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Abstract represented in binary (or equivalently a pair of identigall
sized rational matrices). The game has two players, known
The efficient computation of Nash equilibria is one of the as therow and columnplayers respectively. The matrix is
most formidable challenges in computational complexity to interpreted to represent the following interaction: thewo
day. The problem remains open for two-player games. and column players simultaneously pick a row and column
We show that the complexity of two-player Nash equilib- respectively of the matrix; these choices specify an erdgry—
ria is unchanged when all outcomes are restricted to be 0 or pair—at the intersection of this row and column, and the
1. Thatis, win-or-lose games are as complex as the generallow and column players receivgayoffs proportional re-
case for two-player games. spectively, to the first and second components of the pair.

In this model, astrategyfor the row or column player
consists of a probability distribution on the rows or coliemn
1 Game Theory respectively, and is represented as a veciarc.

. ] To motivate the definition of &lash equilibriumwe de-
Game theory asks the question: given a set of play-fine the notion of aest responseGiven a strategy for
ers playing a certain game, what happens? Computationaihe row player, we may ask which strategiegive the col-
game theory asks the question: given a representation of mn player his maximal payoff. Such a strategg said to

game and some fixed criteria for reasonable play, how maype apest responsto the strategy. Game theorists model

we efficiently compute properties of the possible outcomes?«gasonable play” in a bimatrix game with the following
Needless to say, there are many possible ways to defingiterion:

a game, and many more ways to efficiently represent these . . . )
games. Since the computational complexity of an algorithm Pefinition 2 A pair of strategiegr, c) is said to be aNash
is defined as a function of the length of its input repre- equilibriumif r is a best response t@andc is simultane-
sentation, different game representations may have signif ©USlYy @ best response to
icantly different algorithmic consequences. Much work is ) o
being done to investigate how to take advantage of some of2  Complexity of Nash equilibria
the more exotic representations of games (see [4, 7, 8, 10]
and the references therein). Nevertheless, for two player A fundamental property of Nash equilibria is thhey
games, computational game theorists almost exclusivelyalways exist It is far from obvious that this should be the
work with the representation known asational bimatrix case—equilibria for constant-sum two-player games were
game which we define as follows. first shown to exist by von Neumann. This result was later
generalized by Nash to general multi-player games using
the Kakutani fixed point theorem.

A purely combinatorial existence proof for Nash equilib-
*Supported by an NDSEG Fellowship. ria in two-player games was found by Lemke and Howson

Definition 1 A rational bimatrix game is a game represen-
tation that consists of a matrix of pairs of rational numbers




that has the additional advantage of becogstructive5]. of a two-player game. Thus games where one of the players
Unfortunately, the Lemke-Howson algorithm has exponen- has a restricted strategy space are easy, while generakgame
tial worst-case running time [9]. appear much harder.

An alternate algorithm for finding Nash equilibria for The third question—asking whether having complicated
two-player games is suggested by the following observa-payoffs makes the Nash problem hard—is the subject of
tion: if we know thesupportof the strategiesin a Nash equi- this paper. We answer this question in the negative. The
libria, namely the set of rows and columns that are playedfirst results of this kind were shown in [2]: determining
with positive probability, we can reconstruct the set ofiNas whether there is more than one Nash equilibrium is NP-
equilibria with that support by solving a linear program. complete even in 40, 1}-game, and determining if there
This suggests theupport enumeratioalgorithm, wherein  exists a Nash equilibrium with 0-payoff for one player is
we nondeterministically guess supports and check their fea NP-complete for{0, 1}-games. These results led them to
sibility. This algorithm has the important consequence of raise the question of wheth¢f, 1}-games are as hard as
placing the Nash equilibrium search problem in the com- general games.
plexity class FNP, the search problem version of NP. This
linear programming formulation also has the consequenceOUR CONTRIBUTION. We give a strong positive answer
that if the payoffs of the game are rational, then every sup-to the above question, exhibiting a specific mapping from
port set that has a Nash equilibrium has a Nash equilibriumrational-payoff bimatrix games intf0, 1}-payoff bimatrix
with rational weights. games that preserves the Nash equilibria in an efficiently re

coverable form. We make this statement more precise in the
THE DIFFICULTY OF THE NASH PROBLEM. It is natural next section by introducing the notion ofNsash homomor-
to ask whether the problem of finding a Nash equilibrium phism
is in fact in P, the class of problems with polynomial-time
algorithms. Quite recently there have been significant re-3  Nash homomorphisms
sults on the complexity of several related problems, which

have been shown to be NP- or #P-hard [1, 3]. Specifi- gy goalis to reduce the problem of finding a Nash equi-
cally, counting the number of Nash equilibria is #P-hard, |ipiym of a rational-payoff game to that of finding a Nash
while determining if there exist Nash equilibria with centa equilibrium of a{0, 1}-payoff game. The notion akduc-
properties—such as having specific payoffs or having spe-(jon suitable to our purposes is a kind of one-query Cook

cific strategies in their support—is NP-complete. However, (oquction which we call &ash homomorphismSpecifi-
the original problem of finding a single Nash equilibrium cally, we have the following:

remains open and, as Christos Papidimitriou has famously
stated, “Together with factoring, the complexity of findeag  Definition 3 A Nash homomorphisns a maph, from a
Nash equilibrium is in my opinion the most important con- set of two-player game¥ into a set of two-player games

crete open question on the boundary of P today” [6]. 93, such that there exists a polynomial-time functjothat
when given a Nash equilibrium of a gameShreturns a

SOURCE OF COMPLEXITY FOR THE NASH PROBLEM. Nash equilibrium of the game’s pre-image under

There are many aspects of games that might make the Nash N ) )

problem hard to solve. Specifically, considering multi-  Intuitively, if a Nash homomorphisrth maps a gamel

player games as multi-dimensional arrays of numbers, it is {0 & gameB, then finding a Nash equilibrium of reduces
natural to ask which parameters of these arrays make find{0 finding a Nash equilibrium oB.

ing Nash equilibria hard. Is it; The main result of this paper is an explicit Nash homo-
morphism that takes rational-payoff gameg @01 }-payoff
1. the number of dimensions of the array? games. Specifically, we exhibitsequencef Nash homo-

morphisms. Note that Nash homomorphisms compose: the
forward mapping$ compose, and the backward mappings
3. the complexity of the individual numbers involved? ./ compose. The homomorphisms we construct will change
the game incrementally into{, 1}-game, while leaving a
The first question remains unresolved, as the Nash prob+rail of backward mappings which relate each equilibrium
lem is wide open even for two-player games. We consider of the final {0, 1}-game to an equilibrium of the original
two-player games exclusively for the remainder of this pa- game.
per.
The second question appears to have a positive answerOUR GENERAL STRATEGY.
there exist fixed-parameter tractable algorithms with para ~ We construct a Nash homomorphism that translates a
meter the size of the strategy space available to one playesingle column of the row player’s payoffs from rational to

2. the number of options available to each player?



binary, without significantly increasing the size ofthegam 4  Finding 2s in a{0, 1}-game

Applying this homomorphism once on each column, and

then a corresponding homomorphismto each row of the col-  |n this section we provide the construction mentioned
umn player’s payoffs yields our desired result. above of how to find powers of two in 0,1} game.

This Nash homomorphism results from a combination of Specifically, for any positive integgr we construct a game
three main ideas, which we outline briefly before discussing G that has ainiqueNash equilibrium wherein the actions
in detail below. of the row and column player are played with probabilities
proportional to the firs§ powers of 2.

As mentioned above, the Nash equilibrium problem is
equivalent to solving linear equations in certain caseseHe
we consider the case &fll supportNash equilibria.

Suppose we have a gartg, C), whereR is the payoff
matrix for the row player and’ is the payoff matrix for the
column player. Suppose further, that we hafalbsupport

For the first task, that of simply finding powers of two in - Nash equilibrium(r, ¢) of this game, namely a Nash equi-
the Nash equilibria of 40, 1}-game, we note a well-known  jibrium whereeveryrow and column is played with nonzero
special case of the Nash equilibrium problem that reducesweight.
to solving a system of linear equations. Fof(a1}-game, Suppose the expected payoff to the row player in this
the corresponding linear equations hguel }-coefficients.  equilibrium isp. Then for the row player to play each row
Through straightforward arithmetic, we show how to con- with nonzero probability, the expected payoff of him play-
struct powers of two as solutions to these equations, anding in each row must equal These expected payoffs are
thereby as Nash equilibria of g, 1}-game. We call the  called theincentivego play in each row. Formally, this be-
game thus constructedggneratorgameG, because it gen-  comes the constraint
erates the powers of two that are fundamental to the rest of
the binary translation process. Re=p.

The second task—of taking suitable linear combinations we note that since represents a probability distribution,
of the powers of two we have just constructed—is accom- e have the additional constraints that

plished by embedding the generator gaghimside a larger

Expressing entries in binary, for us, consists of the fol-
lowing three steps: first, find powers of two §0,1}-
games; second, find out how to take linear combinations
of these powers of two; and third, find a way to restrict the
structure of Nash equilibria of the resulting game so that we
get no extraneous equilibria.

matrix. Specifically, we take advantage of the following Zc =1 and c¢>0.

fact: the only thing that matters to either of the players of o ) )
a game is hiexpectedpayoff. That is, a player is com- Expressing: in homogenous coordinates, we may equiv-
pletely indifferent between getting a payoff of (sayup alently solve

front, and getting a payoff of 1 exactly a third of the time. Re=1,

In the case of a two player game, the natural way to ran-and then check that> 0. Our goal now is to find 40, 1}-

domly choose a payoff for (say) the row player is to let the matrix R such that the unique solution #®c = 1 has ele-
column player effect the randomization. Thus to simulate a ments ofc proportional to powers of 2.

payoff that is a sum of powers of two, we place the genera-  Define matricest, B as

tor gameG across certain columns of a larger game, fill in

the row player’s payoffs in these columns with appropriate 100 110
{0, 1}-values, and trust the row player to correctly “inter- A= 0 1 0|, B=|0 11
pret” these entries as representing a single entry that is a 0 0 1 1 01

linear combination of powers of 2. Fork = 3j define thek x k£ matrix.S; to have the following

For the third task, of binding the pieces of the game to- ; x j block form:
gether to make sure that every Nash equilibrium of the mod-

ified game corresponds to one from the original game, we A A -~ A B
use a technique based on the notion ahianicking game A A - B 0
A mimicking game (sometimes called @mitation game) S; = oo Do
is a game whose payoffs satisfy a simple set of inequali- A B - 0 0
ties that results in severely constraining the structurtbef B O - 0 0

game’s Nash equilibria. We use this structure to “program”

a{0, 1}-game to have an equilibrium of the right form, cor- Explicitly, S; has blockB on the minor diagonal, block
rectly integrating the above two techniques with the rest of above, and 0 below.

the game. We claim thatk = S; has the desired properties.



Claim 4 The equatiort;c = 1 has a unique solution of

Uiy miiq ai
c= 5(21—1,2#1,2#1, o 4,4,4,2,2,2,1,1,1)7T,

Proof:
induction hypothesis that the fir8t entries ofc equal the

Proof: Rescaling the solutions from the above two claims,
we find that the unique solutions to

Sjc=p, Zc:l, c>0

We prove this claim by induction. Suppose as our and

(I—SJT)T‘:p’, ZT‘: 1, r>0

corresponding elements of this vector. As a base case, weq

note that the bottom three rows produce the equations

B(Cla C2, 03>T = ]-a
which implies
1
C1 =C =C3 = 57

as desired.

To prove the induction, consider ther 1st block row
from the bottom ofS;. These three rows consistolblocks
of A followed by one blockB, followed by zeros.

T =Cc=
s (L YL 4,4,4,2,2,2,1,1,1)T.

Thus these are the only full support equilibria of the game
(85,1-5))-1

It remains to be shown that the gaift, 1 — S;) has no
other Nash equilibria, i.e. without full support. The keyob
servation here is that, by construction, the gasie1—5,)
is aconstant-surgame, namely that the sum of the row and

Consider the contribution to the sums of these rows pro- column payoffs in each entry is a constant—here 1. The sig-

vided by thej blocks of A. By the induction hypothesis, the
first 3¢ components of are

111111 1 1 1 )
272)2)4)4747"'727;721;727; b
which makes theseblocks of A have sum

1— 2%

Since the total sum of each row is 1, and the only other

nonzero coefficients in these rows are in the followiBg
block, we have that

C3i4+1 + C3i4+2 = C3i+1 T C3i4+3 = C3i4+2 + C3i43 = 5

This implies that

C3i+1 = C3i42 = C3i+3 = i1

which proves the desired induction.

We note similarly the following claim, with proof
analagous to the above:

Claim 5 The equatioril — S )r = 1 has a unique solution
of

- 1
2.2 -3
We now have the following immediate corollary:

r (2971, 2971 9971 4.4.4,2,2,2,1,1,1)7.

Corollary 6 The game(S;,1 — S;) has exactly ondull
supportNash equilibrium(r, ¢), where

r=c=

1 j—1 9j—1 9j—1 T
m(? , 20702070 4,4,4,2,22. 1,1, 1)

nificance of this fact is that the Nash equilibria of constant
sum games may be expressed as the solutions of a linear
program, and thus this set is convex. This implies unique-
ness by a simple topology argument.

Corollary 7 The equilibrium

T =Cc=

s (L 220 4,4,4,2,2,2,1,1, )T

of the gaméS;, 1 —.5;) is theonly Nash equilibrium of this
game.

Proof: The set of full-support Nash equilibria 0§, 1 —

S;) is the intersection of the set of Nash equilibria of
(S;,1 —8;) and the set of vectors:, ¢) with strictly posi-

tive elements. Namely, a single point is the intersection of
a convex set with an open set. This implies that the convex
set consists only of this point. Explicitly, the set of Nash
equilibria of (S;,1 — S;) consists only of the full support
equilibrium we have already found.

We have thus exhibited, 1}-gameG; = (S5;,1—-.5;)
which represents powers of 2 via its Nash equilibrium, our
desired goal.

5 Subgames and linearity of expectation

In this next section we consider the ramifications of em-
bedding a generator game inside a larger game. As a moti-
vating example, consider the game “rock—paper—scissors”,
defined by the following payoff matrix:

0,0
1,0
0,1

0,1
0,0
1,0

1,0
0,1
0,0




Itis easy to check that this game has a unique Nash equiProof: We first prove the lemma in the restricted case
librium where each row and column is played with proba- where the row player’'s payoffs at the intersection of rows
bility % Suppose we embed the rock—paper—scissors game and columnsC\c¢ are 0 (instead of columnwise uni-
into a larger game. Specifically, suppose we take the rock—form) and the column player's payoffs at the intersection
paper—scissors game and add a number of rows to it, fill-of columnsc and rowsR\r are O:
ing in the new entries somehow. Suppose further that we

know for a fact that, despite our modifications, the column 57170177
player will still play his three strategies with probabéi H={ 07 G |07
11,1 27 12,0]2.7

’ éongider this game from the row player’s perspective:
if he sees a row with two ones in it, he should instead
view it as a row with the single entr%, since the column
player’'s random actions make this row worth exa@lyo

the row player. In this manner, we can express any payoff
in {0, 3, 2,1} as a triple of{0, 1}-payoffs.

We note that if instead of using rock—paper—scissors as
our subgame we use one of the generator gaifgghen
instead of only being able to express payoffs that are sum
of subsets of

Let (x,y) be a Nash equilibrium of gam#. Thusz is
a best response tg andy is a best response ta Specifi-
cally, every row ofr that is played with positive probability
is a best response tp Since the row player’s payoffs in
rowsr are potentially nonzero only in colummswe fur-
ther note that every row of in r that is played is a best
response to the restriction gfto c. By symmetry, the com-
St)lementary statement holds, that every columniofc ever
played is a best response to the restriction: &b ». Thus
111 y restricted toc and x restricted tor are mutual best re-

{g’ 37 §} sponses Since these two restrictions have nonzero weight
we could now represent any number expressible as a sum oPy hypothesis, we can scale them to have total weight 1,
a subset of and have thus reconstructed the condition that these two re-
1 ' _ _ strictions are scaled versions of a Nash equilibriuré/pas
m(2]*1, 2071 90 4.4,4,2221,1,1), desired.
o _ _ _ For the general case, we note that it is straightforward
which is our desired binary representation. to prove that adding a constant to any column of the row

All this, however, rests on the supposition that the orig- player’s payoff, or to any row of the column player’s pay-
inal Nash equilibrium of the generator game will be pre- off does not affect the Nash equilibria of a game. (In fact
served despite the game being embedded in a larger gamehis is a simple example of a Nash homomorphism.) Thus
To ameliorate this situation, we show how to set up an em- given a gameH with columnwise uniform payoffs for the
bedding so that this situation will arise from a more limited row player at the intersection of rowsand columng’\c,
hypothesis. We have the following lemma. we could subtract off the appropriate constants for these
columns, apply the special case of this lemma, and then add

Lemma 8 Suppose a gamé&: appears embedded in a | i ,
in the constants to derive the desired reshit.

larger gameH . Specifically, ifH has row setR and col-
umn setC, let the game appears at the intersection of
rowsr C R and columns: C C. Further, suppose the
row player gets columnwise-uniform payoff at the intersec-
tion of rowsr and columnsC'\¢, and the column player
gets rowwise-uniform payoff at the intersection of columns
c and rowsR\r. Then in any Nash equilibrium &f where
some row of- and some column af are played with pos-
itive probability, the restriction of this Nash equilibriuto
rows r and columns: will be a scaled version of a Nash
equilibrium ofG.

Binding with mimicking games

Suppose at this point we try as a gedanken experiment to
come up with a construction.

We start with a gaméd that we wish to transform into
binary, a column of row player payoffs at a time. Since
games are scale invariant, we may as well start by clearing
denominators of any fractional entries until all the pagoff
are integer. We then create a generator g@mewhere

This lemma states that if we embed the subgame in thej is at least as large as the number of bits in each integer.
right way, then we are guaranteed that the columns of theTo transform a column off, we rewrite this column ag
subgame are played in the right ratio provided, only, that columns, expressing each row player payoff in binary. Then
some row ofG is played. (If none the columns a@f are we add enough extra rows to the game so that we may place
played then we are still fine since the 0 vector is propor- the generatof;; at the head of thesgcolumns to random-
tional to anything.) In the next section we will see how to ize appropriately. From Lemma 8, these binary entries will
guarantee nonzero weights for these rows. We end this secbe interpreted correctly provided we can “bind” some row
tion with a proof of the lemma. of G; to be played with positive probability whenever its



columns are. We must also decide what to do with the col- implies the row player sometimes plays row 1 etc. In other
umn player’s entries in this column: copying each of these words, all four strategies must have nonzero weight.
entriesj times could greatly increase the number of non-  The import of this motivating example is that a few sim-
{0,1} payoffs; leaving only one copy would violate the ple inequalities can bind various components of a game to-
rowwise-uniform condition of Lemma 8, and moving these gether so that they have a specific Nash equilibrium struc-
entries anywhere else would create a second set of entrieture. Our final construction, of course, is ndt & 2 matrix;

that have to be properly “bound” back to this column. As however, it uses the same inequalities. Specifically, we con
it turns out, the right solution is in fact this third option, struct a2 x 2 block matrix, with some additional columns
and we will solve both “binding” problems at once, via a not subject to these inequalities. Nevertheless, the tobus

construction we call animicking game ness of these inequalities enables us to carry out our pro-
Consider & x 2 game where the row player's payoffs gram.
are a matrix
( ‘C‘ Z ) 7 The Construction
satisfying Using the above three components, we now exhibit the
a>c and b<d. Nash homomorphism that translates a column of row-player

Consider a Nash equilibrium of this game. Despite the fact Payoffs to binary. As a preliminary, we compute the set of
that we know nothing about the column p|ayer’s payoffs, numbers expressible in terms of the Nash equilibrium of the
and very little about the row player’s payoffs, we can still generator gamé';. Recall that it is exactly these numbers
reveal that this game has a significant “binding” structure. that we can expect to express in binary.

Specifically, suppose we have a Nash equilibrium of the
game, and further suppose that in this Nash equilibrium, the
row player sometimes plays the first row. Sirice d, the

row player would not play the first row if the column player )
exclusively played the second column. Thus whenever theP'eSsible as ,

row player plays the first row with positive weight, we can m7

conclude that the column player plays the first column with _

positive weight. Similarly, since > ¢ we conclude that ~ wherer is anintegerp < r < 3(2/ —1).

whenever the row player plays the second row with posi-

tive weight, the column player must play the second col- Proof: From Corollary 7, the column player’s strategy in
umn with positive weight. Thus whatever strategies the first the unique Nash equilibrium @, is to play his3; actions
player plays, the second player must also play. As it turnswith probabilities

out, this is exactly the form of binding we need.

Claim 9 The set of numbers expressible as the product of
a {0, 1}-vector with the Nash equilibrium strategy of the
column player in the gamé&'; are just those number ex-

To take this methodology one step further, suppose we . _ _1 (291,291 291 4.4,4,2,2,2,1,1,1)
give the second player a payoff matrix 3(27-1)
e f respectively. Thus the set of numbers expressible as the sum
( g h ) of a subset of these probabilities is exactly those numbers
expressible as
where the payoffs are bound as _r
3(27 — 1)’

e<f and g>h. . . p .
wherer is aninteger) < r < 3(27 — 1), as desiredl

Since these inequalities have the opposite direction from As we can see from the above claim, we must first trans-

those in the first case, the binding is flipped: every time late all the row player's payoffs to be in this set before we
the column player plays column 1, the row player must can apply the binary translation. Towards this end, we note

play row 2 with nonzero weight, and every time the Col- ¢ the Nash equilibria of a game are completely unaffected
umn player plays column 2, the row player must play row 1 when we apply any linear transform
with nonzero weight.

Putting the above two constructions together, we have a f(x)=azx+b, a>0
game where the row player sometimes playing row 1 im-
plies the column player sometimes plays column 1, which to either player’s payoffs. Thus, as a preconditioning step
implies the row player sometimes plays row 2, which im- before we translate any columns, we transform all the row
plies the column player sometimes plays column 2, which player’s payoffs to lie in the set expressible @y. It turns



out that we further need each of the transformed payoffs to
be strictly greater thag(ﬁj—fl) in order for our construction

to act as a “mimicking game” in the style of the previous
section. We thus have the following preconditioning step:

Construction 10 (Preconditioning) Given a matrix of (ra-
tional) row player payoffs, multiply the matrix by the com-
mon denominator of its entries so as to make the matrix
integral. Next, find aj such that the difference between
the largest and smallest integer is at ma@ét Next, add
or subtract a constant to all the entries so that the smallest
entry become®’ + 1, and finally multiply all the entries by
We note that will be important to our construction for
each entry of the column player’'s payoffs to be positive, and
each row of this matrix to contain strictly positive entry;
if this is not the case initially, we add a constant to each
column player payoff to make it so here.

Thus, without changing the Nash equilibria of the game,
we have made all the entries strictly greater tlg?ﬁ_—l,
and expressible a%fj forr aninteged < r < 3(27 —

1).

We now introduce the Nash homomorphism that will

translate a column of these row player payoffs to binary.

Construction 11 (Column translation) Given anm x n
gameH, and a chosen column df each of whose row
player payoffs are expressible % for r an integer,
27 < r < 3(27 — 1), we exhibit a Nash homomorphism
that transforms it into a new gan#é’ such that all the row
player's payoffs in this column beconj@, 1}, and the re-
maining non{0, 1} entries ofH are unchanged. Lell’ be
structured as & x 3 block matrix as follows: let the first
block of rows have siz&—enough to fit a copy af;, the
generator forj-bit integers—and the second block have size
m; let the first block of columns ifif’ have size 1, the sec-
ond block have siz&j, and the third block of columns have
sizen — 1.

For notational convenience, denote the matrix of row
player payoffs of by R, and the column player payoffs
by C; let the ith column ofH be the one we are translat-
ing; denote theith column of R and C by R; and C; re-
spectively; denote the remaining columnsfas; andC_;
respectively. We fill in the blocks &f as follows:

e Block (1,1), of size3j x 1 receives a 1s vector for
its row player payoffs, and a Os vector for its column
player payoffs.

e Block (2,1), of sizem x 1 receives a 0s vector for
its row player payoffs, and’; for its column player
payoffs.

e Block(1,2), of size3j x 37, receives the gam@,.

e Block(2,2), of sizem x 3j receives for its row player
payoffs the{0, 1} matrix obtained by taking thex x
1 vector R; and expressing each entry by thex 3;
{0, 1}-vector whose product with

1

m(w’—l, 2971 97t 4,4,4,2,2,2,1,1,1)T

equals the original entry; the column player payoffs
are 0.

Block (3,1), of size3j x n — 1 receives Os in both
components.

e Block(3,2), of sizem x n — 1 receives the unaltered
payoffsR_;, and C_; as its row and column player

payoffs respectiveM

Pictorially, the matrixH’ looks like:

( )

We claim that the above construction is in fact a Nash
homomorphism, i.e., that there exists an efficient way of re-
covering a Nash equilibrium dff given a Nash equilibrium
of H'.

1,0 | GLG2 | 0,0
Ovci | tI'(Ri),O | Rfivcfi

Theorem 12 Construction 11 is a Nash homomorphism.

We first describe the proposed map from Nash equilibria of
H' to Nash equilibria o, and then prove it actually maps
equilibria to equilibria. The proofis a fairly straightieard
application of the techniques that we have considered so far

Construction 13 (Recovering an equilibrium) Consider

a Nash equilibrium(r’, ¢’) of the transformed gamél’.
ConsideringH’ as a2 x 3 block game as above, we may
considerr’ as having 2 blocks and as having 3 blocks.
To transform(r/, ¢) into a Nash equilibrium ofd, apply
the following steps:

1. Discard the first block from botH andc¢’.

2. Replace the second block &fwith the sum of it

entries.

Reorder then resulting entries frona’ so that this sum
appears in theth place.

Scale the resulting vectors so that they each have sum
1, i.e. are proper probability distributions. Let this
result be(r, c). |



As afirst step to showing thét, c) is a Nash equilibrium  row-block 1 is-—2—¢,. However, since each entry df;

of H, we examine the structure of , ¢’), the Nash equilib oy

C - . . 27 .
Lo . A is strictly greater thar7—, and each of these entries has
rium of H'. The main idea here is that thex 2 block por- 9 (21

tion of H' obtained by ignoring the third column-block can beeq properly “translated” tf0, 1} b_y construction, the in-
be viewed as a mimicking game, that is, its payoffs can be centives for the row player to play in the rows of row-block

. / I i 1 i -
viewed as satisfying the inequalities discussed in the pre_tzivaer(fﬁztcﬁéerz\(/:vh ?;;V\éhrlfg 'ﬁ;tr;gti{]grﬁjﬁeﬁgzn Tgehlqncer;
vious section. Thus we can easily find a lot of structure play pay playing—

in (', ¢') that is analogous to the mimicking properties we contrad|9t|on. Th_us a columq frlom column-block 1 must be
found above. played with positive probability

Corresponding to the four binding properties of the 2 Thus whenever a column from block 2 is played with
mimicking game, we present the following four claims. positive probability, column 1 must also be played with pos-
itive probability.
Claim 14 If a column from column-block 2 is played with

positive probability then a row from row-block 1 must be Claim 17 If column 1 is played with positive probability
played with positive probability. then some row from row-block 2 is played with positive

probability.

Proof: Suppose for the sake of contradiction that this )

were not the case. Thus since the intersection of the secProof:  Assume otherwise, that only rows from row-block
ond column-block and the second row-block contains only 1 @€ played. Then the column player receives O payoff
0 payoffs for the column player, thiacentivefor the col- in column 1. However, since each column of the column
umn player to play in column-block 2 is 0. However, since Players payoffsirt:; containsa 1, the column player could
no row from row-block 1 is played, some row from block Play @ column from block 2 and receive positive payoff—
2 must be played:; further, each row of block 2 contains a & contradiction. Thus a row from block 2 must be played
strictly positive payoff for the column player since eacivro  Whenever column 1 is playecl.

of C' contains a positive payoff. Thus some column would  The fourth implication we would expect from the mim-

give the column player positive profit, which contradicts ou  jcking game methodology is that any time row-block 2 is
assumption that the column player plays a column with O pjayed with positive probability column-block 2 must also
payoff. Thus the column player playing in block 2 with  pe played with positive probability. However, this is not

positive probability implies the row player plays in block 1 necessarily the case, and only the following weaker impli-
with positive probability. | cation holds:

Claim 18 If a row from row-block 2 is played with positive
probability, then some column frogithercolumn-block 2
or 3 must be played with positive probability.

Corollary 15 If any column from column-block 2 is played
with positive probability then the probabilities of plagin
columns in column-block 2 are proportional to the weights

of the Nash equilibrium of the generator gafe.
q g ganz Proof: Assume for the sake of contradiction that only col-

_ , , umn 1 is played. Then the row player receives 0 payoff.
Proof: From the previous claim, we have that Some row . ever he has an incentive of 1 to play in the first row-

of row-block 1 is played with positive probability. Thus we 0y - contradicting the fact that we are in Nash equilib-
can apply Lemma 8 to conclude that both the rows of row- 1o, * Thys anytime the second row-block is played with
block 1 and the columns of column-block 2 are played with ,,gjtive probability, some column other than the first must
weights proportional to the Nash equilibrium@. I sometimes be playec].

This enables us to continue the mimicking argument. This above cycle of implications lets us relate the Nash

equilibria of H' to those ofH.

As afirst step, let us show that the proposed map of Con-
struction 13 from(r’, ¢’) to (r,¢) is in fact well-defined.
The issue here is that the final rescaling step might involve
rescaling a zeros vector. To see that this will never happen,

we show the following:
Proof: Assume for the sake of contradiction that this is

not the case. Denote the total probability of the column Claim 19 In any Nash equilibriuntr’, ¢') of H' some col-
player playing in column-block 2 by,. ExaminingG; we umn other than the first must have positive weight, and some
see that the incentive for the row player to play in any row in row outside the first block must have positive weight.

Claim 16 If the the actions in row-block 1 and column-
block 2 are played with (strictly positive) probabilitiesop
portional to the Nash equilibrium & ; then column 1 must
be played with positive probability.



Proof: For the first part, we note that from Claim 17, if
the first column is played with nonzero probability then the
second row-block must be played with nonzero probability,
and thus by Claim 18 either the second or third column-
block must be played with nonzero probability, as desired.
For the second part, that some row outside the first block

Note that, by the mimicking claims, since the second
column-block of H' is played, the first column must also
be played. Thus because, ') is a Nash equilibrium of
H’, the payoff of the first column must be at least as high
as that of any other column. Further, note that the column
player’s payoffs in the first column off’ consist of zeros

must be played, we assume for the sake of contradiction thafollowed by the payoffs of théth column of . Thus since

only rows from the first row-block are played. Note that if

the first column is played, then by Claim 17 the second row-
block must be played. Further, if the second column-block
is played, then sequentially applying Claim 14, its corol-
lary, and Claim 16, we see that the first column must also

the first column ofH’ must receive at least as much payoff
as any column in the third block, thith column of H must
receive at least as much payoff as any other column.
Thus theith column has high enough incentive that it is
a best response tin H. Further, all the other columns

be played, in which case we are done as above. Thus ifand all the rows receive incentives exactly proportional to

any column from the first or second block is played, we
are done. Otherwise, if only columns from the third block

those inH’. Thusr andc are mutual best responses, and
we conclude that the mapping frofw’, ¢’) to (r,¢) maps

are played, then we note that both players receive 0 pay-Nash equilibria ofif’ to Nash equilibria offf, as desired.

off, while the row player could receive payoff greater than

3(23—11) by playing in the second row-block, a contradic-
tion. Thus some row outside the first block must sometimes

be played, and some column outside the first must some
times be played, as desirek.

Thus, the transformation of Construction 13 is well-
defined on Nash equilibria off’. We now complete the
proof of Theorem 12, that Construction 11 is in fact a Nash
homomorphism.

Proof: We show that if(+', ¢’) is a Nash equilibrium of
H' then(r, ¢) is a Nash equilibrium ofd.

We have two cases. For the first case, suppose no col-

umn from column-block 2 is played id. Thus in(r,c),
columni is not played. Thus the row player payoffs in the
second row-block off’ will be the matrix-vector product
R_;c4, and the column player payoffs in the third column-
block will be CT,7" which, up to scaling (and adding a 0
for columnyi), are identical to the payoffs in ganié when
strategiesr, ¢) are played. Thus sinde’, ¢') is an equilib-
rium of H', (r, ¢) is a Nash equilibrium of gam# .

The second case, where some column from column-
block 2 is played, is slightly more involved. We note that
from Claim 14 and its corollary, the columns of column-
block 2 are indeed played in proportion to the vector

1

3(29 - 1) )
Thus, since the sum of the weights in column-block 2 be-
comes the weight on théh component of under Construc-
tion 13, the payoffs for the row player in ganiewhen the
column player plays are indeed proportional to the payoffs
in gameH’ when the column player plays. As above, we
can also see that the column player payoffs in the third block
of H' are proportional to those il outside of theth col-
umn. We will now show that the payoff of th&h column
in H is at least as large as any other payoff.

2,2,2,1,1,1

) ? ) ) ) )

(2771 7=t 9i=t 4. 4.4

We now state and prove our main result.

Theorem 20 There is a polynomial-time Nash homomor-
phism from the set ofi x n rational payoff games that are
expressible using total bits in binary representation into
the set of 0, 1}-games of size at mo&3j + 1)(m + n) x

(375 + 1)(m + n).

Proof: Given a gamé? in this set, we follow the strat-
egy outlined above. We first apply Construction 10 to pre-
condition the row player payoffs. Then, for each of the
n columns of the original game, we transform its entries
into binary via an application of Construction 11. Note that
each application of this construction increases the number
of rows and columns bg;. Then we precondition the col-
umn player’s payoffs, and apply the analogous translation
homomorphism to each of the original rows of the game.
We note that since each of the constructions is a Nash homo-
morphism, we can clearly compose them like this. Further,
since Construction 11 does not move or duplicate any of
the non{0, 1} entries, the above: + n applications of the
construction will completely remove all nof, 1} entries
from the game. These transformations increase the num-
ber of rows and columns b§;(m + n), as desired, and
each transformation can clearly be done in polynomial time.
Thus we have the desired Nash homomorphil;m.

8 Conclusion

We have exhibited a polynomial-time Nash homomor-
phism from two-player rational-payoff games lbfits to
{0, 1}-games of size polynomial ih. Thus the complexity
of finding Nash equilibria of these two classes of games is
polynomially related.



Very recently this result has been extended to the multi-
player case, showing that-player {0, 1}-games are no
harder tham-player general games[12]. It may be hoped
that {0, 1}-games could offer algorithmic insights into the
general Nash problem.
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