . . . , am ∈ Rn. We thus consider optimizing
Equation 2 over this choice (omitting the 1

m factor for convenience):

min
ai:{j:ai(j)6=0}⊆Ai

max
V psd, V(j,j)≤1

m∑
i=1

n∑
j,k=1

(ai − bi)(j)(ai − bi)(k)V(j,k) (8)

By Proposition 1, this minimum (if we can efficiently find it), will be within a factor of π
2 of the

performance of the best semilinear estimator, and the vectors a1, . . . , am that achieve this minimum
will describe an estimator with this performance.

We proceed by invoking von Neumann’s minimax theorem.

Fact 2. Given a function f(x, y) that is convex as a function of its first argument and concave as a
function of its second argument, and given convex domains X,Y , at least one of which is bounded,
then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

The condition that “at least one of X,Y is bounded" is a relaxation of the original minimax theorem,
shown sufficient by Sion [22].

We observe now that all the conditions of the minimax theorem are satisfied by the expression in
Equation 8. As a function of ai, the expression being optimized is the quadratic form with coefficients
specified by the positive semidefinite matrix V ; thus the expression is a convex function of ai, and
since such functions are summed over all i ∈ {1, . . . ,m}, the expression is a convex function of all
the vectors a1 . . . , am. Since the expression is linear in V , it is thus also concave as a function of V .
Finally, the domains of the vectors a1 . . . , am, along with the matrix V are both convex, and, since a
positive semidefinite matrix must have each entry bounded by the size of the largest diagonal entry,
the condition that V has diagonal entries bounded by 1 induces the same bound on the size of all
entries of V .

Thus we invoke the minimax theorem to conclude that the value of Equation 8 is unchanged if we
reverse the order of the min and the max:

max
V psd, V(j,j)≤1

min
ai:{j:ai(j)6=0}⊆Ai

m∑
i=1

n∑
j,k=1

(ai − bi)(j)(ai − bi)(k)V(j,k) (9)

Crucially, now, the inner minimization is simply a sum of positive semidefinite quadratic forms in each
of the vectors a1, . . . , am. Reexpressing the inner sum in vector notation as (ai − bi)TV (ai − bi),
the gradient of this quadratic form with respect to ai equals 2V (ai − bi). Thus, subject to the
constraint that ai can only be nonzero on coordinates in Ai, if there exists a vector ai such that
V (ai − bi) = 0 on coordinates Ai, then this ai attains the minimum; and otherwise the minimum is
−∞. The solution for ai, restricted to the coordinatesAi is thus V −1(Ai,Ai)

V(Ai)bi (or, when V(Ai,Ai) is
singular, V +

(Ai,Ai)
V(Ai)bi is the least-squares solution). Plugging this ai into the quadratic form yields

bTi (V − V T(Ai)
V −1(Ai,Ai)

V(Ai))bi for the inner minimization of the ith term of the objective function.
Finally, because of the setup of the minimax theorem, this expression must be a concave function of
V , letting us conclude that Algorithm 1 can in fact conduct the optimization in polynomial time, as
desired.

(As a side note, directly proving the above objective function is concave is a bit strange; it is a
consequence of the fact that for positive definite V , and vectors x, the expression xTM−1x is convex
as a function of both arguments, implying it is convex even when both arguments are affine functions
of the optimization variables.)
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C Proof of Theorem 1: A Sample-Efficient Algorithm for Near-Optimal
Semilinear Estimators

While Algorithm 1 takes as input the entire description (A1, B1), . . . , (Am, Bm) of the joint sam-
ple/target distribution, such a description might be (1) unavailable in practice and/or (2) have support
m that is exponentially large. To address both cases, in this section we design an algorithm that
achieves essentially the performance guarantees of Algorithm 1 (as given by Theorem 3), though
relying only on sampling access to P . Algorithm 2 will run in time polynomial in n and independent
of the (possibly exponential) distribution description length m.

Algorithm 2 Sampling algorithm to approximate the best semilinear estimator
Input: Accuracy parameter ε > 0; t random samples from the joint distribution of sample and target
sets, (As1 , bs1), . . . , (Ast , bst), where each Ai ⊂ {1, . . . , n} is the set of sample set indices in the ith
case and each bi is a vector with uniform values over the target set in the ith case as in Definition 4;
and the actual instance to predict, specified by (A, b) and the values xA.

For an n× n matrix V and a set Ai ∈ {1, . . . , n}, let VAi
denote V restricted to the rows in Ai, and

let VAi,Ai
denote V restricted to both rows and columns in Ai.

1. Compute the concave maximization

Ṽ = argmax
V�ε, Vj,j≤1

t∑
i=1

bTsi(V − V
T
(Asi

)V
−1
(Asi

,Asi
)V(Asi

))bsi (10)

2. Output the estimate xAṼ −1(A,A)Ṽ(A)b.

As compared with Algorithm 1, Algorithm 2 restricts the domain of optimization to matrices V that
have eigenvalues at least ε, instead of at least 0 (which is a convex restriction). Crucially, instead
of summing over all m possible sample/target set possibilities, the optimization is over a small
subset of size t, obtained by sampling. Finally, the output of this algorithm is phrased as a single
estimate for the data in question (described to the algorithm via the triple A, b, xA, as opposed to
Algorithm 1, which returned the entire list of m semilinear estimator coefficients). The following
theorem, characterizing the performance of the above algorithm, immediately implies Theorem 1.

Theorem 4. The mean squared error of the estimate output by Algorithm 2, over the randomness of
the queried sample and target sets (A, b), is within a multiplicative π

2 factor and an additive 6ε factor
of the performance of the optimum semilinear estimator, with probability 1− e−t·ε5/poly(n) over the
sampled inputs (As1 , bs1), . . . , (Ast , bst). The probability of failure can thus be made exponentially
small in n by using t = poly(n)/ε5 samples, for a sufficiently large polynomial in n.

We first prove three structural lemmas that characterize the optimization objective, and then put the
pieces together making use of concentration bounds, applied over an ε-net of matrices in the domain
of the optimization.

Lemma 1. For any valid V , the ith term in the sum of Equation 3—or equivalently Equation 9 or
Equation 10—is between 0 and 1.

Proof. From the derivation of Equation 3 in the proof of Theorem 3, the inner summation is equal to
the inner minimization in Equation 9, which we analyze instead. Since the quadratic form specified
by V in Equation 9 is positive semidefinite, it thus always evaluates to a nonnegative number proving
the first part of the claim.

Consider the inner minimum when all coefficients ai are identically 0. Since each bi is a nonnegative
vector of sum 1, and thus since all entries of V have magnitude at most 1 (because of the diagonal
constraint, and the positive semidefinite constraint), we have

∑n
j,k=1 bi(j)bi(k)Vj,k ≤ 1, as desired.
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Lemma 2. The optimum objective value of the max in Equation 3 decreases by at most εm if the
domain of the maximization is further restricted so that V , instead of being positive semidefinite,
must now have all eigenvalues at least ε.

Proof. From the derivation of Equation 3 in the proof of Theorem 3, the inner summation is equal to
the inner minimization in Equation 9, which we analyze instead.

Letting V be the optimal matrix in Equation 9 we instead consider the matrix Vε = εIn + (1− ε)V
where In is the n× n identity matrix. Since the objective is linear in V , when evaluated at Vε it will
have value ε times the objective value for In—which is nonnegative by Lemma 1—plus (1− ε) times
its optimal objective value at V—which is at most 1 by Lemma 1. Thus Vε has objective value within
ε of the optimum, as desired.

Lemma 3. For a fixed symmetric matrix V whose eigenvalues are all at least ε, the expression
inside the sum of Equation 3, for any i, varies with respect to changing a coordinate of V by at most∣∣∣ d
dVj,k

bTi (V − V T(Ai)
V −1(Ai,Ai)

V(Ai))bi

∣∣∣ ≤ 1
ε2 poly(n).

Proof. Since V has eigenvalues at least ε, so does any (principal) submatrix V(Ai,Ai). Thus the
inverse V −1(Ai,Ai)

has eigenvalues at most 1
ε , and thus the L2 norm of any column of V −1(Ai,Ai)

is at
most 1

ε . Since d
dVj,k

V −1(Ai,Ai)
equals negative the inner product of the columns (or rows) j and k of

V −1(Ai,Ai)
, this derivative is thus at most 1

ε2 . Applying the product rule can increase this by only a
poly(n) factor.

We assemble these pieces to prove the performance of Algorithm 2.

Proof of Theorem 4. For any fixed V in Equation 3, the average of the m terms in the sum may
be estimated as the empirical average of the t terms we can compute from our randomly sampled
inputs (As1 , bs1), . . . , (Ast , bst). Since, by Lemma 1, each term is between 0 and 1, the standard
Chernoff/Hoeffding bounds imply that the empirical mean of t random terms will be within ε of the
true mean except with probability e−2ε

2t.

Let ε′ = ε3/poly(n) be a radius such that, by Lemma 3, any two matrices satisfying the constraints of
the argmax of Equation 10 that are within distance ε′ of each other must yield values for each term in
the sum, that are within ε of each other. Consider applying the concentration bounds of the previous
paragraph to each V in an ε′-net of matrices satisfying the conditions of Equation 10—namely,
positive definite with eigenvalues at least ε, and all diagonal entries at most 1. Recall that an ε′-net
will have each matrix within distance ε′ of one of the matrices in the net, and that the net will consist
of epoly(n)/ε

′
matrices. As we consider bounds up to poly(n) factors, the choice of norm for the

matrices does not matter, but for concreteness, consider the ε′-net to be defined in the Frobenius norm.
By the union bound, the Chernoff/Hoeffding bound of the previous paragraph applies for every V
in the ε′-net except with probability e−2ε

2t+poly(n)/ε′ , which is thus negligible when the number of
samples is t = poly(n)/ε′ε2 = poly(n)/ε5.

We thus show that the performance of the estimator described by the sampled Ṽ is close to the
performance of the optimal semilinear estimator V̂ with eigenvalues at least ε. Let Ṽ ′, V̂ ′ respectively
represent the nearest elements of the ε′-net to Ṽ , V̂ respectively. For ease of notation, we let f̂(V )

and f̃(V ) respectively describe the functions of V described by the average term in the sums of
Equations 3 and 10 respectively. Thus we have

f̂(Ṽ ) ≥ f̂(Ṽ ′)− ε ≥ f̃(Ṽ ′)− 2ε ≥ f̃(Ṽ )− 3ε ≥ f̃(V̂ ′)− 3ε ≥ f̂(V̂ ′)− 4ε ≥ f̂(V̂ )− 5ε,

where the inequalities hold respectively because of (1) the ε′-nearness of Ṽ , Ṽ ′ combined with the
derivative guarantee of Lemma 3 as applied to f̂ ; (2) the Chernoff/Hoeffding bound at the point Ṽ ′

of the ε′-net; (3) the ε′-nearness of Ṽ , Ṽ ′ combined with the derivative guarantee of Lemma 3 as
applied to f̃ ; (4) the fact that Ṽ attains the maximum of f̃ ; (5) the Chernoff/Hoeffding bound at the
point Ṽ ′ of the ε′-net; and (6) the ε′-nearness of V̂ , V̂ ′ combined with the derivative guarantee of
Lemma 3 as applied to f̂ .
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Thus, the algorithm described by Ṽ has true performance within 5ε of the optimal under the eigenvalue
constraint, achieved by V̂ . By Lemma 2, V̂ itself is within ε of the true optimal performance of
Equation 3, which in turn is within a factor of π2 of that of the best semilinear estimator, as desired.

D Suboptimality of Semilinear Schemes (Fact 1)

Via a computer-aided brute-force search over small examples, we found a distribution, P , for which
the best semilinear algorithm had larger worst-case expected error than the best arbitrary scheme:

Example 4. Let n = 4. Consider the distribution over sampling from the population {1, 2, 3, 4} that
assigns a 0.3 probability to the following pairs of sample/target sets ({1, 3}, {2, 4}), ({2, 4}, {1, 3}),
({3, 4}, {1, 2}) and a 0.05 probability to ({1, 3, 4}, {2}) and ({2, 3, 4}, {1}). The optimal semilinear
scheme achieves worst-case expected squared error 0.6652, compared to 0.6627 for the optimal
unconstrained scheme. Hence even for sample/target set distributions over n = 4 datapoints,
semilinear schemes are not always worst-case optimal.

E Proof of Theorem 2: Linear Regression Setting

We prove Theorem 2 here, which for clarity we restate and reintroduce slightly more formally.

We consider the following natural extension of our results to the setting of d-dimensional linear
regression. Our regression results follow from a transparent application of the main results, Theorem 1
or Theorem 3, demonstrating the flexibility and scope of our approach. We emphasize that many
variants of this model are interesting, and that a more specialized analysis may yield stronger bounds
than what we show here.

Definition 9. Given a sample set A and a target set B, where for each i ∈ A we are given
a pair (xi, yi) with the independent variable xi ∈ [−1, 1]d and the dependent variable yi ∈
[−1, 1], the goal is to recover a coefficient vector β that minimizes the mean squared error on
the target set, Ei∼B [(x>i β − yi)

2], when additionally given access to the joint distribution P
from which (A,B) are drawn. The least-squares coefficients are defined, as is standard, as
β = (Ei∼B [xix

>
i ])
−1Ei∼B [xiyi]. As we do not have access to the target set data (xi, yi) for

i ∈ B, we instead must estimate it: depending on whether distribution P is given explicitly, or via
sample access, use Theorems 1 or 3 respectively to estimate (in terms of P and the sample data
(xi, yi) for i ∈ A) each of the d2 entries in the matrix Q = Ei∈B [xix

>
i ] and the d entries in the

vector u = Ei∈B [xiyi], all of which are in [−1, 1]. Our estimated coefficients are then β̂ = Q̂−1û.

Theorem. Given a regression problem as in Definition 9, where the distribution P is specified either
via sampling access or explicitly, and let αP be the mean squared error guaranteed by Theorem 1 or
3 respectively, for estimating the mean of a scalar (which depends only on P ). Then, letting σd be
the smallest singular value of the (uncentered covariance) matrix Q, for any δ > 0, the algorithm of
Definition 9 will return an estimate β̂ of the least-squares regression coefficients β such that with

probability at least 1− δ we have ||β − β̂|| ≤ 3

√
αP d3/δ

σ2
d

, provided this expression is at most 0.08;
in the case that the independent variables xi are known for the target set (and only the yi’s are

unknown) then except with δ probability, we have ||β − β̂|| ≤
√
αP d/δ

σd
.

Proof. Recall we are in the following regression setting: data consists of pairs (xi, yi) where
xi ∈ [−1, 1]d and yi ∈ [−1, 1]; indices i ∈ [n] are drawn for the input sample A and target set B
from a joint distribution, (A,B) ∼ P . The goal, given the training data and a description of P (or
sample access to P ), is to compute linear coefficients β ∈ Rd, such that the mean squared error over
target indices i ∈ B is as small as possible, namely, to minimize Ei∼B [(x>i β− yi)2]. Our results will
be parameterized in terms of αP , the mean squared estimation accuracy that Theorem 1 or Theorem 3
affords us on distribution P (in the scalar mean estimation setting).

As is standard in least squares regression, note that the expression we are minimizing, Ei∼B [(x>i β −
yi)

2], is positive semidefinite as a function of β, and thus is minimized when its gradient with
respect to β equals 0. Hence we solve Ei∼B [xi(x>i β − yi)] = 0, or equivalently, Ei∼B [xix>i ]β =

Ei∼B [xiyi], which has solution β = (Ei∼B [xix>i ])−1 Ei∼B [xiyi]. Now, for any i, each of the d2
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entries of the matrix xix>i is in [−1, 1], and thus its average value over i in the target set B can
be estimated to within mean squared error αP based on its values for i in the sample set A, from
Theorem 1 or 3; the same holds for each of the d entries in the vector xiyi.

Let Q = Ei∼B [xix>i ], and let Q + F (referred to as Q̂ in definition 9) be the random variable
representing the estimate of Q given by Theorem 1 or 3, where the square of each entry of F has
expectation at most αP ; hence by Markov’s inequality, for any δ > 0, with probability at least 1− δ
the matrix F has Frobenius norm at most

√
αP d2/δ. Correspondingly, let u = Ei∼B [xiyi], and let

u+ g be the random variable representing the estimate of u returned by our algorithm, where, except
with probability δ, the vector g has length at most

√
αP d/δ. Taking the union bound, we have that

except with probability 2δ, the bounds on both F and g hold, and we analyze this case below.

As described above, the optimal linear coefficients are given by β = Q−1u, and meanwhile our
estimate is β̂ = (Q+ F )−1(u+ g). We bound the discrepancy ||β − β̂|| via the triangle inequality,
first bounding the change induced by adding g, and then bounding the change from adding F :

||β−β̂|| = ||Q−1u−(Q+F )−1(u+g)|| ≤ ||Q−1u−Q−1(u+g)||+||Q−1(u+g)−(Q+F )−1(u+g)||

The first term on the right hand side equals ||Q−1g||, which we bound as the product of the length
of g and the largest singular value of Q−1, which is the inverse of the smallest singular value of Q,
which we have denoted σd. Thus we have ||Q−1g|| ≤ 1

σd

√
αP d/δ.

Bounding the second term is slightly more involved. The goal is to bound ||[Q−1−(Q+F )−1](u+g)||.
We first bound the largest singular value of the matrixQ−1− (Q+F )−1. For any λ ∈ [0, 1], consider
interpolating between Q and Q + F to get Q + λF . Let sλ be the smallest singular value of this
matrix, and let vλ be the corresponding singular vector, with ||v|| = 1. Since Q has smallest singular
value σd, we have ||Qv|| ≥ σd; since F has Frobenius norm at most

√
αP d2/δ and the Frobenius

norm bounds the largest singular value, we have ||Fv|| ≤
√
αP d2/δ, and by the triangle inequality,

the difference of these two expressions is a lower bound on s: s = ||(Q+ F )v|| ≥ σd −
√
αP d2/δ.

Consider the matrix (Q+ λF )−1 as we linearly move λ from 0 to 1. The derivative with respect to λ
of this matrix inverse is −(Q−1 + λF )F (Q+ λF )−1, which thus has largest singular value at most
the product of our bounds on the singular values for the 3 terms:√

αP d2/δ

(σd −
√
αP d2/δ)2

(11)

Since ||u + g|| ≤
√
d +

√
αP d/δ from summing bounds on ||u|| and ||g||, we multiply this by

Equation 11—bounding the amount the matrix (Q + λF )−1 changes as we interpolate from Q to
Q+ F—to get our total bound for the second triangle inequality term. Adding this to the bound on
the first term, we have

||β − β̂|| = ||(Q+F )−1(u+ g)−Q−1u|| ≤ 1

σd

√
αP d/δ+ (

√
d+

√
αP d/δ)

√
αP d2/δ

(σd −
√
αP d2/δ)2

(12)

To simplify this bound, consider the case that
√
αP d3/δ

σ2
d

≤ c.

Since matrix Q has entries in [−1, 1], its singular values are at most
√
d, and thus

√
d

σd
≥ 1, yielding√

αP d2/δ

σd
≤ c, and implying that if we replace the denominator (σd−

√
αP d2/δ)

2 in Equation 12 by
simply σ2

d then the expression will decrease by at most a factor of (1− c)2. Similarly, in Equation 12
the parenthetical term (

√
d+

√
αP d/δ) has second part bounded by

√
αP d/δ ≤ c σd√

d
≤ c and thus

replacing (
√
d+

√
αP d/δ) by simply

√
d will decrease the term by at most a factor of 1

1+c . Thus

the right hand side of Equation 12 is the sum of two terms,
√
αP d/δ

σd
, and a term

√
αP d3/δ

σ2
d

times a

factor between 1 and 1+c
(1−c)2 ; the first term is clearly at most the second term since σd ≤

√
d ≤ d2, so

thus we have ||β − β̂|| ≤ (1 + 1+c
(1−c)2 )

√
αP d3/δ

σ2
d

. Substituting 2δ → δ so that the overall probability
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of failure becomes δ, the proportionality constant becomes
√
2(1 + 1+c

(1−c)2 ), which for c ≤ 0.0378

yields a constant of 3, as desired. Thus, in the context of the theorem, substituting in 1
2δ for δ, when

3

√
αP d3/(δ/2)

σ2
d

≤ 0.08, we will have c ≤ 0.08
√
2

3 < 0.378 as desired.

In the simpler case where the independent variables xi are known, and hence Q does not need to
be estimated, our probability of failure is δ instead of 2δ, and only the first term from Equation 12
appears, immediately yielding the other part of the theorem.

19


	Modeling Data Collection
	Summary of Results
	Related Work
	Discussion and Open Directions

	Algorithms and Connection to the Grothendieck Problem
	Worst-Case Performance of a Fixed Semilinear Estimator
	Computing a Near-Optimal Semilinear Estimator

	Empirical Evaluation
	Proof of Proposition 1
	Proof of Theorem 3
	Proof of Theorem 1: A Sample-Efficient Algorithm for Near-Optimal Semilinear Estimators
	Suboptimality of Semilinear Schemes (Fact 1)
	Proof of Theorem 2: Linear Regression Setting

