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Abstract. There has been significant interest lately in the task of constructing codes that are testable
with a small number of random probes. Ben-Sasson and Sudan show that the repeated tensor product
of codes leads to a general class of locally testable codes. One question that is not settled by their work
is the local testability of a code generated by a single application of the tensor product. Special cases
of this question have been studied in the literature in the form of “tests for bivariate polynomials”,
where the tensor product has been shown to be locally testable for certain families of codes. However
the question remained open for the tensor product of generic families of codes. Here we resolve the
question negatively, giving families of codes whose tensor product does not have good local testability
properties.

1 Introduction

Sub-linear algorithms in coding theory have become an increasingly important area of study, both for their
own sake, and because of their strong connection with the techniques of the PCP program. A key problem is
that of constructing and understanding Locally Testable Codes (LTCs), namely codes for which membership
can be estimated probabilistically using a sub-linear number of queries (cf. [1, 11, 7, 8]).

The tensor product code of two linear codes C1, C2 of length n, denoted C1 ⊗ C2, is the code consisting
of the set of all n× n matrices in which each row belongs to C1 and each column to C2. The prime example
of a tensor code is the set of bivariate polynomials of individual degree k over a field of size n, which is the
tensor product of a pair of (univariate) Reed-Solomon codes of degree k.

A basic result of Arora and Safra says that if an n × n matrix is δ-far from the above-mentioned bi-
variate code then the expected distance of a random row/column of the matrix from a univariate degree k

polynomial for k = O(n
1
3 ) is Ω(δ) [3]. (A similar result with linear relationship between k and n was shown

by Polishchuk and Spielman [10].) Formally, this means that the transformation from the univariate codes
to the bivariate product code is robust, as distance from the product code implies similar expected distance
from the component Reed-Solomon codes.

Recently, Ben-Sasson and Sudan, using ideas from Raz and Safra [12], showed that the slightly more
complicated three-wise tensor product code is robustly locally testable under much more general conditions
than the above polynomial restriction [5].

Robust locally testable codes are crucial in efficient constructions of LTCs and in fact many PCPs (see
[5, 6]). In light of the above two results, it is natural to ask whether the tensor product of pairs of general
codes is robustly locally testable. The current paper gives a negative answer to this basic question.

2 Definitions

We begin with some basic notions from coding theory. The first is the Hamming metric on strings.

Definition 1 (Hamming distance). Given a set Σ called the alphabet, and two strings x, y ∈ Σn for
some n, denote the ith entry of each string by xi, yi respectively. The Hamming distance between x and y,
denoted ∆(x, y), is the number of indices i for which xi 6= yi.



A code is a means of transforming strings into (typically) longer strings, such that the original message
is recoverable from the encoded message even when the encoded message has been tampered with by some
bounded adversary. This notion is made precise with the following definition.

Definition 2 (Code). Given an alphabet Σ, and integers (n, k, d), referred to respectively as the block
length, the message length, and the distance, an [n, k, d]Σ code is defined by an encoding function

f : Σk → Σn

such that Hamming distance between any two elements of the image of f is at least d.
A code C is often identified with the image of its encoding function

C
def= {f(x)|x ∈ Σk}.

The elements of C are referred to as codewords.

We define a few more notions related to the Hamming distance that are frequently used in coding theory.

Definition 3 (Distance notions). The ratio of the Hamming distance to the length of strings n is called
the relative distance, and is denoted by δ(x, y) def= ∆(x, y)/n. Given a code—or alternatively any set of
strings—C, we define ∆C(x), δC(x) to be respectively, the minimum Hamming distance and relative distance
between x and any codeword of C. Similarly, let ∆(C) be the minimum Hamming distance between any two
distinct codewords of C, and let δ(C) def= ∆(C)/n.

In this paper we consider linear codes, defined as follows:

Definition 4 (Linear Code). An [n, k, d]Σ linear code is an [n, k, d]Σ code where Σ is a field, and the
encoding function f is linear. We represent f by a k×n matrix M , known as the generator matrix, with the
property that f(x) = xT M .

Alternatively, an [n, k, d]Σ linear code C is a k-dimensional linear subspace of Σn such that ∆(C) ≥ d.

Given a code C, and a string x ∈ Σn, we often wish to determine if x is a codeword of C and, if not,
what the closest codeword of C to x is. Recently, the focus has changed from deterministic tests that look
at x in its entirety, to probabilistic tests that sample x at only a few locations. Such tests are called local
tests (cf. [5]).

Definition 5 (Local Tester). A tester T with query complexity q is a probabilistic oracle machine that
when given oracle access to a string r ∈ Σn, makes q queries to the oracle for r and returns an accept/reject
verdict. We say that T tests a code C of minimum distance d if whenever r ∈ C, T accepts with probability
one; and when r /∈ C, the tester rejects with probability at least δC(r)/2. A code C is said to be locally testable
with q queries if C has minimum distance d > 0 and there is a tester for C with query complexity q.

A generic way to create codes that have non-trivial local tests is via the tensor product. The next two
definitions describe the tensor product and a natural local test for codes constructed by this product (cf. [9],
[13, Lecture 6, Sect. 2.4]).

Definition 6 (Tensor Product Code). Given an [n1, k1, d1]Σ code C1, and an [n2, k2, d2]Σ code C2,
define their tensor product, denoted C1⊗C2 ⊆ Σn2×n1 , to be the set of n2×n1 matrices each of whose rows
is an element of C1, and each of whose columns is an element of C2. It is well known that C1 ⊗ C2 is an
[n1n2, k1k2, d1d2]Σ code.

We note that if C1, C2 are linear codes, with corresponding generator matrices G1, G2, then the set of
matrices with rows in the row-space of G1 and columns in the row-space of G2 is just the set

C1 ⊗ C2
def= {MT

2 XM1|X ∈ Σk2×k1}.
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The natural probabilistic test for membership in a product code C is the following.

Definition 7 (Product Tester). Given a product code C = C1⊗C2, test a matrix r for membership in C
as follows: flip a coin; if it is heads, test whether a random row of r is a codeword of C1; if it is tails, test
whether a random column of r is a codeword of C2.

It is straightforward to show that in fact this product tester meets the criteria of Definition 5 for a local
tester (see the appendix).

Thus we see that the tensor product of two codes of length n has a local test with query complexity
√

N ,
where N = n2 is the length of the tensored code.

We now ask whether the local tests for the tensor product may be recursively applied. Specifically, if we
take the tensor product of two tensor product codes C4 = C2⊗C2 = C⊗C⊗C⊗C, we know we can locally
test for membership in C4 by randomly testing for membership in C2; could we now save time on this test
by applying a local test to C2 instead of a more expensive deterministic test?

It turns out that locally testable codes do not necessarily compose in this way without an additional
robustness property. Motivated by the notion of Robust PCP verifiers introduced in [4], Ben-Sasson and
Sudan introduce the notion of a robust local tester (cf. [5]). Informally a test is said to be robust if words
that are far from codewords are not only rejected by the tester with high probability, but in fact, with high
probability, the view of the tester is actually far from any accepting view. This is defined formally as follows.

Definition 8 (Robust Local Tester). A tester T has two inputs: an oracle for a received vector r, and a
random string s. On input the string s the tester generates queries i1, . . . , iq ∈ [n] and fixes circuit C = Cs

and accepts if C(r[i1], . . . , r[iq]) = 1. For oracle r and random string s, define the robustness of the tester
T on r, s, denoted ρT (r, s), to be the minimum, over strings x satisfying C(x) = 1, of relative distance of
〈r[i1], . . . , r[iq]〉 from x. We refer to the quantity ρT (r) def= Es[ρT (r, s)] as the expected robustness of T on r.

A tester T is said to be α-robust for a code C if for every r ∈ C, the tester accepts w.p. one, and for
every r ∈ Σn, ρT (r) ≥ α · δC(r).

This definition is especially meaningful for the product tester of Definition 7. In this case, we may
interpret the above definition of robustness as follows. Given a tensor product code C = C1⊗C2, the queries
i1, ..., iq comprise either a row or a column of the matrix r. For random seed s, denote this row or column
by rs. We note that if rs is a row, then the robustness ρT (r, s) is just the relative distance of rs from the
nearest codeword of C1, namely δC1(r

s), while if rs is a column, then ρT (r, s) = δC2(r
s). Thus the expected

robustness of T on r is just the average of the following two quantities: the average relative distance of rows
of r from C1; and the average relative distance of columns of r from C2. A robust tester signifies that any
time r is close to C1 row-wise, and close to C2 column-wise, then it is also close to a single element of C
with rows in C1 and columns in C2.

One of the few known examples of robust locally testable codes are codes based on multivariate polyno-
mials. Codes based on multivariate polynomials may in turn be viewed as tensor products of (univariate)
Reed-Solomon codes, which are defined as follows. Given an alphabet Σ that is a finite field Fq, we encode
degree k polynomials over this field by their values on n > k fixed elements α1, ..., αn of Fq.

The tensor product of two Reed-Solomon codes is a bivariate code, which represents a bivariate polynomial
by its values on a “rectangle” in Fq × Fq.

Local testability—and in fact robustness—of the product tester for the bivariate polynomial codes is
well-studied in the literature on PCPs. Results of Polishchuk and Spielman (cf.[10, Theorem 9]) imply that
for bivariate codes C = C1 ⊗C1, there exist ε > 0, c < ∞ such that the product tester of above is in fact an
ε-robust local tester provided the parameters n, k of C1 satisfy n ≥ ck. Similar results are implied by Lemma
5.2.1 of [3], specialized to the case m = 2. The resulting robustness analysis of the bivariate test is critical
to many PCPs in the literature including those of [3, 2, 10, 6].

The robustness of the product tester for the product of Reed-Solomon codes raises the natural question
of whether the product tester may be robust for the product of any pair of codes. We note that for this
question to be meaningful, it must be asked of families of codes with asymptotically good distance properties.
Formally, this question takes the following form.
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Question: Is the product tester always robust for general families of tensor product codes? Specifi-
cally, is it the case that there exists a function α(δ) > 0 such that for every infinite family of pairs
of codes C1, C2 of relative distance δ, the tensor product C1 ⊗ C2 is α(δ) robust?

A somewhat more complicated tester for the tensor product of more than two codes is analyzed and
shown to be robust in [5]. A positive resolution of the above question would have been sufficient for their
purposes. At the same time, it would generalize the analyses of Arora and Safra [3] and Polishchuk and
Spielman [10]. To date, however the status of the above question was open. Here, we provide a negative
answer to this question in the form of the following theorem.

Theorem 1. There exists an infinite family of pairs of codes C1 = {C(i)
1 } and C2 = {C(i)

2 } of relative
distances δ1, δ2 at least 1

10 such that the robustness of C
(i)
1 ⊗ C

(i)
2 converges to 0 as i increases.

We note that it remains an interesting open problem whether the tensor product of a code with itself is
always robust. Our counterexample involves the tensor product of different codes.

3 Proofs

As noted in the previous section, when we apply the definition of a robust local tester to the product tester
of code C = C1 ⊗ C2, the robustness ρT (r) equals the average of the relative distance of r from the closest
matrix with each row in C1 and the relative distance of r from the closest matrix with each column in C2.
Defining δC1(r) and δC2(r) respectively to be these distances, we find the robustness of the product tester
on C = C1 ⊗ C2 is

αC1,C2 = min
r

δC1(r) + δC2(r)
2δC(r)

. (1)

Our goal then, is to find a matrix r whose rows and columns lie close to codewords of C1 and C2 re-
spectively, but which lies far from any codeword of C1 ⊗C2. Specifically, we show a general construction for
generating pairs of codes C1, C2 whose tensor product codes have arbitrarily bad robustness. This construc-
tion implies the theorem.

To motivate the following construction we note that we seek a matrix r whose rows and columns, when
taken individually, are very simple, but when taken together are complicated (the rows and columns are
very close to codewords of C1 and C2 respectively, but the whole matrix is far from any code of the tensor
product). A natural matrix that fits this general rubric is the identity matrix. Specifically, each row or column
has exactly one nonzero entry, and is thus “simple”, however, when considered as a whole, the identity matrix
has full rank which, in linear algebra terms, is as complicated as a matrix can get. We use these properties
of the identity matrix in a fundamental way in the following construction.

Construction. Given an [n, k, d]2 code C1 such that the dual space C⊥1 is an [n, n − k, d′]2 code for some
d′ and an [m, k, D] code Cg with the additional property that the distance of 1m from any codeword of Cg,
namely ∆Cg (1m) is also at least D, we construct a tensor product code as follows.

Let G1 be a generator matrix for code C1, i.e., let its rows be some basis for the subspace C1. Similarly,
let Gg be a generator for Cg. We note that G1 will be k× n and Gg will be k×m. Define the n×m matrix
H to be their product H = GT

1 Gg.
Next, consider the n×mn matrix obtained by horizontally concatenating n copies of H, which we denote

by Hn. Let Im
n be the n ×mn matrix consisting of the n × n identity matrix with each column duplicated

to appear m times consecutively.
Let

G2 = Hn + Im
n

be the n×mn matrix that is the sum of these two matrices, and let C2 be the code generated by the rows
of G2. Define the tensor product code C = C1 ⊗ C2. ut

4



We claim the following lemma.

Lemma 1. The distance of the code C2 constructed above is at least min{md′, nD}, and the robustness of
the code C = C1 ⊗ C2, which we denote αC1,C2 , satisfies

αC1,C2 ≤
nm

2(n− k)min{md′, nD} . (2)

We first show how the lemma implies our main result, and then prove the lemma.

Proof (Theorem 1). We produce a family of codes C
(i)
1 , C

(i)
g and show how, by Lemma 1, our construction

transforms these codes into a family that satisfies the conditions of this theorem.
Let the parameters of C

(i)
1 be defined as

[n(i), k(i), d(i)]2
def= [i,

i

2
,

i

10
]2.

We note that from standard coding theory arguments if the i/2 × i generator matrix G
(i)
1 is filled in

at random, then for large enough i the ensuing code will have distance d(i) ≥ i/10 with overwhelming
probability. Take C

(i)
1 to be such a code. From standard linear algebra, the dual space C

⊥(i)
1 will also be

a randomly generated subspace of Ri, and thus the dual code will also have distance at least i/10 with
overwhelming probability.

Similarly, let the [m(i), k(i), D(i)]2 code C
(i)
g have parameters [i, i

2 , i
10 ]2 and be constructed from a random

i/2× i generator. Similar arguments show that for large enough i, the code Cg will also satisfy the additional
property of codewords being far from 1i with overwhelming probability.

We note that from Lemma 1, the distance of code C2 is at least min{md′, nD} = min{i2/10, i2/10} =
i2/10. Thus C2 is an [i2, i, i2/10]2 code, and the relative distance of C2 is 1

10 , as desired.
Explicitly evaluating (2), we have that

αC1,C2 ≤
nm

2(n− k)min{md′, nD} =
i2

2(i− i
2 ) i2

10

=
10
i

,

which converges to 0 as i increases. Thus the families C
(i)
1 , C

(i)
2 satisfy the desired properties of the theorem.

ut

We now prove the lemma.

Proof (Lemma 1). Consider the above construction. We first note that since both G1 and Gg have rank k,
both G1 and Gg must have full-rank k × k submatrices. Further, the product of these submatrices will be a
submatrix of their product H = GT

1 Gg. Thus H has rank k.
We prove now that

∆(C2) ≥ min{md′, nD}.
Consider a nonzero codeword c ∈ C2. Since G2 generates C2, we have by definition that for some nonzero
vector v ∈ Rn, c = vT G2. We consider two cases.

In the first case, suppose vT H = 0. Since H has rank k and its columns are linear combinations of rows
of G1, its column space must equal the row space of G1, which consists of the elements of C1. Thus G1v = 0,
and we conclude that v ∈ C⊥1 , the dual code of C1.

Since the dual code C⊥1 has minimum distance d′ by assumption, v must differ from the codeword 0n in
at least d′ places. Recall that G2

def= Hn + Im
n . Thus we have c

def= vT G2 = vT Im
n , from which we conclude

that c differs from 0nm in at least md′ places.
In the second case, suppose vT H 6= 0. Then since the rows of H are linear combinations of the rows of

Gg, vT H is a nonzero codeword of Cg, which we denote by x
def= vT H.
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We note that vT Im
n consists of n consecutive 1 ×m vectors that are either uniformly zero or uniformly

one. Thus our codeword c = vT G2 = vT (Hn + Im
n ) consists of n consecutive chunks containing either x or

1−x. From our assumptions on Cg, both x and 1−x differ from 0m in at least D places. Thus c has at least
nD nonzero entries.

Thus, in either case, a nonzero codeword of C2 differs from 0mn in least min{md′, nD} places. Since codes
are linear, the minimum distance of 0nm to another codeword equals the minimum distance of the code, and
thus ∆(C2) ≥ min{md′, nD}, as desired.

Recall from (1) that to demonstrate the low robustness of the product tester on C1 ⊗ C2 we are trying
to find a matrix whose rows are very close to codes in C1 and whose columns are very close to codes in C2,
yet which lies far from any code in the tensor product C = C1 ⊗ C2. The matrix we consider here is in fact
GT

2 , the transpose of the generator matrix of C2. Note that by definition,

δC2(G
T
2 ) = 0,

since G2 generates C2, and thus all the columns of GT
2 are in C2. Also, we have that

δC1(G
T
2 ) = 1/n,

since all the columns of Hn are in C1 and each column of Im
n has relative weight 1/n. Thus rows and columns

of GT
2 lie “close” to codewords of C1 and C2 respectively.

We now show that GT
2 is far from any codeword of the tensor product C1 ⊗ C2, specifically, that

δC1⊗C2(G
T
2 ) ≥ (n− k)∆(C2)

n2m
.

Consider the difference R − GT
2 for any codeword R ∈ C1 ⊗ C2. We note that each column of R − GT

2 is
a codeword of C2. Also, we note that each row of R − (GT

2 − Im
n

T ) is a codeword of C1, implying that
R − (GT

2 − Im
n

T ) has rank at most k. We now invoke the fact that the identity matrix has full rank, and
conclude that the difference [R− (GT

2 − Im
n

T )]− Im
n

T = R−GT
2 must therefore have has rank at least n− k.

Thus there are at least n − k nonzero columns in R − GT
2 , each of which is a codeword of C2. Since each

nonzero codeword of C2 has weight at least ∆(C2), we conclude that

δC1⊗C2(G
T
2 ) ≥ (n− k)∆(C2)

n2m
.

Thus we have constructed a matrix GT
2 for which

αC1,C2 ≤
δC1(G

T
2 ) + δC2(G

T
2 )

2δC(GT
2 )

≤ nm

2(n− k)∆(C2)
,

as desired, and the lemma is proven. ut
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APPENDIX

We prove here the fact mentioned in the body of the article that the product tester meets the criteria for a
(non-robust) local tester.

Proof. Suppose we have a tensor product code C = C1 ⊗ C2 and a matrix r for which the product tester
accepts with probability α. This implies that for some β + γ = 2α, β-fraction of the rows of r are in C1 and
γ-fraction of the columns of r are in C2.

Consider the submatrix rβ,γ at the intersection of these β rows and γ columns. Let G1, G2 be the
generators of C1, C2 respectively. Let Gβ

1 and Gγ
2 be the restrictions of G1, G2 respectively to those columns

that correspond to the β rows of r and γ columns of r respectively. Since rβ,γ is an element of the tensor
product of the codes generated by Gβ

1 and Gγ
2 , we may express rβ,γ as

rβ,γ = GγT
2 XGβ

1 ,

for some matrix X. We now extend rβ,γ to a full matrix r′, with the property that every row of r′ is in C1

and every column is in C2. Specifically, let

r′ def= GT
2 XG1,

for the full matrices G1, G2. Clearly r′ is a codeword of C.
We note that by definition, r′ agrees with r on the submatrix rβ,γ . Thus, δC(r), the distance of r from

the nearest codeword of C is at most the distance from r to r′, which is at most 1− βγ.
Recall that we are trying to prove that the probability of r failing the test, namely 1− α, is at least half

this distance δC(r). The algebra from here is straightforward. Recall that 1−α = 1− β+γ
2 , and further that

δC(r)/2 ≤ 1
2
− βγ

2
≤ 1

2
− βγ

2
+

(1− β)(1− γ)
2

= 1− β + γ

2
.

Comparing these two equations yields the desired result.
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