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Abstract: Because of its devastating effects in auctions and other mechanisms, collusion is prohibited and legally
prosecuted. Yet, colluders have always existed, and may continue to exist. We thus raise the following question
for mechanism design:

What desiderata are achievable, and by what type of mechanisms, when any set of players who wish to
collude are free to do so without any restrictions on the way in which they cooperate and coordinate their
actions?

In response to this question we put forward and exemplify the notion of a collusion-leveraging mechanism. In
essence, this is a mechanism aligning its desiderata with the incentives of all its players, including colluders, to a
significant and mutually beneficial extent. Of course such mechanisms may exist only for suitable desiderata.

In unrestricted combinatorial auctions, where classical mechanisms essentially guarantee 0 social welfare and 0
revenue in the presence of just two colluders, we prove that it is possible for collusion-leveraging mechanisms to
guarantee that the sum of social welfare and revenue is always high, even when all players are collusive.

To guarantee better performance, collusion-leveraging mechanisms in essence “welcome” collusive players, rather
than pretending they do not exist, raising a host of new questions at the intersection of cooperative and non-
cooperative game theory.
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1 Introduction

Collusion is a major problem for traditional mecha-
nisms for a very simple and fundamental reason. Tra-
ditional mechanism design guarantees a desired prop-
erty [P at equilibrium. But, by definition, an equilib-
rium only guarantees that no individual player has in-
centive to deviate from his envisaged strategy, while two
or more players may have plenty of incentive to coor-
dinate a joint deviation. And when they do so in the
course of a mechanism, the desired property IP typically
no longer holds. The problem of collusion is both par-
ticularly acute and well documented in auctions. Both
physical and legal protection against it are routinely em-
ployed: auction rooms are often monitored by a vari-
ety of surveillance equipment, and collusion is outlawed
and criminally punished. But with limited results.

In this paper we thus put forward a new and purely
mathematical approach to collusion in combinatorial
auctions.

*Work done when all three authors were at the Computer Science
and Artificial Intelligence Laboratory at MIT

1.1 Prior Work

Restricted Collusion and Restricted Auctions

Some protection against collusion can be obtained
by starting with the assumption of some restriction
on the coordination ability of colluders. For in-
stance, group strategy-proof (or equivalently, coalition
strategy-proof) mechanisms [2, 14, 19-21], work under
the assumption that colluders are incapable of making
side-payments to each other. Alternatively, some collu-
sion protection can be obtained for restricted auctions:
in particular, single-parameter auctions [10]. (Some
collusion protection is also available for other restricted
games, such as with two players of two possible types,
or Bayesian games, where additional information about
the players is available to the mechanism designer. See
[5, 6, 15, 16].) But all such protection vanishes when
the colluders’ coordination is unrestricted, the auction
is combinatorial, and the mechanism designer knows
nothing about the players.

Combinatorial Auctions and the Ausubel-Milgrom
Example

In auctions of multiple goods, each player 7 has a true
valuation T'V; for the goods for sale: a function spec-
ifying i’s true value T'V;(S) for each possible subset
S of the goods. Such an auction is called combinato-



rial when the players’ valuations are arbitrary and un-
related functions. Combinatorial auctions are therefore
the most general form of auctions, but also the most dif-
ficult one when it comes to collusion. In fact, their rich
structure can be easily exploited by collusive players.
Notably, Ausubel and Milgrom [1] have shown that just
two (sufficiently informed) collusive players may drive
to 0 the social welfare (as well as the revenue!) of the
famous VCG mechanism. This is so despite the fact
that the VCG is dominant-strategy truthful, in essence
the best form of equilibrium, and that at equilibrium it
maximizes social welfare.

Implementation in Undominated Strategies and Ra-
tionally Robust Implementation

The classical notion of implementation in undomi-
nated strategies [13], and its feasible version [3], al-
though not applied to unrestricted combinatorial auc-
tions, are ancestors of rationally robust implementation,
a notion put forward by [7, 8], and adopted in this paper
as our solution concept. Rationally robust implemen-
tation is recalled in Section 3, but its zest is first best
conveyed by lying as follows: a mechanism provides a
rationally robust implementation of a given property P
if it guarantees [P not at an equilibrium, but at any pro-
file of strategies surviving iterated elimination of strictly
dominated strategies.

Robust leveraging of external independent knowl-
edge

Traditional mechanisms leverage only the internal
knowledge of the players. In an auction, this would
be the knowledge that each player ¢ has of his own
true valuation T'V;. However, very little revenue can
be guaranteed by traditional mechanisms in combinato-
rial auctions, with or without collusion [17]. Any hope
to guarantee more revenue (without assuming that the
seller/designer has some convenient knowledge about
the players, such as some suitable Bayesian informa-
tion) rests on a mechanism’s ability to leverage also the
players’ external knowledge. In an auction, this is es-
sentially the knowledge that each player ¢ has about the
others’ valuations. Quite realistically, in this paper we
work with the original, imperfect external knowledge
model of [7]: guaranteed (or lowerbounded) external
knowledge. In essence,

Each i knows a lower-bound, Vf g for each TV;(S).

Notice that such external knowledge is not an assump-
tion, since at worst V]’ g could be 0. The mechanism
of [7] leverages this external knowledge in a combina-
torial auction in a very robust way. Namely, no mat-
ter how many collusive players there may be, no matter
how many secret coalitions they may be partitioned in,
and no matter how the members of each coalition may
coordinate their actions, the revenue of their rationally
robust implementation is always greater than or equal to

1/2 of MEW = max;c;y MEW;, where MEW; is the
maximum external welfare known to an independent .

Of course, the more precise the external knowledge
of the players, the better the performance one could
guarantee. As shown in another paper [4], to appear
in ICS 2010, when the players’ external knowledge is
perfect, one can guarantee perfect revenue too, even in
a dreadfully collusive setting.

Note that the external welfare known to a player &
can be interpreted as the best way known to ¢ to sell the
goods to the other players. Since the seller and/or the
mechanism designer is assumed to know nothing, and
is thus less informed than any of the players, being able
to sell the goods roughly as well as some of the play-
ers could —let alone the “best-informed” independent
player!— is a non-trivial guarantee.

1.2 Our Work

As we have seen, coordinated collusive players con-
stitute a major obstacle to mechanism design in gen-
eral and to combinatorial auctions in particular. As we
have seen too, all work so far has focussed on prevent-
ing collusion from damaging an auction, either by try-
ing to (1) “force” collusive players to behave indepen-
dently [2, 10, 14-16, 19-21], or (2) “neutralize” collu-
sive players from the auction [7, 17]. In this paper we
put forward a more ambitious question:

Is it possible for a mechanism to leverage collusion?

We believe this question to be central to mechanism de-
sign. If we really want to leverage the players’ knowl-
edge, then we should be able to treat colluders as a po-
tential reservoir of knowledge to be harvested. To ex-
plain both what our question means and what we can
prove about it, we need to informally clarify a few
things: our collusion model, our solution concept, the
property we strive to achieve, the knowledge we try to
leverage, our benchmark, our notion of collusion lever-
aging, and then the extent to which we can provably
leverage collusion.

Rational, unrestricted, dynamic, unpunishable, and
secret collusion

Mechanism design relies on the players’ rationality,
and for it to leverage also the knowledge of collusive
players, coalitions of players must be rational too. In
this paper we assume that a rational coalition is a subset
of the players coordinating their actions so as to maxi-
mize the sum of the (individual) utilities of its members.
Perhaps other models of rational coalitions can be ana-
lyzed in the future. But if we want to understand collu-
sion leveraging, we have to start somewhere. And ours
is not a random place to start, for two main reasons.

IThat is, I stands for the set of independent (i.e., not collusive)
players, and MEW; is the maximum of ki V]Z, A; taken over all
partitions A of the goods among the players, where A; denotes the
set of the goods that A assigns to player j.



“Maximizing the money coming in” is the best
way for collusive players to enrich themselves.
This is important because players collude in or-
der to further improve their individual utilities.
Of course, different members of a coalition may
have different bargaining powers, and any collu-
sive gain might ultimately be split in different pro-
portions. But limiting the amount of money com-
ing in never is the rational thing to do for a coali-
tion!

(b) It is the traditional model. Indeed, most of the pa-
pers that need to specify a “joint utility function”
for a coalition (e.g., [10]) adopt the same model.

In all other respects, our collusion model is totally un-
restricted. In particular,

e No player is afraid to collude. (Even if collusion
is severely punished, we model the players as be-
lieving with probability 1 that they will never be
caught.)

e The composition, size, and total number of coali-
tions is totally unrestricted. (All players belong-
ing to the same coalition is not ruled out. Coali-
tions of size 1 correspond to players who have
chosen to remain independent.)

o Members of the same coalition can cooperate in
any way they want. (In particular, they could
make side-payments to one another, or enter con-
tracts with each other that are perfectly binding —
possibly with respect to quite different “enforce-
ment systems.”)

o Coalitions may be secret. The members of a coali-
tion are perfectly capable of keeping its existence
secret, if this is to their advantage.

e Coalitions can form dynamically. Of course,

coalitions may pre-exist the choice of a mecha-
nism. (E.g., husband and wife, or brother and sis-
ter, may have decided to collude in any case.) But
we want to protect even against a more dangerous
case. Namely, we let the players choose, if they so
wish, to form coalitions by means of the following
3-stage process: (1) All players are initially inde-
pendent; (2) A specific mechanism is announced,
and then (3) The players partition themselves into
coalitions in any way they want.
Note: In this paper, we do not specify the process
of coalition formation. Indeed, it is a strength of
our mechanism M that it works no matter how
coalitions are formed. But it is important to point
out that our M can handle dynamic coalitions.
In fact, it should be appreciated that any mech-
anism leveraging dynamic coalitions also lever-
ages ‘“‘static” ones, while the viceversa needs not
to hold.

Our model thus has two noteworthy consequences.

1. Whether the players possess “the means to col-
lude” is not an issue. We view this as no big loss.
Realistically, with the advent of modern commu-
nication networks, an auctioneer’s ability to credi-
bly deny his players all means of colluding is van-
ishing fast anyway.

2. The “Law” is no longer a credible ally. Whether
we like to admit it or not, our legal system has
been aiding mechanism design in several ways.
In particular, it has boosted the meaningfulness
of equilibria: the law takes care of multi-player
deviations, leaving only single-player deviations
to be dealt with by mathematical analysis. But
as mechanisms start being played over the Inter-
net, legal help is vanishing too. If a combinato-
rial auction is conducted over the Internet, who
has proper jurisdiction? Even if players were re-
quired to make high “safety deposits” in our own
country (so as to vouch for our ability to pun-
ish them and to enforce the final outcome), and
even if we clarified which countries have juris-
diction over which players, collusion should con-
tinue to worry us. Countries tolerating mass mur-
derers may not care about energetically prose-
cuting colluders. Accordingly, we are seeking
to address collusion by mechanisms relying only
on Mathematics, rather than, explicitly or im-
plicitly, a “combination” of Mathematics and po-
lice/jail/torture/execution/et cetera.

In sum, our chosen approach is of a safe, Machiavellian
realism: namely, any set of players who wishes to col-
lude, does. If a coalition does not come into being it is
only because its potential members found more prof-
itable alternatives, or because they could not bargain
successfully and failed to reach agreement on how to
split their potential gains.

Rational Play

As already said, we adopt rationally robust imple-
mentation as our solution concept. A bit more precisely,
this notion of implementation guarantees a property P’
by identifying (1) a mechanism M and (2) a corre-
sponding refined subset of strategies S, for each agent
(player or coalition) z such that

e If everybody is rational, each z will never want to
choose a strategy outside S ; and

e No matter what strategy in S, each x actually
chooses, IP is guaranteed to hold.

Even this sketchy summary makes it clear that ratio-
nally robust implementation does not rely on equilibria.
(Indeed, unless each subset of refined strategies has car-
dinality 1, an arbitrary profile of refined strategies may
not be an equilibrium.) More generally, rationally ro-
bust implementation does not rely on the players’ be-
liefs on how the mechanism will be played. Indeed, it is



robust.

Total Performance

Traditional auctions are designed to maximize either
social welfare or revenue (i.e., either the sum of the
players’ true values for the goods allocated to them, or
the sum of the prices paid by the players). Our goal is to
maximize total performance, that is, the sum of the two.
There are compelling reasons for choosing this goal.

1. It is an achievable goal. As self-serving as this
may sound at a superficial level, we note that, in
the presence of collusive players capable of co-
operating without restriction, it is a non-trivial
goal?

2. It is a natural goal. If we were guaranteed, by
some means, that there will be no collusion in our
auction, we would be only too happy to run the
VCG mechanism and generate perfect social wel-
fare. But as already mentioned, it was insightfully
shown by Ausubel and Milgrom [1] that in the
VCG mechanism two collusive players who do
not value the goods very much can bid very high
and get all goods while paying nothing, thereby
destroying both social welfare and revenue. In
light of their example, sacrificing some potential
social welfare and converting it to revenue is a
quite natural antidote to collusion. Indeed, we do
not prevent collusive or independent players who
value the goods very low from bidding very high
and getting all the goods, but we do guarantee that
by so doing they will pay through their noses.

3. It is a desirable goal. A traditional motivation
behind the maximization of social welfare is that
of a benevolent government, solely interested in
the happiness of its citizens, rather than in rev-
enue. To be sure, the VCG mechanism perfectly
achieves this classical goal by imposing prices to
the players. But such prices are almost an “af-
terthought,” or a “necessary evil”: they are just a
means to maximize social welfare. But what is
wrong with revenue? A benevolent government
transforms it into roads, hospitals and other in-
frastructure from which everyone benefits. Taking
this point of view, maximizing the sum of revenue
and social welfare in the presence of collusion is
a more meaningful goal for a benevolent govern-
ment.

Independent of the above reasons, revenue alone can-
not be meaningfully pursued in our setting. When
all players are allowed to collude without restriction
and the seller is not assumed to have any suitable

2In particular, the total performance of a mechanism M designed
to guarantee as much revenue as possible in the presence of collusive
players may be quite poor. This is so because M may only yield
modest revenue while sacrificing social welfare a lot, so that the total
performance of M may be just twice a modest revenue.

(e.g., Bayesian) knowledge about them, no meaningful
revenue-only benchmark can be guaranteed. For exam-
ple, if all players in an auction collude together, then
it is reasonably clear that no constant fraction of their
value for the items may be extracted as revenue, since
the mechanism essentially has to accept any price the
coalition names for themselves.

Knowledge Model

In our combinatorial auctions we adopt the knowl-
edge model of [7]. Again, this means that each player ¢
not only knows his own true valuation, but, without any
loss of generality, also a (possibly trivial) lowerbound
on the other players’ valuations. That is, the guaranteed
knowledge of each i consists of a valuation profile K*
such that (1) K¢ = T'V; and (2) for all other players j
and all subsets of the goods S, 0 < K¥(S) < TV;(9).3

The following “union” operation on such guaranteed
knowledge is crucial for us.

Definition 1. If K is a guaranteed-knowledge
profile and C' a subset of the players, then K¢
denotes the valuation profile such that, for any
player i and any subset S of the goods, K (S) =
max;co K7 (S).

In essence, K¢ is “the most accurate guaranteed knowl-
edge that the players in C' could compute after truthfully
sharing their individual guaranteed knowledge.” Notice
that K coincides with T'V; for any member i of C.

Knowledge-Monotone Benchmarks

A guaranteed-knowledge benchmark is a function B
mapping any possible guaranteed knowledge profile to a
non-negative real number. For the sake of meaningful-
ness, we focus solely on knowledge-monotone bench-
marks: that is, we demand that “the better the knowl-
edge of the players, the better the mechanism’s perfor-
mance.” A bit more formally, we impose a partial order
on guaranteed knowledge as follows.

Definition 2. For any guaranteed knowledge K
and K we say that K > klijl(S) > IA(]’:(S)for
all players © and j and any subset S of the goods.
We say that a guaranteed-knowledge benchmark

B is knowledge-monotone if B(K) > B(K)
whenever K > K.

Our Benchmark

Recall that the maximum social welfare of a valuation
profile V., M.SW (V'), is the maximum of 3, V;(4;),

3 Again following [7], we stress that K is not the only thing i
knows. And indeed a player is free to use any additional knowledge
when playing our mechanisms. However, if a mechanism is capable
of leveraging the players’ guaranteed knowledge, it is able to do so no
matter what additional knowledge the player may have.



taken over all partitions A of the goods among the play-
ers —where A; denotes the set of the goods that A as-
signs to player j. Let us now define the characteristic
benchmark of this paper.

Definition 3. (Maximum Known Welfare) Let-
ting MKW;(K) = MSW(K? for each
guaranteed-knowledge profile K and player i, we
define the maximum known welfare benchmark,
MKW, as follows:

MKW(K) = max MKW;(K).

More generally, for any subset S of the players,
we define MKW g = max;cg MKW,.

Note that MKW indeed is a knowledge-monotone
benchmark. Note too that each MIKW,; consists of the
maximum social welfare when the players’ true valu-
ations are precisely as in K¢, and thus consists of the
maximum social welfare ¢ knows he can guarantee if
he were in charge of assigning the goods. Accordingly,
MKW consists of “the maximum social welfare that the
best-informed player knows how to guarantee.” Since,
following the purest form of mechanism design, we as-
sume that all knowledge lies with the players (and none
with the designer), MIKW is a non-trivial benchmark,
and achieving it within a constant factor (as we do)
is significant. Of course we could conceive and con-
struct auction instances whose maximum known wel-
fare is rather low. But this is missing the point. When
all knowledge lies with the players,

Enabling an ignorant seller to assign the goods
roughly as well as the best informed player is an
attractive goal.

(To be sure, player-knowledge benchmarks have gen-
erated some common confusion. At least some of it has
been clarified in Section 5.1 of [8].)

From MEEW to MKW in a Collusion-Resilient Way
Note that MKW is a benchmark more demanding
than MEW. Indeed, MEW is only defined over the
external knowledge of independent players. By con-
trast, MIKW allows any player ¢ to assign goods to any
player, including himself. Thus, MKW captures the to-
tal (i.e., both internal and external) relevant knowledge
of all players (whether independent or collusive).
However, if we are satisfied to leverage just the
knowledge of the independent players, then the two
benchmarks can be related in various ways. In particu-
lar, the following holds. For any ¢ between 0 and 1, one
can easily transform a collusion-resilient mechanism
M guaranteeing revenue > cMEW into a collusion-
resilient mechanism M’ guaranteeing (1) a total perfor-
mance > CJ%IMKWI, where I is the set of indepen-
dent players, and (2) revenue greater than or equal to a

fraction _{7 of the total knowledge of the “second-best-
informed independent player.” Essentially, M’ runs M
with probability c_ilr—l and a “second-price” auction A’
with complementary probability. In such an A’, each
player bids a value together with a subset of the goods.
The winner is the player with the highest value. He pays
the second highest value, and gets the subset specified
in his bid. All other goods remain unallocated, and all
other players pay nothing. In particular, we can trans-
form the mechanism in [7] to a new one guaranteeing a
total performance > w.

Indeed, collusion resiliency is quite different from
and quite simpler than collusion leveraging. The main
point of this paper is not to leverage the total knowledge
of just the independent players, but that of all players.
Let us thus see what this should mean.

Collusion Leveraging

A basic way to express that a mechanism M achieves
a fraction ¢ of MKW is provided by the following prop-
erty:

In every rational play with guaranteed knowledge
K, the total performance of M is > ¢-MKW/(K).

Let us now put forward a more demanding way to ex-
press that M achieves a fraction ¢ of MKW (or any
other knowledge-monotone benchmark) in a dynamic
collusion model. Recall that such a model envisages a
multi-stage process: in the initial stage, each player is
independent and has his own knowledge; in the second
stage, M is announced; in the third stage the players
partition themselves into collusive sets as they see fit;
and finally M is played. Recall too that members of
the same collusive set cooperate so as to maximize the
sum of their individual utilities. To this end, they may
need to share some of their knowledge. Accordingly,
the guaranteed knowledge profile in the first and third
stages may be quite different.

Definition 4. We say that M is a collusion-
leveraging mechanism with total performance
cMKW if

in any rational play with initial guaranteed
knowledge K, M ’s total performance is
> ¢- MKW(K)

where K is the (fictitious) knowledge profile such

that, for every coalition C' in the final stage, K =

KO Vi € C, and K' = K for all independent

players i.
(It is actually possible to formally strengthen —and
achieve in our case— collusion leveraging by mandat-
ing another property: collusion rewarding. Informally,
a mechanism should make it preferable —subject only
to the ability to agree on how to split the proceeds— for
any subset of players to collude.)



REMARKS
e By knowledge monotonicity, MKW(K) >
MEKW(K). That is, our benchmark can only go
up when players collude.

e Collusion leveraging does not demand that mem-
bers of the same coalition share their knowledge.
Rather, it states that such members ultimately be-
have as if they shared their knowledge. In par-
ticular, the members of a coalition might choose
their best joint strategies via a secure multi-party
computation, in which each one of them uses his
own true knowledge as his own private input. This
way, they are able to de facto choose their best
strategies while preserving the privacy of their in-
dividual knowledge to the maximum possible ex-
tent, and thus without “sharing all of it” in any
reasonable sense of the term.

e Collusion leveraging is a goal beyond those con-
sidered in the past. In our terminology, the tradi-
tional effort was directed either at preventing col-
lusion (i.e., to achieve a desired benchmark evalu-
ated at K, rather than at K) or at neutralizing col-
lusion (i.e., to achieve a desired benchmark eval-
uated at the subprofile of K corresponding to the
independent players in the final stage, rather than
at the full K).

e Because the benchmark of a collusion-leveraging
mechanism increases with collusion, such a mech-
anism might as well explicitly envisage the pres-
ence of collusive players. Indeed, our mechanism
M of Section 4 goes as far as making special “col-
lusive strategies” available to coalitions of play-
ers. In some sense, therefore,

Our mechanism M is at the intersection of
cooperative and non-cooperative game theory.

e By providing strategies for collusive players, our
M de facto assumes that collusion is legalized.
Despite going against a long tradition, this choice
is quite logical in our adversarial collusive setting.
Indeed, if coalitions can form whenever the play-
ers want,

Insisting on mechanisms envisaging only
independent players is counter-productive.

Such insistence only ties the hands of the mech-
anism designer, and thus ultimately hurts perfor-
mance!

Our Main Result
The main result of our paper is the following.

Informal Thm 1: There exists a collusion-leveraging
combinatorial-auction mechanism M whose total per-
formance is Wg%w.“

“By slightly changing our mechanism and complicating its anal-

Open Questions
Our paper raises a totally new class of questions. In
particular,

e While we consider benchmarks of strictly increas-
ing meaningfulness, the fraction of them we are
able to achieve strictly decreases: namely,

1/2 of the maximum external welfare known to
any independent player (i.e., [7]);

1/3 of the maximum total welfare known to any
independent player (as discussed above); and

1/6 of the maximum total welfare known to any
player (i.e., Theorem 1).
Does this “anti-correlation” arise intrinsically, or
is it due to our currently poor tools in a new envi-
ronment?

e Eric Maskin (private communication) has asked
whether it would be possible to handle functions
of social welfare and revenue more sophisticated
than total performance. For instance, can we engi-
neer mechanisms so as to “initially” privilege rev-
enue, and then (i.e., after “enough” revenue has
been generated) social welfare? Good question,
but we are not ready for it yet!

e Could we guarantee better performance if “bet-
ter knowledge” (e.g., a mixture of guaranteed and
Bayesian knowledge) were available? Here, in
line with mechanism design in its purest form, we
mean that more accurate knowledge is available to
the players, not to the seller/designer!

o Are there tight impossibility results for collusion
leveraging? What are the right structural results
for rationally robust implementation? Can we
leverage collusion to a larger extent by better un-
derstanding “collusion formation?”

In sum, there is a lot more to understand and much more
work to look forward to!

1.3 Our Related Forthcoming Work

A related work, and in fact one predating and inspir-
ing this paper, is an unpublished manuscript of [18].
Their paper too aims at leveraging the knowledge of col-
lusive players in a combinatorial auction, but in a quite
different model. On one hand, they assume that at most
one coalition of players exists, that the knowledge that
the coalition has about the valuations of the indepen-
dent players is within an approximation factor k, and
that the mechanism designer ia aware of the value of
k. (Note that in many auctions it is reasonable to as-
sume that competitors can estimate within a factor of
2 each other’s valuations for the goods.) On the other
hand, they can leverage such knowledge by relying on
a simpler solution concept: namely, their mechanism is

ysis, we can improve the total performance of our mechanism to
LM]KW J /2'
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dominant-strategy truthful for independent players and
works in “undominated strategies” for the members of
the coalition.

2 Preliminaries

Combinatorial Auctions.
In a combinatorial auction with n players and multi-
ple goods for sale,

e The true valuation of a player i consists of a func-
tion T'V; mapping every subset S of the goods to
a non-negative integer, where T'V;(S) represents
the true value that 4 has for S.

e An allocation A consists of a partition of the
goods, A = Ay, Ay, ..., A,, where Ag represents
the unallocated goods, and A; (for ¢ > 0) the sub-
set of goods allocated to player i.

e An outcome ) consists of an allocation A and a
price profile P, a vector of integers indexed by the
players. If positive, P; represents the amount paid
by i, else —P; represents the amount received by
i.

We say that a combinatorial auction is unrestricted
to stress that the function 7'V is not assumed to be of
any special form: each value T'V;(.S) is independent of
TV;(S") for any (i, S) # (j, S")-

As is standard, goods are non-transferable and a
player ¢’s individual utility depends solely on how much
he pays and on which goods he receives: in an outcome
(A, P), it consists of TV;(A4;) — P;.

Extensive-Form Public-Action Auction Mecha-
nisms.

We focus solely on auction mechanisms of extensive
form. Thus our mechanisms must specify the decision
nodes (of a game tree), the player(s) acting at each node,
the set of actions available to each acting player at each
node, and the auction outcome (i.e., the allocation A and
the price profile P) associated to each terminal node —
leaf of the game tree. Our mechanisms may actually
specify multiple players to act simultaneously at some
decision nodes. Our mechanisms also are of public ac-
tion: that is, each action becomes common knowledge
as soon as it is played.’

A player i’s strategy specifies i’s action at each deci-
sion node in which ¢ acts. A play of a mechanism M
consists of a profile of strategies. If o is such a play,
then

e H(o) denotes the history of the play, that is the
sequence of decision nodes together with the ter-
minal node of the game tree reached when exe-

SWe refrain from using the more standard term “perfect-
information” to avoid confusion. Our setting is in fact of “incomplete
information.” That is, a player’s true valuation is not exactly known to
his opponents. And mechanisms of “perfect information and incom-
plete information” would be too much...

cuting M with each player ¢ choosing his actions
according to o;.

e M(o) denotes the auction outcome (A, P) asso-
ciated to H (o).
If M is probabilistic, then both H (o) and M (o) are dis-
tributions, respectively over histories and auction out-
comes.

For each player ¢, a mechanism /M must provide a
particular opt-out strategy OUT;, and must satisfy the
following
opt-out condition: for each player ¢ and each strategy
subprofile o_; for players other than i, u;(M (ouT; U
0_1)) = 0 (with probability 1 if M is probabilistic).

Generalized Contexts and Auctions.

A traditional context for a combinatorial auction can
be fully specified by the true-valuation profile 7'V
alone. Indeed, the outcome set, and the players’ util-
ity functions are uniquely determined once 7'V is spec-
ified. Following [7] ([8] for a better treatment), we en-
rich such a traditional context by including the knowl-
edge that each player has about the valuations of the
other players, as well as the collusion structure.

The external knowledge is formalized without any re-
course to any Bayesian information. It can be “zero”,
but when this is not the case, a mechanism should try to
leverage it to its designer’s advantage.

The collusion structure too can be “empty” in the
sense that all players can be independent.

Definition 5. A generalized auction context consists
of three components:

1. The true-valuation profile T'V.

2. The collusion structure (C, I), where C is a par-
tition of the players, and I the set of all players 1
such that {i} € C.

We refer to a player in I as independent, to a
player not in I as collusive, to any C' € C of car-
dinality > 1 as a collusive set. We use the term
agent ro denote either an independent player or a
collusive set. Since each player 1, collusive or not,
belongs to a single set in C, for uniformity of pre-
sentation we may denote by C; the set to which i
belongs.

If A is an agent, then the internal knowledge of
A is TV 4, and the utility of A in an outcome Q) =
(A, P), ua(Q),is Y ;e 4 TVi(A;) — P

3. The external-knowledge vector EK: for each
agent A € C, EK 4 is a set of valuation subpro-
files, for the players outside A, such that TV_ 4 €
EK 4.

If € is a generalized auction context whose components
have not been explicitly specified, then by default we as-
sume that € = (TV¢,(C?,I?),EK?). We say that
(¢, M) is a generalized auction if M is an auction
mechanism, and € a generalized auction context.



Let us now define the relevant knowledge of an agent.
Essentially this is the outcome with maximum welfare
known to its members.

Definition 6. (Relevant Knowledge) Given a gener-
alized context € and an agent A, we define RK jf, the
relevant knowledge of A, to be the outcome with max-
imum revenue among all outcomes (A, P) such that, for
all player j

1. Ifj € A then P; = T‘/;g(A])

2. Ifj & A then V;(A;) > Pj forall V € EKY.
The maximum known welfare of A, MIKW 4, is the
revenue of RKf’f. The maximum known welfare of
€, MKW, is max 4cce MKW 4.

Remarks
e A collusion structure specifies separately the set 1
for convenience and clarity only.

e Recall that in a collusion-leveraging mechanism
the members of the same collusive set will de
facto behave as if they are sharing their knowl-
edge. Accordingly, in a collusion-leveraging
mechanism, saying that .4 knows = means that all
players i € A know z.

e RK f{ is the knowledge of agent .A that our mech-
anism is capable of using to the designer’s advan-
tage, while 7V¥ and EK are the knowledge
that A uses to choose rationally the actions of its
members.

e Since we envisage a dynamic collusion formation,
the generalized context ¥ is that arising at the end
of our third stage, where coalitions are already
formed.

e When the generalized auction context 4 under
consideration is clear, we may “not use it as a
superscript.” For instance, we may simply write
MKW instead of MKW .

3 Distinguishable Domination and Ratio-
nally Rationally Robust Implementa-
tion

We adopt the same solution concept and implemen-
tation notion of [8] (see their paper for motivations and
basic properties of the notions). Their notations and def-
initions are reported below essentially verbatim, except
for some slight adjustments to our setting.

Through out this paper, whenever we say that S is

a vector of strategy (sub)sets in a generalized auction

(€, M), we mean that each S4 is a (sub)set of agent

A’s strategies. For such an S, we define the Cartesian

closure of S as S = [T 4cce Sa,and we define S_ 4 =

HOG(C%*?C;&A Sc-

Definition 7. (Distinguishable Strategies.) In a gen-
eralized auction G = (€,M), let S be a vector of

deterministic-strategy subsets, and let o 4 and o'y be
two different strategies for some agent A. Then we
say that o4 and o', are distinguishable over S if
Ir_4 € S_ 4 such that

H(oaUT 4) #H(oyUT_4).°

If this is the case, we say that T_ 4 distinguishes o 4
and o'y over S; else, that o 4 and o'y are equivalent
over S.

Definition 8. (Distinguishably Dominated Strate-
gies.) Let G = (€, M) be a generalized auction, A an
agent, o 4 and o', two strategies of A, and S a vector of
deterministic strategy subsets. We say that o 4 is distin-
guishably dominated (by oy) over S —equivalently
that o', distinguishably dominates o 4 over S— if
1. 04 and 014 are distinguishable over S; and
2. Blua(M(oaUT—4))] <E[ua(M(olyUT_4))]
for all strategy sub-vectors T_ 4 distinguishing o 4
and o'y over S.

Definition 9. (Compatible Contexts.) We say that a
generalized context €' is compatible with agent A in
a generalized auction G = (€, M) if: €' and € have
the same set of players and the same set of goods, A €
C?,1Tv{ =TV}, and EKY = EKY.

Notice that %"’ being compatible with .A implies that
RKY = RKY also, since A’s relevant knowledge is
deduced from its internal and external knowledge.

Definition 10. (L;-Rationally Robust Plays) Let G =
(€, M) be a generalized auction, i a player and A an
agent in G. Let ¥° = [[X? be a profile of strategy
sets, such that XY is the set of all possible strategies of
1 according to M.

o We define $i, 4 to be the set of strategies in £%

that are not distinguishably dominated over X° in
1 1
G, and ¥, to be HAeC‘g E%A-

o We say that a strategy o 4 € E%A is globally dis-
tinguishably dominated if there exists a strategy
oy € E%‘,A’ such that for all contexts €' com-
patible with A, ¢'4 distinguishably dominates o 4
over £L.,, where L, is defined as $, but for auc-
tion (€', M).

o We denote by 2%7 4 the set of all strategies in
Eclg?A that are not globally distinguishably dom-
inated.

e We say that a strategy vector o is an Ly -rationally
robust play of auction G if o4 € E%,A for all
agent A.

OIf H(o,4 UT—4)and H(o'y U T_ 4) are distributions over the
histories of (7, then the inequality means that the two distributions are
different.



Definition 11. (L;-Rationally Rationally Robust Im-
plementation.) Let C be a class of generalized auction
contexts, P be a property over (distributions of) out-
comes of contexts in C, and M an extensive-form auc-
tion mechanism with simultaneous and public actions.
We say that M L -rationally robustly implements P
if, for all contexts € € C
1. for each player i, OUT; & E?gz where Efgl is
the subset of strategies for player i, obtained by
taking the i-th component of each oc; € E%’Ci.

2. for all Ly -rationally robust plays o of the auction
(€, M), P holds for M (o).

Remarks.

o Different from [7, 8] where 2%7 4 are explicitly de-
fined for independent players only, here we define
E?& 4 for both independent players and collusive
sets.

o In the definition above, the compatibility of a gen-

eralized context with an agent A is defined with re-
spect to A’s internal and external knowledge only.
However, .4 may have all other types of knowl-
edge, and when this is the case then A is enti-
tled to use it for pruning the compatible contexts
it should consider. In particular, an agent may
have knowledge about the collusion structure, as
well as knowledge about other players’ external
knowledge. Our L; label in definitions 10 and 11
highlights the fact that we only rely on the sim-
plest, level-one knowledge (about players true val-
uations).
Of course, as per footnote 3, if a mechanism imple-
ments a property [P Lq-rationally robustly, then P
holds whatever additional information each .4 may
have.

4 Our Mechanism
In the description of our mechanism,
e {1,...,n} is assumed to be the set of players;

® ¢, €1, and €y are three —arbitrarily small— con-
stants in (0, 1) such that 2ney; < €;.

e anoutcome (A, P) is called reasonable if each P;
is non-negative;

e an allocation A is said to be for a set C of players
if A; = () whenever j ¢ C;

e numbered steps refer to steps taken by the players,
“bulleted” ones to steps taken by the mechanism.

Mechanism M

e Set A; = () and P; = 0 for each player 1.
(Outcome (A, P) will be the final outcome of the
mechanism.)

1. Each player ¢, simultaneously with the others, pub-
licly announces three things:

(1) a subset of players including ¢, C; (allegedly
the collusive set to which ¢ belongs);

(2) an allocation for C;, S? (allegedly the alloca-
tion desired by C;); and

(3) a reasonable outcome, ! = (o, 7%) (allegedly
the relevant knowledge of C;).

e Set: R; = REV(Q)) for each player i, x =
argmax,; R; (ties broken lexicographically), and
R' = max;gc, Ri.

(We shall refer to player x as the “star player”, and
to R’ as the “second highest —announced— rev-
enue”.)

e For each player 7 for which C; includes a player j
such that ¢ ¢ C}, do:

(1) reset P; := P; + R, + €; (i.e., impose to ¢ a
fine of R, + €; payable to the mechanism/seller)
(2) for each j € C; such thati ¢ Cj, reset P; :=
P, +R,+¢€ and P; ;== P; — R, — € (ie., have i
pay R, + €1 to j)

o If there is a player ¢ such that P; > 0 (i.e, if ¢
has been fined), ABORT the auction (i.e., no fur-
ther money exchanges hands, and all goods remain
unallocated for ever).

e Publicly flip a biased coin ¢; which comes up
Heads with probability €. If Heads: uniformly
and randomly choose a player i, reset x := ¢ and
R’ := 0. (In this case, R' does not quite corre-
spond to the second highest announced revenue,
but this “mismatch” only happens rarely.)

o Publicly flip a fair coin ¢,. If Heads: reset A := S*
and HALT.

2. (If Tails:) Each player 4 such that ¢ ¢ C, and
mF > 1 publicly, and simultaneously with the oth-
ers, announces YES or NO (i.e., declares whether
he wants to receive the subset of goods o for a
price 7} — €3)

e Reset allocation and prices as follows:

(1) P, := R' — nes;

(2) for each player ¢ such that either ¢ € C, or
wr =0, reset A; := a; and

(3) for each player ¢ such that i ¢ C and 77 > 1:
if ¢ announced NO, then P, := P, 4+ 7} (i.e., x is
punished due to ¢ announcing NO); else, A; := a,
P, := P, + 7} — €, and P, := P, — (7} — €3)
(i.e., x is rewarded due to ¢ announcing YES).

e Finally, reset P; := P, — eo(1 — H_%) for each
player ¢ (i.e., to break “utility ties”, a small re-
ward is added to each player, increasing with his
announced revenue).

Remarks
e Consistency Check. Notice that our mechanism
checks consistency among collusive players in the
second mechanism step after Step 1. But this con-



sistency check is quite elementary. In particular,
if (a) ¢ declares that he belongs to the same collu-
sive set as j and k, while (b) 5 declares to collude
only with 7 and (c) k£ declares to collude only with
1, then our mechanism continues unperturbed, de-
spite the obvious discrepancies of these declara-
tions. Nonetheless, our elementary consistency
check suffices to guarantee that our benchmark is
achieved in any rational play of our mechanism,
that is, for any profile of ¥? strategies.

e Small Constants. The mechanism makes use of
3 arbitrarily small constants only for “properly
breaking utility ties.”

S Our Analysis
5.1 Notation

To state our main theorem and lemmas we utilize the
following notation

e Social Welfare of an Allocation. If A is an alloca-
tion, then SW(A) denotes the social welfare of A:
that is

SW(A) =Y TVi(A).
k

e Revenue of an Outcome. If Q1 = (A, P) is an out-
come, then REV(2) denotes the revenue of (2: that

1S
REV(Q) = ) Py
k

e Hidden Value of an Outcome. If C'is an agent and
Q = (A, P) is an outcome, then the hidden value
of  for C, HiddenV ¢ (Q), is

HiddenVo(Q) = Y TVi(Ax) + Y Pi.
keC k¢C

(Notice that in an execution of M, if x’s an-
nounced outcome is €2, then when coin ¢y comes
up Tails, the maximum utility that C, can pos-
sibly get by selling the goods according to {2 is
HiddenV¢, (), disregarding small constants. In
fact, this utility can be substantially decreased if
some players reject “their offers.”)

5.2 Statement of Our Lemmas

Our main theorem is based on five lemmas, stated be-
low but proven in the full version of our paper (available
at http://people.csail.mit.edu/silvio/Selected
Scientific Papers/Mechanism Design/).

Lemma 2 actually is an immediate corollary of the
first two lemmas of [7], but the others are new.

The statements of our lemmas refer to a play o of a
game (¢, M), where € = (TV,(C,I), EK) is a gen-
eralized context, and M our mechanism of Section 4.
The relevant knowledge of € is denoted by RK. For
short, we redefine ©' = £ and 2 = ¥2..

Lemma 1. For all agents C and all o € X}, the fol-
lowing two properties hold in Step 1:
Pl. foralli € C, C; C C (that is, i never includes a
player outside C' in his announced collusive set);
and

P2. for any two different players i1,i2 € C, iz € Cy,
if and only if iy € C;, (that is, C’s members de-
clare their collusive sets consistently with each
other).

Lemma 2. Forall agents C and all o € 3§, if x ¢ C,
then in Step 2, for all players i in C'\ Cy such that
wr > 1:

e i announces YES whenever TV;(a}) > 7}, and

e i announces NO whenever TV;(af) < w?.

Lemma 3. For all agents C and all o € 3L, if x € C,
then in Step 2, for all players i in C \ C such that
¥ > 1, i always announces YES.

Lemma 4. For all agents C, all oc € Y%, and
player j € C such that j is the lexicographical first
player among all players i € C with REV(Q) =
maxgec REV(QF), we have that HiddenVo(QF) >
REV(RK() (that is, C’s members do not “underbid”
on the hidden value of their announced outcomes).

Lemma 5. For all agents C and all o € X%, we

have that maxjcc REV(QF) > % (that is, C’s
members do not “underbid too much” on the revenue of

their announced outcomes).

5.3 Statement and Proof of Our Theorem

Theorem 1. For all generalized contexts € and all L -
rationally robust plays o of (¢, M), we have that

(1 - ¢ MKW

E[REV(M(0))]+E[sW(M(0))] > 5

€].
Proof. First of all, it should be obvious from our lem-
mas that, for each player i, OUT; ¢ 2. Now let’s pro-
ceed with the rest of the proof.

Let C be the agent such that REV(RK¢) = MKW.
Notice that by Lemma 1, in execution o, the mechanism
does not abort before Step 2.

When ¢; = Heads, no matter whom the star player
is, we have that: (1) the expected social welfare is
E[sw(M(o))|c1 = Heads] > 0, because TV;(S) > 0
for any player ¢ and any subset S of the goods; and (2)
the expected revenue is E[REV(M(0))|c; = Heads] >
— %1, because when and only when c» = Tails, the star
player pays at least R’ — nes = —ney to the mechanism
and the mechanism gives back total reward less than ne,
to the players. Therefore E[sw(M(0))|c; = Heads] +
E[REV(M(0))|c; = Heads] > —222 > —1

When ¢; = Tails, the mechanism does not reset the
value of x and R’. By the way that ties are broken,

10



the star player is the lexicographically first player in his
collusive set among the players who have announced
the maximum revenue in Step 1. We distinguish two
cases.

Casel: x€C.
In this case we have the following observations:

(1) By Lemma 4, HiddenV(02*) >
REV(RK().

(2) When co = Tails, the revenue that x pays to
the mechanism is at least R’ — ney > —nes.

(3) By Lemma 3, when ¢y = Talils, every k €
C \ C, with 7} > 1 announces YES, and
thus the social welfare generated from play-
ersin C'is ), . T'Vi (), and the revenue
generated from them is 0, because for each
player k € C'\ C, with 7 > 1, the mech-
anism charges k with price 7} — €2, but re-
wards the star player the same amount.

(4) By Lemma 1, k£ ¢ C, for all players k& ¢
C, and thus when ¢, = Tails, any such
k with 7, > 1 gets to announce YES or
NO in Step 2. By Lemma 2, for each such
k, if k announces YES, then we have that
TVi(aj) > mj, therefore the social wel-
fare generated due to this announcement is
at least 7, and the revenue generated is O
(again the money paid by k goes to x); if k
announces NO, then the social welfare gen-
erated due to this announcement is 0, but
the revenue generated is 7, because the star
player is punished by 7. Therefore the sum
of the social welfare and revenue generated
due to the announcements made by the play-
ers outside C'is at least ) o 7.

(5) When ¢c; = Tails, the reward given to
each player ¢ in the last step is ex(1 —

1
TREVEY) < €2

Accordingly, when ¢, = Tails, we have that

REV(M(0)) + sW(M(o))
> Z TV (a}) + Z 7y — 2nes
keC kgC
= HiddenV(Q*%) — 2nes > MKW — ¢;.

Because REV(M(0)) = 0 and sW(M(o)) > 0
when ¢, = Heads, we have that

E[REV(M(0))|c1 = Tails]
+E[sW(M(0))|c1 = Tails]
MKW — ¢

- 2 ?

11

and thus

E[REV(M(0))] + E[sw(M(0))]

€€y MKW — €;
> —+(l—¢  ——
-
(1 — e) MKW
> 9T o
6
Case2: x ¢ C.

In this case, by Lemma 1, C, N C' = 0; and
by Lemma 5, maxzec REV(QF) > %.

Therefore R’ > %, by definition of R'.
When ¢y = Tails, the star player pays at least R’ —
ne, to the mechanism, and the reward given back
by the mechanism to the players is at most ne,.
Thus REV(M(0)) > R’ — 2ne, > REVUiKe)

e = MEW ¢ Because SW(M(o)) > 0 always,

we have that

E[REV(M(0))|c1 = Tails]
+E[sW(M(0))|c1 = Tails]
MKW €1
> —
- 6 2
Therefore

E[REV(M(0))] + E[sw(M(0))]

€€q MKW ¢
> = —e) (/2 2
> S (l-9 (- )
(1 — e MKW
> = e
6
Q.E.D.
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