
Beyond the Worst-Case Analysis of Algorithms

Edited by

Tim Roughgarden

Contents

1 Instance Optimal Distribution Testing and Learning G. Valiant

and P. Valiant page 4

1.1 Testing and Learning Discrete Distributions 4

1.2 Instance Optimal Distribution Learning 5

1.3 Identity Testing 15

1.4 Digression: An Automatic Inequality Prover 19

1.5 Beyond Worst Case Analysis for Other Testing Problems 22

1.6 References and Bibliographic Notes 23

Exercises 25

1

Instance Optimal Distribution Testing and Learning
Gregory Valiant and Paul Valiant

Abstract

This chapter considers the challenge of saying as much as possible about a prob-

ability distribution given a limited number of samples. Traditionally, work has fo-

cused on either developing algorithms that are optimal in an asymptotic sense as

the amount of data goes to infinity, or developing algorithms that are optimal in

a worst-case sense when parameterized by relevant quantities such as the support

size. This chapter, by contrast, considers two standard settings—learning a discrete

distribution from samples, and testing whether a set of samples was drawn from

a specific distribution—and develops algorithms that are near optimal on every

instance.

1.1 Testing and Learning Discrete Distributions

This chapter revisits some of the most basic distributional learning and hypoth-

esis testing problems, with the goal of designing algorithms for these tasks that

are optimal in stronger senses than classical worst-case analysis. The first portion

of the chapter considers the problem of learning a discretely supported distribu-

tion from independent draws. To motivate the results presented here, it is worth

first considering the naive approach that simply returns the empirical distribu-

tion of the samples. The empirical distribution is optimal in a strong worst-case

sense: for every error parameter ε > 0, and integer k, given n = k/ε2 indepen-

dent draws from a distribution supported on ≤ k elements, the expected total

variation distance between the true distribution and the empirical distribution of

the samples is bounded by O(ε). Furthermore, for worst-case distributions sup-

ported on k elements, there is no algorithm that can achieve expected error ε with

n = o(k/ε2) samples. However, despite this worst-case optimality of the empirical

estimator, one might hope to do significantly better than this naive algorithm for

the many non-worst-case distributions that have exploitable structure. Indeed, this

chapter presents an “instance-optimal” algorithm which, in a concrete sense, opti-

Instance Optimal Distribution Testing and Learning 5

mally leverages whatever structure is present in the distribution in question, even

without any prior knowledge of this structure.

The second portion of this chapter considers the following basic hypothesis test-

ing problem, sometimes referred to as “identity testing”: given the description of a

distribution, p, error tolerance ε > 0, and n independent draws from an unknown

distribution, q, distinguish the case that p = q versus the case that p and q have

total variation distance at least ε. Pearson’s classical chi-squared test is one of the

most commonly used algorithms for this problem, though is far from optimal in the

regime in which one expects many domain elements to be observed zero or once

among the n samples. Beginning in the early 2000’s, new algorithms were devel-

oped that pinned down the optimal sample size necessary for performing this test,

for worst case distributions, p, parameterized in terms of their support size. This

chapter instead provides a variant of Pearson’s chi-squared test which is optimal for

every distribution, p, defined over a discrete countable support, and error param-

eter ε. Analyzing this algorithm yields a clean expression representing the sample

complexity of testing the identity of a distribution p, as a function of p and ε.

Both the instance optimal learning, and the identity testing portions of this

chapter, require some machinery that is conceptually and technically interesting

beyond the direct applications to the problems at hand. This chapter provides self-

contained treatments of this material. Section 1.2.3 describes an algorithm which,

given n samples from distribution p, accurately recovers the multiset of the probabil-

ities of the distribution, essentially as accurately as the empirical estimate would be

when given n log n samples. Section 1.4 describes an efficient algorithm for proving

inequalities of a certain form; such inequalities arise in the analysis of the identity

testing algorithm and in many other settings in theoretical computer science.

1.2 Instance Optimal Distribution Learning

Given independent draws from an unknown distribution over an unknown discrete

support, what is the best way to aggregate those samples into an approximation

of the distribution? The most obvious approach is to simply return the empiri-

cal distribution of the samples. To what extent can one improve over this naive

approach?

If one knew, a priori, that the distribution in question possessed some special

structure, that information could plausibly be leveraged to “de-noise” the empirical

distribution. For example, if one knew that the distribution is uniform over its

domain, then one simply needs to identify the support of the distribution and

estimate the support size. Both of these tasks may seem easier than estimating the

probability of each element. A more realistic scenario might be where one knows

that the distribution has a discrete power-law probability profile (where the ith

most likely domain element has probability roughly proportional to 1/is for some

6 G. Valiant and P. Valiant

constant, s, such as in Zipfian distributions); such information could plausibly be

leveraged to “correct” the empirical distribution, by nudging empirical probabilities

so that they fit with our prior knowledge of the overall power-law shape.

Is there an algorithm which, for every input distribution, optimally leverages

whatever “structure” is present, without any prior information about the type of

structure? This chapter shows that the answer is yes, up to a subconstant additive

term, if one interprets the “structure” of a distribution to mean any property, such

as support size or entropy, that is invariant to permuting or relabeling the domain

elements—namely any function of the multiset of probabilities with which elements

occur.

For the sake of both the construction of this instance-optimal learning algorithm,

as well as its analysis, we will first define an unachievably good benchmark that will

quantify how helpful the structure in the given instance actually is. This benchmark

will correspond to the expected performance of an algorithm that receives extra in-

formation about the distribution in addition to the samples, and then uses this extra

information and samples optimally. Specifically, this extra information will be the

complete description of the distribution in question, with the labels removed. This

extra information can be canonically represented as access to the sorted vector of

probabilities with which domain elements occur: p1 ≥ p2 ≥ p3 ≥ As it turns out,

it will not be too difficult to reason about the structure of an algorithm which uses

this extra information optimally. The analysis proceeds by designing an algorithm

that does not receive this extra information, yet still emulates this unachievably

good benchmark. The analysis concludes by showing that this algorithm, on every

input distribution, performs nearly as well as the unachievably good benchmark.

Definition 1.1. Let ErrOpt∗(p, n) be the minimum expected `1 error that any

algorithm could achieve on the following learning task: given the description of p,

and n samples drawn independently from a distribution p′ that is identical to p up

to an arbitrary relabeling of the domain, learn the distribution p′. Let Opt∗ be the

corresponding algorithm, which takes as input both the samples, and the vector of

(permuted) probabilities.

The following theorem summarizes the sense in which an instance-optimal algo-

rithm will, for every discrete distribution, learn nearly as well as if it already knew

the distribution, up to relabeling the domain.

Theorem 1.2. The Instance Optimal Learning Algorithm, outlined in Algorithm 1.1,

when given n independent draws from any distribution p of discrete support, outputs

a labeled vector q, such that with probability at least 1− n−ω(1),

||p− q||1 ≤ ErrOpt∗(p, n) + 1/polylog(n).

The proof of Theorem 1.2 boils down to arguing that if there are sufficient samples

for Opt∗ to accurately assign the labels of domain elements to the ground truth

Instance Optimal Distribution Testing and Learning 7

(unlabeled) vector of probabilities, then one has enough samples to approximately

learn the vector of unlabeled probabilities from only the samples. From there the

Instance Optimal Learning Algorithm may emulate Opt∗, losing only a 1/polylog(n)

additive error in comparison to this benchmark. It turns out that the 1/polylog(n)

additive error term is necessary in the above statement. If, however, one allows

a multiplicative constant in front of ErrOpt∗, then a slightly different algorithm

allows the 1/polylog(n) error term to be improved to O(1/poly(n)). In both cases,

this error term is a function of n only, and in particular is independent of the

distribution in question.

Theorem 1.3. The Good–Turing Denoising Algorithm, described in Algorithm 1.2,

when given n independent draws from any distribution p of discrete support, outputs

a labeled vector q, such that with probability at least 1− n−ω(1),

||p− q||1 ≤ 2 · ErrOpt∗(p, n) + Õ(1/n1/6).

One surprising implication of the above results is that for large sample sizes, n,

prior knowledge of the “shape” of the distribution, or knowledge of the rate of decay

of the tails of the distribution, cannot significantly improve the accuracy of the

learning task. For example, Theorem 1.2 implies that typical Bayesian assumptions

that the frequency of words in natural language satisfy Zipf distributions, or that

the frequencies of different species of bacteria in the human gut satisfy Gamma

distributions or various other power-law distributions, can improve the expected

error of the learned distribution by at most a vanishing function of the sample size.

The following two examples highlight the limits and power of these results.

Example 1.4. Let p = Unif(2) denote a distribution supported on two do-

main elements, with each element having probability 1/2. The unattainable bench-

mark Opt∗ just needs to learn the support, and hence for n ≥ 1 the error is

simply 1/2 times the probability of not having observed both elements, namely

ErrOpt∗(Unif(2), n) = 1
2

1
2n−1 = 2−n. On the other hand, without prior knowledge

of the probabilities, no algorithm can use n coin flips to learn the probabilities of a

(possibly biased) coin to error o(1/
√
n).

Example 1.4 illustrates that prior knowledge of the vector of probabilities can

be very helpful, reducing the expected error from inverse polynomial to inverse

exponential. This demonstrates that, in general, one should not hope to achieve a

result of the form of Theorem 1.2 without an additive error term. The fact that the

error term of Theorem 1.2 vanishes as a function of the sample size, independent

of the distribution, implies that for sufficiently large n there is no distribution

for which prior knowledge of the probabilities can be leveraged to improve the

expected error by a constant. The following example examines a natural extension

of the above setting, where both Opt∗, as well as the instance-optimal algorithm,

8 G. Valiant and P. Valiant

achieves significantly less error than the naive algorithm that returns the empirical

distribution of the samples.

Example 1.5. Let p = Unif(k) correspond to a uniform distribution over k ele-

ments. The Opt∗ benchmark needs to learn the support of the distribution, as it

knows, a priori, that every domain element that occurs with nonzero probability

occurs with probability 1/k. Hence, given n samples, the expected error is 1/k times

the expected number of unobserved domain elements:

ErrOpt∗(Unif(k), n) = Pr[Binomial(n, 1/k) = 0] ≈ e−n/k.

In comparison, the empirical distribution of the samples will have expected error

ErrEmp(Unif(k), n) =
k

n
E[|Binomial(n, 1/k)− n/k|] ≈ min(

√
k/n, 1).

When n = c·k, these two expected errors differ drastically, with ErrOpt∗ ≈ exp(−c)
versus ErrEmp ≈ 1/

√
c. For example, if c = 10, then each domain element will

show up 10 times in expectation; if a domain element shows up 9 or 11 times, then

the empirical estimator will over- or underestimate its probability respectively, while

the optimal estimator will treat such over- or under representation in the samples

identically, making an error only in the exponentially (≈ e−10) unlikely case that

such a domain element is entirely absent from the samples.

Theorem 1.2 shows that the Instance Optimal Learning Algorithm achieves error

exp(−c) + on(1), which will be close to ErrOpt∗ as long as n is large.

1.2.1 Understanding the Benchmark, Opt∗

Rather than directly trying to understand Opt∗, the analysis will instead consider

an algorithm that receives even more additional information. Suppose you were

given a set of samples, and, for each integer i ≥ 1, you were told the multiset of

probabilities of the domain elements observed exactly i times. With this additional

information, the optimal algorithm is easy to describe:

First, for all integers i, the optimal algorithm will assign the same probability to

all domain elements that are observed exactly i times. If this was not the case, it is

not hard to show that there would exist a labeled distribution on which the algo-

rithm would perform sub-optimally. Given this, the question is what probability to

assign? The following fact, whose proof is left as an exercise (Exercise 1.1) provides

the answer.

Fact 1.6. Given a multiset of real numbers, S = {s1, . . . , sm}, setting x = median(S)

minimizes the sum of absolute differences between elements of S and x:

m∑
i=1

|si −median(S)| = inf
x∈R

m∑
i=1

|si − x|.

Instance Optimal Distribution Testing and Learning 9

Hence we arrive at the following high-level sketch of the instance-optimal algo-

rithm emulating Opt∗:

Algorithm 1.1. Sketch of the Instance Optimal Learning Algorithm that emulates

Opt∗, achieving the instance-optimal guarantees of Theorem 1.2.

Input: A set of n independent draws from an unknown distribution.

Output: A labeled vector of probabilities.

1. Use the samples to accurately reconstruct the unlabeled vector of probabilities,

as described in Section 1.2.3.

2. For each i ≥ 1, leverage the reconstructed vector to approximate the expected

median probability of elements occurring i times, and assign that probability to

all domain elements that occurred i times.

The most involved component of the above algorithm is reconstructing the unla-

beled vector of probabilities. This is an extremely useful primitive, independent of

our current goals of instance-optimal learning. Section 1.2.3 sketches the approach

to this reconstruction problem, and describes some of the other applications of this

subroutine. The complete proof of Theorem 1.2 is quite involved, though can be in-

terpreted as arguing that, up to the additive 1/ polylogn error term, one can always

recover an approximation of the unlabeled vector of probabilities more accurately

than one can disambiguate and label such a vector. This chapter will not cover

the details of this proof, and we refer the interested reader to Valiant and Valiant

(2016).

One of the difficulties in proving Theorem 1.2 is that the median is not especially

well behaved, and it is tricky to design unbiased (or little-biased) estimators for the

median of a distribution. The mean, however, is extremely well behaved, and can

be leveraged to construct a simple algorithm that is easy to analyze, which achieves

the guarantees of Theorem 1.3. The following fact summarizes the crucial property

of the mean used in the analysis (see Exercise 1.2 for its proof):

Fact 1.7. Given a multiset of numbers, S = {s1, . . . , sm}, setting x = mean(S)

is at most a factor of 2 from minimizing the sum of absolute differences between

elements of S and x:
∑m
i=1 |si −mean(S)| ≤ 2 infx∈R

∑m
i=1 |si − x|.

The following section describes the Good–Turing frequency estimation scheme,

which provides an extremely simple estimator for the expected average probability

of elements observed i times. This estimator leads to the simple algorithm achieving

the guarantees of Theorem 1.3.

1.2.2 Good–Turing Frequency Estimation and Proof of Theorem 1.3

In the context of the British WWII code breaking efforts at Bletchley Park, I.J.

Good and Alan Turing developed a slick approach to estimating simple functionals

10 G. Valiant and P. Valiant

of discrete distributions, including the amount of “missing mass”—the total prob-

ability mass comprised by elements that have not been observed in a given set of

samples. At a high level, their approach is to write an expression for the quantity of

interest, and then re-express that as a linear combination of terms,
∑
j≥1 cj E[Fj],

where Fj denotes the number of elements observed exactly j times. Given that Fj
will be tightly concentrated about its expectation, this will yield a good estimate,

provided the coefficients, cj , are not too large.

We begin by instantiating the above approach for the task of estimating the

expected total probability mass comprised of elements observed exactly i times,

yielding a variant of what is often referred to as Good–Turing Frequency Estimation.

Proposition 1.8. Given n independent draws from a distribution p, let Fi de-

note the number of elements observed exactly i times, and let mi denote the total

probability mass comprised by such elements. Then for i < n,

E[mi] =
i+ 1

n− i
E[Fi+1] +O((i+ 1)/(n− i)).

Proof We begin by rewriting the expression for E[mi] in terms of E[Fi+1]. In the

following, the summations are over the domain of the distribution, and p(x) denotes

the probability that the distribution assigns to element x.

E[mi] =
∑
x

p(x) Pr[Binomial(n, p(x)) = i]

=
∑
x

p(x)(p(x))i(1− p(x))n−i
(
n

i

)
=
i+ 1

n− i
∑
x

(p(x))i+1(1− p(x))n−i
(

n

i+ 1

)
=
i+ 1

n− i
∑
x

(1− p(x)) Pr[Binomial(n, p(x)) = i+ 1]

=
i+ 1

n− i
E[Fi+1]− i+ 1

n− i
∑
x

p(x) Pr[Binomial(n, p(x)) = i+ 1].

The second term on the last line is bounded by 1, since
∑
x p(x) = 1 and each

binomial probability is at most 1, yielding the proposition.

We are now prepared to describe the algorithm to which Theorem 1.3 applies.

For elements observed many times, it uses their empirical probabilities, and for

elements observed few times, it leverages the above Good–Turing estimate for the

expected amount of probability mass comprised by such elements.

Algorithm 1.2. The Good–Turing Denoising Algorithm, achieving the instance-

optimal guarantees of Theorem 1.3.

Input: A set of n independent draws from an unknown distribution.

Output: A labeled vector of probabilities.

Instance Optimal Distribution Testing and Learning 11

1. For each i ≥ n1/3, for every domain element observed exactly i times in the n

samples, assign its empirical probability, i/n.

2. For each i < n1/3, assign probability i+1
n−i ·

Fi+1

Fi
to each of the Fi elements

observed exactly i times, where Fj denotes the number of domain elements

observed exactly j times in the n samples.

The proof of Theorem 1.3 will rely on the following intuitive concentration results.

Lemma 1.9. With probability 1 − n−ω(1), for any distribution, p, we have the

following tail bounds:

• The contribution to the error due to elements occurring more than n1/3 times is

small: ∑
x: freq(x)≥n1/3

|p(x)− p̂(x)| ≤
∑

x: freq(x)≥n1/3

√
freq(x)

n
polylogn ≤ Õ(n−1/6),

where p̂(x) = freq(x)/n denotes the empirical probability of x.

• For i ≥ 1, |Fi − E[Fi]| ≤
√

1 + Fi polylogn, and the mass comprised of ele-

ments seen i times, mi satisfies |mi − E[mi]| ≤ i
n

√
1 + E[Fi] polylogn, and

the contribution to the error from our approximation of the mean probability

mi/Fi ≈ i+1
n−i ·

Fi+1

Fi
is bounded as

Fi

∣∣∣∣mi

Fi
− (i+ 1)Fi+1

(n− i)Fi

∣∣∣∣ =

∣∣∣∣mi −
(i+ 1)Fi+1

n− i

∣∣∣∣ ≤ i

n

√
1 + E[Fi] polylogn.

The proof of the above lemma is left as an exercise. Proving these concentra-

tion bounds is complicated by the fact that the quantities in question cannot be

easily represented as a sum of independent random variables—even the quantity

Fi representing the number of elements observed exactly i times involves depen-

dencies. Hence, instead of using basic Chernoff bounds to analyze this, which only

apply to sums of independent random variables, one must instead apply Azuma’s

inequality—the standard analog for martingales, and analyze the Doob martingale

that considers the expectation of the quantities in question as each of the n draws

is successively revealed.

We now complete the proof that the Good–Turing Denoising Algorithm of Al-

gorithm 1.2 achieves the guarantees of Theorem 1.3. Specifically, with high prob-

ability over the choice of the n independent samples, the error of this algorithm

is at most 2 · ErrOpt∗ + O(1/n1/6), where ErrOpt∗ is the expected error of the

optimal algorithm that receives the description of the true distribution without

labels, in addition to the samples. We will prove the slightly stronger statement

that with high probability, the algorithm described above achieves an error at most

2 · ErrOpt′ + O(1/n1/6), where ErrOpt′ is the expected error of an optimal algo-

rithm that receives a vector of probabilities for each i ≥ 0, corresponding to the

unlabeled vector of probabilities of all elements that occurred exactly i times.

12 G. Valiant and P. Valiant

Proof of Theorem 1.3 From Fact 1.6, this even better benchmark algorithm, Opt′,

simply computes the median of each vector of probabilities and by Fact 1.7, if we

instead computed the mean, µi of each vector, for i ≥ 1, and assign µi to each

element observed i times, we would incur an expected error at most 2ErrOpt′. The

first part of Lemma 1.9 guarantees that the contribution to the error from elements

occurring at least n1/3 times is bounded by Õ(n−1/6). The second part of Lemma 1.9

shows that the discrepancy between the true and estimated means contribute at

most the following quantity to the error:
∑
i∈{1,...,n1/3}

i
n

√
1 + E[Fi] polylog(n).

Because of the constraint that
∑
i≥1 iFi = n, this expression is maximized, up to

a constant factor, when E[Fi] ≈ n1/3 for all i ≤ n1/3, in which case the bound

becomes∑
i∈{1,...,n1/3}

i

n

√
1 + E[Fi] polylogn ≤ n1/3n

1/3

n

√
1 + n1/3 polylogn = Õ(n−1/6).

1.2.3 Estimating the Unseen: Reconstructing a Distribution up to

Permutation

In this section we describe an algorithm that accurately approximates the unlabeled

vector of probabilities of a distribution, given access to independent samples. This

is the main subroutine in the Instance Optimal Learning Algorithm satisfying the

guarantees of Theorem 1.2, sketched in Algorithm 1.1. We also briefly discuss some

applications of this subroutine beyond its use in instance-optimal learning.

The recovery guarantee for this reconstruction roughly states that, for any dis-

tribution, p, given n independent draws, one can accurately recover the portion of

the unlabeled vector of true probabilities comprised of probabilities above c/n log n,

for a suitable constant c. This is despite the fact that all the empirical probabili-

ties of elements we observe are integer multiples of 1/n, and for the elements with

probability � 1/n, we cannot hope to learn the labels for most of them, as the

vast majority of such elements will not be observed in the n samples. The following

theorem formalizes the recovery guarantees.

Theorem 1.10. Let c denote an absolute constant. For a distribution p, let p1 ≥
p2 ≥ . . . represent the sorted vector of probabilities assigned to domain elements.

For sufficiently large n and any w ∈ [1, log n], given n independent draws from p,

a. One can recover a vector q = (q1 ≥ q2 ≥ . . .) such that with probability 1−e−nΩ(1)

∑
i:pi≥w/(n logn)

|pi − qi| ≤
c√
w
.

b. Letting cdfp(v) =
∑
x:p(x)≤v p(x) represent that cumulative density function of

Instance Optimal Distribution Testing and Learning 13

p, one can recover a distribution q such that with probability 1− e−nΩ(1)∫ 1

v=w/(n logn)

1

v
|cdfp(v)− cdfq(v)| dv ≤ c√

w
.

In the case that w is a large constant, the above theorem guarantees that one can

accurately learn the multi-set of probabilities of the domain elements that occur

with probability at least Θ(1/n log n). Although many of these elements might not

occur in the sample, Theorem 1.10 asserts that one can robustly detect the presence

of such elements.

Beyond being interesting in its own right, the ability to reconstruct the unla-

beled vector of probabilities as accurately as is guaranteed by Theorem 1.10 has a

number of immediate applications for estimating label-invariant properties of the

distribution (often referred to as symmetric properties). Indeed, any property that

is Lipschitz continuous with respect to the distance metrics of the above theorem,

can be estimated by evaluating that property value on the recovered distribution,

q. Such continuous properties include the expected value of functions of a larger set

of independent draws. For example, an easy corollary of Theorem 1.10 is that one

can accurately estimate the number of distinct elements that would be observed in

a set of m > n independent draws, for m up to O(n log n):

Corollary 1.11. Given n samples from an arbitrary distribution p, with probability

1 − e−n
Ω(1)

over the randomness of the samples, one can estimate the expected

number of unique elements that would be seen in a set of m samples drawn from p,

to within error m · c
√

m
n logn for some universal constant c.

From a practical standpoint, this corollary has a number of implication for the

many settings where data collection is expensive. In (Zou et al., 2016), for example,

this framework was fruitfully used to estimate the number of new, medically relevant

mutations that would likely be discovered if larger genetic cohorts were sequenced.

The algorithm for learning the unlabeled vector of probabilities will solve an

optimization problem that returns a distribution, q, with the property that if the

n samples had been drawn from q, one would expect to see similar statistics to

the observed statistics of the actual samples. Specifically, the optimization problem

will be a linear program, which returns a distribution with the property that the

expected number of elements observed once, twice, etc. in a set of n independent

draws will closely match the observed quantities F1, F2, Discrepancies between

Fi and the expectation of Fi under the returned distribution, are penalized pro-

portionately to the inverse of the standard deviation, which is approximated as

1/
√
Fi + 1. This approximation is reasonable because the variance of Fi is roughly

equal to the expectation of Fi, as is the case for Poisson random variables.

The linear program will be described in terms of a fine ε-mesh of probability

values, x1, . . . , x` ∈ (0, 1] that discretely approximate the potential probability

values with which elements of the returned distribution may occur. The variables of

14 G. Valiant and P. Valiant

the linear program, h1, . . . , h` will be interpreted so that hi represents the number

of domain elements that occur with probability xi. Because the goal is to return a

distribution, the total probability mass is constrained to equal 1, namely
∑
i hixi =

1, which is a linear constraint in terms of the variables hi. Additionally, by linearity

of expectation, the expected values of Fj are also linear in the variables hi, namely

E[Fi] =
∑
j hj Pr[Binomial(n, xj) = i], where the expectation is with respect to

the distribution represented by the variable {hi}. For the time being, we ignore the

fact that the linear program is allowed to return non-integral values of hi—as an

additional step, the algorithm could perform a rounding/truncation step to deal

with this minor issue.

One final subtlety is that this linear program will only be used for the portion

of the distribution corresponding to domain elements that are not seen too many

times. For large values of i, one would not actually expect Fi to be concentrated

about its expectation. For example, even if there is a domain element that occurs

with probability 1/2, one would not expect Fn/2 to be too tightly concentrated

about its expectation—indeed Fn/2 will either be 0 or 1 (or 2). Fortunately, for

elements that occur often, their empirical probabilities are likely to be accurate.

Hence, for elements seen frequently (at least nα times for some appropriately chosen

absolute constant α > 0) the algorithm can simply use their empirical probabilities.

For the potentially large number of elements each observed few times (at most

nα times), the linear program is used to recover the corresponding portion of the

distribution. The fact that the linear program will only be responsible for the small

portion of the potential distribution means that the linear program will be small,

with only O(nα) constraints corresponding to enforcing that E[Fi] ≈ Fi for i ≤ nα.
This will ensure that, both in theory and in practice, the linear program could

be solved in time sublinear in the number of samples, n. For the purposes of this

exposition, however, we omit the minor modifications necessary to achieve sublinear

runtime.

The algorithm is presented in terms of two positive constants, B,C, which can be

defined arbitrarily provided the following inequalities hold: 0.1 > B > C > B
2 > 0.

Algorithm 1.3. The Frequency Spectrum Recovery Algorithm for reconstructing the

unlabeled vector of probabilities, achieving the guarantees of Theorem 1.10.

Input: Vector F1, F2, . . . where Fi denotes the number of domain elements observed

exactly i times in a set of n samples.

Output: Vector of pairs (x1, h1), . . . , (xt, ht).

1. Define the set X = { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

n(nB+nC)
n2 }.

2. For each x ∈ X, define the associated variable hx, and solve the LP:

Minimize

nB∑
i=1

1√
Fi + 1

∣∣∣∣∣Fi −∑
x∈X

hx Pr[Binomial(n, x) = i]

∣∣∣∣∣

Instance Optimal Distribution Testing and Learning 15

Subject to:

·
∑
x∈X x · hx +

∑n
i>nB+2nC

i
nFi = 1 (total prob. mass = 1)

· ∀x ∈ X,hx ≥ 0

3. Return the set of pairs (xi, hxi), together with pairs (i/n, Fi) for those domain

elements occuring i > nB + 2nC times.

The proof of correctness of the above algorithm, establishing Theorem 1.10 is

quite involved, and proceeds by directly relating the objective value of the linear

program to an appropriate notion of distance between the distribution represented

by the returned (xi, hi) pairs, and the true vector of probabilities. We refer the

reader to the treatment in Valiant and Valiant (2017b) for the details of this anal-

ysis.

1.3 Identity Testing

We now turn to a basic distributional hypothesis testing problem: given the de-

scription of a distribution p over a discrete support, error tolerance ε > 0, and n

independent draws from an unknown distribution, q, distinguish the case that p = q

versus the case that p and q have total variation distance at least ε, with probability

of success at least 2/3 over the randomness of the samples. This success probability

of 2/3 is standard in this literature, and can be exponentially amplified if needed

by repeating the test with new samples and returning the majority outcome.

1.3.1 Overview

In contrast to the results of Section 1.2 in which the algorithms presented were

instance optimal in terms of the unknown distribution from which the samples

were drawn, in this section we will strive for an algorithm that is optimal in terms

of the known distribution, p, in a worst-case sense over unknown distributions, q.

Since distribution p is known to the algorithm, we will assume, without loss of

generality, that it is supported on the positive integers, and will use pi to denote

the probability assigned to element i.

The classic approach to this hypothesis testing problem is via Pearson’s chi-

squared test. Letting Xi denote the number of times element i appears in the set of

n samples, the chi-squared test accepts or rejects according to whether the following

quantity exceeds a given threshold:
∑
i
(Xi−npi)2

pi
. For distributions p with large

support, this test is far from optimal. For example, if p is a uniform distribution

over k elements, for constant ε, the chi-squared test requires k samples as compared

to the optimal
√
k samples (see Exercise 1.5). Can one develop an identity test that

is optimal for every distribution, p, and every error parameter, ε?

The answer is yes, and the optimal algorithm is a modification of the chi-squared

test. As a bonus, the analysis of this algorithm yields an expression, as a function

16 G. Valiant and P. Valiant

of p and ε, characterizing the necessary and sufficient amount of data required

to perform this hypothesis test. Before summarizing this result, we introduce the

following notation that will be used for the rest of this section.

Notation: Given a distribution p, let p−max refer to the vector of probabilities

of the distribution after removing the single highest-probability element; let p−ε
refer to the distribution after removing the lowest-probability elements, one-by-one,

stopping just before ε total probability mass has been removed. We use standard

notation for `p norms, where for real vector, v, and real number a, the `a norm of v

is ‖v‖a = (
∑
i |vi|a)

1/a
; however, unusually, instead of the standard `1 or `2 norms,

the a = 2/3 norm is crucial to the analysis. We slightly abuse notation by using p

both to refer to the distribution and to its vector of probabilities, p = (p1, p2, . . .).

Theorem 1.12. Define the function f(p, ε) = max{ 1ε ,
‖p−max
−ε ‖2/3

ε2 }. There exists a

tester and constants c1, c2 > 0 such that for any ε > 0 and any distribution p, given

samples from any unknown distribution q,

a. The tester will distinguish q = p from ‖p− q‖1 ≥ ε with probability ≥ 2/3 when

run on a set of at least f(p, c1 ε) samples drawn from q; and

b. No tester can accomplish this task with a set of fewer than f(p, c2 ε) samples.

1.3.2 Interpretation of the Sample Complexity, f(p, ε)

The function f(p, ε) defined in Theorem 1.12 expresses the optimal sample com-

plexity of hypothesis testing distribution p. While the expression may look odd, the

fact that it is constant-factor optimal for each and every distribution p means each

of the quirks of f(p, ε) = max{ 1ε ,
‖p−max
−ε ‖2/3

ε2 } represents a real phenomenon, and

this definition is essentially a law of nature.

The 2/3 norm of p is perhaps the most mysterious part of this expression, though

is natural in light of the fact that when p is the uniform distribution on k elements,

||p||2/3 =
√
k, matching the tight bounds for uniformity testing (Batu et al., 2000;

Paninski, 2008). Further, for distributions of support at most k, the 2/3 norm

attains its maximum for the uniform distribution, and the “−max”, “−ε” modifiers

can only decrease its value meaning that f(p, ε) ≤
√
k
ε2 for all such distributions,

which is a tight worst-case bound for distributions supported on at most k elements.

The 1
ε2 multiplier in f(p, ε) shows up repeatedly in statistics, representing the

fact that one needs 1
ε2 coin flips to estimate the bias of a coin to accuracy O(ε),

because the standard deviation of a sample mean decreases with the square root

of the number of samples. The maximum with 1
ε reflects the fact that, no matter

what distribution we start with, it is impossible to distinguish a discrepancy of ε

probability mass based on fewer than Ω(1
ε) samples; this term becomes relevant

only in the “edge case” when ‖p−max
−ε ‖2/3 < ε, which can only happen when the

maximum probability element has mass at least 1− 2ε.

Instance Optimal Distribution Testing and Learning 17

1.3.3 An Instance Optimal Algorithm

The testing algorithm satisfying Theorem 1.12, makes three crucial modifications,

term-by-term, to the quantities computed in Pearson’s chi-squared test,
∑
i(Xi −

npi)
2/pi: 1) subtract Xi from the numerator to reduce the variance due to rare

elements; 2) modify the denominator from pi to p
2/3
i to reduce the penalty for

discrepancies in small probabilities; and 3) examine the smallest probability domain

elements only in aggregate, while also ignoring the single largest domain element.

Before formally stating the algorithm, we briefly motivate the first two of these

modifications, which result in the expression
∑
i
(Xi−npi)2−Xi

p
2/3
i

, which we refer to as

the (instance optimal) test statistic.

The numerator of the ith term, (Xi−npi)2−Xi, has two useful properties. First,

it gives an almost unbiased estimate of (pi − qi)2, after scaling: since E[Xi] = nqi
and E[X2

i] = n2q2i + nqi(1− qi), we have

E[(Xi − npi)2 −Xi] = E[X2
i]− 2npiE[Xi] + (npi)

2 −E[Xi] = n2(qi − pi)2 − nq2i
≈ n2(qi − pi)2.

Second, domain elements i for which npi, nqi � 1 will contribute very little variance

to this expression. For such elements, (Xi−npi)2−Xi ≈ X2
i −Xi, which evaluates to

0 when Xi = 0 and when Xi = 1. Phrased differently, this expression is essentially

agnostic to whether a rare element occurs zero times, versus once. The standard chi-

squared statistic, by comparison, incurs a significant variance from such elements.

There is not an entirely clean motivation for scaling the ith term by 1/p
2/3
i . Scal-

ing by 1/pi, as in the chi-squared test, compensates for the fact that the expectation

of the numerator is (pi− qi)2, instead of the desired |pi− qi|. For example, if pi and

qi differed by a constant factor, then the expected contribution after this scaling

would also be proportional to |pi − qi|. The intuition for scaling by 1/pαi for some

α < 1 is that even when p = q, we expect proportionately larger deviations between

npi and Xi for smaller values of pi, and hence we must penalize such deviations

less.

The lower bound construction, showing the optimality of this testing algorithm,

yields a different perspective on the 1/p
2/3
i scaling of each term. Roughly speak-

ing, for any distribution p, the most difficult instance of this hypothesis test is

distinguishing whether p = q, versus a distribution where each element of q has

a randomly perturbed probability qi = pi ± δi for some choice of perturbations

δi that sum to ε. From a lower bound standpoint, the question is how to allocate

the δ deviation to the different elements. Setting δi = ε · pi, which would be the

proportionate allocation, is clearly suboptimal, since the larger qi is, the more ac-

curate a multiplicative estimate of qi will be. This motivates setting the magnitude

of δi = |qi − pi| to be proportional to pαi for some α < 1. As it turns out, setting

δi = p
2/3
i is optimal, matching the 1/p

2/3
i scaling in the statistic

∑
i
(Xi−npi)2−Xi

p
2/3
i

.

18 G. Valiant and P. Valiant

We conclude by formally describing the testing algorithm in Algorithm 1.4, and

saying a word about the proof of Theorem 1.12.

Algorithm 1.4. The 2/3-Norm Testing Algorithm, which optimally tests whether

p = q versus ‖p− q‖1 ≥ ε.

Input: Distribution p = (p1, p2, . . .), parameter ε > 0 and a vector X1, X2, . . . where

Xi denotes the number of times domain element i occurs in a set of n samples from

an unknown distribution q.

Output: Either “‖p− q‖1 ≥ ε” or “p = q”.

0. Assume wlog that the domain elements of p are sorted in non-increasing order

of probability. Define s = min{i :
∑
j>i pj ≤ ε/8}, and let S = {s+ 1, s+ 2, . . .}

(the “small” elements) and M = {2, . . . , s} (the “medium” elements).

1. Threshold the test statistic: if
∑
i∈M

(Xi−npi)2−Xi
p

2/3
i

> 4n‖pM‖1/32/3 output “‖p −
q‖1 ≥ ε”.

2. If
∑
i∈S Xi >

3
16εn output “‖p− q‖1 ≥ ε”.

3. Otherwise, output “p = q”.

The proof of 1.12(a), establishing the performance guarantees of the above testing

algorithm, is conceptually simple. The core of the analysis is to apply Chebyshev’s

inequality to the expressions computed in Steps 1 and 2 of the algorithm to show

that—with the claimed probability—we accept true hypotheses and reject hypothe-

ses that are far from true. (See Exercise 1.6 for analysis of the complementary roles

of these two tests in the algorithm.) Chebyshev’s inequality states that a random

variable will be more than c standard deviations from its mean with probability at

most 1
c2 . The brunt of the algorithm analysis consists of showing that the expecta-

tions of the expressions computed by the algorithm differ significantly when p = q

versus when ‖p − q‖1 ≥ ε, and that this difference is large in comparison to the

standard deviation of these quantities. Unfortunately, this simple approach reduces

(after some straightforward but tedious algebra that we omit for clarity) to the

problem of proving that an extremely messy inequality holds for all distributions

p, and all discrepancies from the hypothesis ∆ = (p1 − q1, p2 − q2, . . . ,):

∑
i∈M

p2/3i ||∆M ||41
||pM ||22/3

+ 2
∆i||∆M ||31
||pM ||4/32/3

+
p
−2/3
i ∆2

i ||∆M ||21
||pM ||2/32/3

(1.1)

+2
p
−1/3
i ∆2

i ||∆M ||21
||pM ||2/3

+ 2
p−1i ∆3

i ||∆M ||1
||pM ||1/32/3

 ≤ 8

(∑
i∈M

∆2
i p
−2/3
i

)2

In Section 1.4 below, we describe a way of automating the proofs of such in-

equalities: this yields both a complete characterization of when such inequalities

Instance Optimal Distribution Testing and Learning 19

are true, along with a polynomial time algorithm that either produces a proof if

the inequality is true, or a refutation if the inequality is not true.

1.4 Digression: An Automatic Inequality Prover

Given a sequence of triples, (ai, bi, ci), is it true that for all positive vectors x =

(x1, . . .), y = (y1, . . .) the following inequality holds?

r∏
i=1

∑
j

xaij y
bi
j

ci

≥ 1. (1.2)

Several familiar inequalities, including Cauchy-Schwarz, Hölder, and the mono-

tonicity of `p norms, can be expressed in this form, as illustrated below. Addi-

tionally, the proof of the inequality of Equation 1.1 corresponds to proving five

inequalities of the above form—each inequality bounding one of the terms on the

left hand side by the right hand side.

∑
j

x2j

1/2∑
j

y2j

1/2∑
j

xjyj

−1 ≥ 1 (Cauchy-Schwarz)

∑
j

x
1/λ
j

λ∑
j

y
1/(1−λ)
j

1−λ∑
j

xjyj

−1 ≥ 1 (Hölder)

∑
j

x
1/λ
j

−λ∑
j

xj

 ≥ 1 (`p monotonicity)

In this section, we show that an inequality of the form of Equation 1.2 is true, if

and only if it is expressible as the product of positive powers of Hölder, and `p mono-

tonicity inequalities. Furthermore, there is an efficient algorithm for automatically

proving or disproving such an inequality: given the triples, (ai, bi, ci), the algorithm

either produces a derivation of the inequality, or produces a counter-example pair

of sequences x, y which falsify the inequality.

Theorem 1.13. For a sequence of triples (a, b, c)i = (a1, b1, c1), . . . (ar, br, cr),

the inequality
∏r
i=1

(∑
j x

ai
j y

bi
j

)ci
≥ 1 holds for all finite sequences of positive

numbers (x)j , (y)j if and only if it can be expressed as a finite product of posi-

tive powers of Hölder inequalities of the form
(∑

j x
a′

j y
b′

j

)λ
·
(∑

j x
a′′

j yb
′′

j

)1−λ
≥∑

j x
λa′+(1−λ)a′′
j y

λb′+(1−λ)b′′
j , and `p monotonicity inequalities of the form

(∑
j x

a
j y
b
j

)λ
≤∑

j x
λa
j yλbj , where λ ∈ [0, 1]. Such a derivation can be found in polynomial time via

20 G. Valiant and P. Valiant

linear programming whenever the inequality is true; and a compact representation

of a refutation can be found whenever the inequality is false.

Example 1.14. Consider for some ε ≥ 0 the single-sequence inequality(∑
j

x−2j

)−1(∑
j

x−1j

)3(∑
j

x0j

)−2−ε(∑
j

x1j

)3(∑
j

x2j

)−1
≥ 1,

which can be expressed in the form of Equation 1.2 via the triples (ai, bi, ci) =

(−2, 0,−1), (−1, 0, 3), (0, 0,−2 − ε), (1, 0, 3), (2, 0,−1). This inequality is true for

ε = 0 but false for any positive ε. However, the shortest counterexample sequences

have length that grows as exp(1
ε) as ε approaches 0. Counterexamples are thus hard

to write down, though easy to express—for example, letting n = 641/ε, the sequence

x of length 2 + n consisting of n, 1
n , followed by n ones violates the inequality.

1.4.1 Proving inequalities without math: a peg game

Theorem 1.13 argues that there is a linear-programming based algorithm for effi-

ciently proving or refuting inequalities of the specified form. The intuition under-

lying the proof of Theorem 1.13, however, can be used to formulate the task of

proving such an inequality as a simple and intuitive “peg game” played on a 2-d

board. This peg game interpretation allows one to use basic geometric intuitions to

easily derive a proof of many of these inequalities, using only a little bit of pencil

and paper!

We describe this peg game in the concrete setting of proving the following in-

equality (which corresponds to the 4th component of Equation 1.1 from Section 1.3

where ∆ has been replaced by x and p has been replaced by y):

∑
j

x2jy
−2/3
j

2∑
j

x2jy
−1/3
j

−1∑
j

xj

−2∑
j

y
2/3
j

3/2

≥ 1, (1.3)

Expressing this inequality in the form of Theorem 1.13, we have the triples

(ai, bi, ci) = (2,− 2
3 , 2), (2,− 1

3 ,−1), (1, 0,−2), (0, 23 ,
3
2). The peg game—as illustrated

in Figure 1.5—begins by representing each triple (ai, bi, ci) as the number ci writ-

ten at location (ai, bi) in the plane. At any moment, the game board consists of

some numbers written on the plane (with the convention that every point without

a number is interpreted as having a 0), and you “win” if you can remove all the

numbers from the board via a combination of “moves” of the following two types:

1. (Hölder) Any two positive numbers can be moved to the weighted mean of their

locations. (For example, we can subtract 1 from one location in the plane, sub-

tract 3 from a second location in the plane, and add 4 to a point 3
4 of the way

from the first location to the second location.)

Instance Optimal Distribution Testing and Learning 21

2. (`p monotonicity) Any negative number can be moved towards the origin by a

factor λ ∈ (0, 1) and scaled by 1
λ . (For example, we can add 1 to one location in

the plane, and subtract 2 from a location halfway to the origin.)

The rules of the game allow just these two types of moves: you can push positive

numbers together, and push negative numbers towards the origin (scaling them).

Theorem 1.13 translates into the claim that this peg game can be won if, and only

if, the corresponding inequality is true; additionally, a small linear program can

either produce a winning combination of moves, or present a certificate that the

game is unwinnable. Nevertheless, our geometric intuition is quite good at solving

these types of puzzles, even for intricate counterintuitive inequalities like the current

example. (Try it!)

2/3	

2	
 1	

0	

-­‐2/3	

0	

3/2	

	
 -­‐2	

	
 	
 2	

	
 -­‐1	

2/3	

2	
 1	

0	

-­‐2/3	

0	

1/2	

	
 	
 1	

	
 -­‐1	

2/3	

2	
 1	

0	

-­‐2/3	

0	

	
 -­‐3/2	

1/2	

	
 	
 1	

2/3	

2	
 1	

0	

-­‐2/3	

0	

Success!	

Figure 1.5 Depiction of a successful sequence of “moves” in the game corresponding to the

inequality
(∑

j x
2
jy

−2/3
j

)2 (∑
j x

2
jy

−1/3
j

)−1 (∑
j xj

)−2 (∑
j y

2/3
j

)3/2
≥ 1, showing that

the inequality is true. The first diagram illustrates the initial configuration of positive and
negative weights, together with the “Hölder-type move” that takes one unit of weight from
each of the points at (0, 2/3) and (2,−2/3) and moves it to the point (1, 0), canceling out
the weight of −2 that was initially at (1, 0). The second diagram illustrates the resulting
configuration, together with the “`p monotonicity move” that moves the −1 weight at
location (2,−1/3) towards the origin by a factor of 2/3 while scaling it by a factor of
3/2, resulting in a point at (4/3,−2/9) with weight −3/2, which is now collinear with
the remaining two points. The third diagram illustrates the final “Hölder-type move”
that moves the two points with positive weight to their weighted average, zeroing out all
weights.

The intuition behind one winning sequence for the game corresponding to Equa-

tion 1.3, illustrated in Figure 1.5, is to first realize that three of the points lie on a

line, with the “−2” halfway between the “ 3
2” and the “2”. Thus we take 1 unit from

each of the endpoints and cancel out the “−2” via a “Hölder” move. Now, no three

points are collinear, so we need to move one point onto the line formed by the other

two: “−1”, being negative, can be moved towards the origin, so we move it until it

crosses the line formed by the two remaining numbers. This moves it 1
3 of the way

to the origin, thus increasing it from “−1” to “− 3
2”; amazingly, this number, at

position 2
3 (2,− 1

3) = (4
3 ,−

2
9) is now 2

3 of the way from the remaining “ 1
2” at (0, 23)

to the number “1” at (2,− 2
3), meaning that we can remove the final three numbers

from the board in a single move, winning the game. We thus made three moves

total, two of the Hölder type, one of the `p monotonicity type. Reexpressing these

22 G. Valiant and P. Valiant

moves as inequalities yields the desired derivation of our inequality (Equation 1.3)

as a product of powers of Hölder and `p monotonicity inequalities, explicitly, as the

product of the following three inequalities, which are respectively 1) the square of

a Cauchy-Schwarz inequality, 2) the 3/2 power of an `p monotonicity inequality for

λ = 2/3, and 3) the 3/2 power of a Hölder inequalty for λ = 2/3:∑
j

x2jy
−2/3
j

∑
j

x0jy
2/3
j

∑
j

x1jy
0
j

−2 ≥1

∑
j

x
4/3
j y

−2/9
j

3/2∑
j

x2jy
−1/3
j

−1 ≥1

∑
j

x2jy
−2/3
j

∑
j

x0jy
2/3
j

1/2∑
j

x
4/3
j y

−2/9
j

−3/2 ≥1.

1.5 Beyond Worst Case Analysis for Other Testing Problems

There are a wide variety of testing and learning problems that can be considered

from perspectives other than worst case analysis, beyond the two settings high-

lighted in this chapter. In many cases, a significant part of the challenge is defining

a reasonable benchmark or notion of optimality that yields clean, conceptually ap-

pealing results and practically meaningful algorithms.

To briefly describe one example, Section 1.3 considers the question of distinguish-

ing whether two distributions, p and q, are equal versus have significant distance,

given a description of p and samples drawn from q. The analogous question can

also be asked where both distributions p and q are unknown, and one wishes to

deduce if p = q versus ‖p − q‖1 ≥ ε given samples from both distributions. If p

and q are supported on at most n elements, this hypothesis can be tested using

O
(
max(n2/3/ε4/3, n1/2ε2)

)
, which is optimal in the worst case (Batu et al., 2000;

Chan et al., 2014).

Going beyond worst-case analysis, the works Acharya et al. (2011, 2012) apply

the perspective of competitive analysis to this question. Instead of bounding the

sample size required for this task in terms of the support size of the distributions,

this work bounds the sample size as a (super-linear) function of the sample size

that would be required if distributions p and q were known to the algorithm, and

the algorithm needed to distinguish whether two sets of samples were drawn from

the pair p, q versus both drawn from a single distribution.

The work Lam-Weil et al. (2019) takes a quite different approach towards this

problem of identity testing with two unknown distribution. They develop an algo-

rithm which, for every p, q, uses as few samples as would be necessary even if one

“approximately” knows distribution q. Specifically, given a vector of probabilities,

Instance Optimal Distribution Testing and Learning 23

π, they ask how difficult it is to distinguish p = q versus ‖p − q‖1 ≥ ε where dis-

tribution q is obtained via the random process of sampling the probabilities of its

elements uniformly at random from the multiset π, and p is a worst-case distribu-

tion with distance ε from q. Here, the goal is to get an optimal sample complexity

as a function of π, achieved via an algorithm that does not require knowledge of π.

1.6 References and Bibliographic Notes

Section 1.2 is based on results from Valiant and Valiant (2016), and Sections 1.3

and 1.4 are based on Valiant and Valiant (2017a). For the problem of instance

optimal learning discussed in Section 1.2, the work of Orlitsky and Suresh (2015)

which appeared contemporaneously with Valiant and Valiant (2016), considered

the problem of learning with respect to KL-divergence, instead of total variation

distance (L1 distance). In that setting, they showed a variant of the Good–Turing

Denoising Algorithm (Algorithm 1.2) is instance optimal for learning with respect

to KL-divergence in an analogous sense to the results discussed in Section 1.2.

For additional intuition on how the 2/3-norm arises in the sample complexity of

instance optimal testing (Theorem 1.12), we refer the reader to Diakonikolas and

Kane (2016), who obtained a similar expression with extra polylogarithmic factors,

via a general framework for reducing such hypothesis testing questions to the easier

task of performing analogous tests in terms of `2 distance.

For a general introduction to modern questions and perspectives on distribu-

tional property testing and estimation, we refer the reader to the survey Canonne

(2015), or the slightly older survey Rubinfeld and Shapira (2011). These surveys

also provide some historical context for how these fundamental statistical questions

came to be studied by the theoretical computer science community, first in the con-

text of testing graph expansion—essentially the question of identity testing with

respect to the uniform distribution (Goldreich and Ron, 2011)—and subsequently

abstracted and generalized to hypothesis tests and estimates of `1 and `2 norms

between distributions (Batu et al., 2000).

24 G. Valiant and P. Valiant

References

Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Pan, S. 2011. Competitive
closeness testing. In: Conference on Learning Theory (COLT).

Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Pan, S. 2012. Competitive
classification and closeness testing. Proc. 25th Conference on Learning Theory
(COLT), 23, 22.1–22.18.

Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., and White, P. 2000. Testing
that distributions are close. In: IEEE Symposium on Foundations of Computer
Science (FOCS).

Canonne, Clément L. 2015. A survey on distribution testing: Your data is big. but
is it blue? In: Electronic Colloquium on Computational Complexity (ECCC),
vol. 22.

Chan, Siu-On, Diakonikolas, Ilias, Valiant, Paul, and Valiant, Gregory. 2014. Opti-
mal algorithms for testing closeness of discrete distributions. Pages 1193–1203
of: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms. SIAM.

Diakonikolas, Ilias, and Kane, Daniel M. 2016. A new approach for testing prop-
erties of discrete distributions. Pages 685–694 of: 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE.

Goldreich, Oded, and Ron, Dana. 2011. On testing expansion in bounded-degree
graphs. Pages 68–75 of: Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation. Springer.

Lam-Weil, Joseph, Carpentier, Alexandra, and Sriperumbudur, Bharath K. 2019.
Local minimax rates for closeness testing of discrete distributions. arXiv
preprint arXiv:1902.01219.

Orlitsky, Alon, and Suresh, Ananda Theertha. 2015. Competitive Distribution Esti-
mation: Why is Good-Turing Good. Pages 2143–2151 of: Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds), Advances in Neural
Information Processing Systems 28. Curran Associates, Inc.

Paninski, L. 2008. A coincidence-based test for uniformity given very sparsely-
sampled discrete data. IEEE Transactions on Information Theory, 54, 4750–
4755.

Rubinfeld, Ronitt, and Shapira, Asaf. 2011. Sublinear time algorithms. SIAM
Journal on Discrete Mathematics, 25(4), 1562–1588.

Valiant, Gregory, and Valiant, Paul. 2016. Instance optimal learning of discrete
distributions. Pages 142–155 of: Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing. STOC ’16. New York, NY, USA: ACM.

Valiant, Gregory, and Valiant, Paul. 2017a. An automatic inequality prover and
instance optimal identity testing. SIAM Journal on Computing, 46(1), 429–
455.

Valiant, Gregory, and Valiant, Paul. 2017b. Estimating the Unseen: Improved Es-
timators for Entropy and Other Properties. J. ACM, 64(6), 37:1–37:41.

Zou, James, Valiant, Gregory, Valiant, Paul, Karczewski, Konrad, Chan, Siu On,
Samocha, Kaitlin, Lek, Monkol, Sunyaev, Shamil, Daly, Mark, and MacArthur,
Daniel G. 2016. Quantifying unobserved protein-coding variants in human
populations provides a roadmap for large-scale sequencing projects. Nature
communications, 7, 13293.

Instance Optimal Distribution Testing and Learning 25

Exercises

1.1 Prove Fact 1.6, that for any multiset of real numbers S = {s1, . . . , sm}, the

median minimizes the sum of the absolute distances to elements of S:
m∑
i=1

|si −median(S)| = inf
x∈R

m∑
i=1

|si − x|.

1.2 Prove Fact 1.7, that for any multiset of real numbers S = {s1, . . . , sm}, the

sum of the absolute differences between the mean and elements of S is at most

a factor of two larger than the sum of distances to the median:
m∑
i=1

|si −mean(S)| ≤ 2 ·
m∑
i=1

|si −median(S)| = 2 · inf
x∈R

m∑
i=1

|si − x|.

1.3 Given n independent draws from a distribution with discrete support, for in-

tegers i ≥ 1, let Fi represent the number of domain elements that each appear

exactly i times in the samples. Prove that Fi is tightly concentrated about its

mean, namely for any c > 0, Pr[|Fi−E[Fi]| ≥ c
√
n] ≤ O(exp(−Ω(c2))). (Hint:

Letting xi denote the ith indepedent draw, consider the Doob martingale:

X0 = E[Fi], X1 = E[Fi|x1], X2 = E[Fi|x1, x2], . . . , Xn = E[Fi|x1, . . . , xn] =

Fi, and apply Azuma’s martingale concentration inequality.)

1.4 Show that the concentration bound of the previous exercise can be improved

if E[Fi]� n: show that Pr[|Fi −E[Fi]| ≥ c
√

1 + E[Fi]] = O(exp(−Ω(c2))).

1.5 Let p = (1/2, 1
2k ,

1
2k , . . . ,

1
2k) denote the distribution that puts mass 1/2 on

element 1, and distributes the remaining mass among elements 2, . . . , k + 1;

let q = (1/2, 1k , . . . ,
1
k) denote an analogous distribution that distributes the

remaining mass among 2, . . . , k/2+1. Consider using the chi-squared statistic∑
i(Xi − npi)/pi to distinguish the case where n samples were drawn from

p versus n samples were drawn from q. Prove that this distinguisher would

require n = Ω(k) samples to have success probability at least 2/3.

1.6 This exercise motivates the two steps of the algorithm of Algorithm 1.4, with

Step 1 detecting discrepancies in “medium” probability elements, and Step 2

detecting if the “small” probability elements have too much total probability

mass. Recall that the set S of small elements is constructed so that
∑
i∈S pi ≤

ε
8 , and the set M consists of the remaining elements, with the exception of

pmax. Prove that if ‖p− q‖1 ≥ ε then at least one of the following must hold:

•
∑
i∈M |pi − qi||1 ≥

ε
8 (which will likely trigger Step 1 of the algorithm), or

•
∑
i∈S qi ≥

ε
4 (which will likely trigger Step 2 of the algorithm).

1.7 Show the monotonicity of `p norms: for a vector x and λ ∈ (0, 1), ||x||1 ≤ ||x||λ.
1.8 Win the “peg game” of Figure 1.5 in a different way, where the first move

is different from zeroing out the −2 at location (1, 0). Express your winning

strategy as a combination of Hölder and `p monotonicity inequalities.

1.9 Prove the inequality of Example 1.14 for ε = 0—or more generally, for any

ε ≤ 0—via the “peg game” techniques of Section 1.4.1.

	Instance Optimal Distribution Testing and Learning G. Valiant and P. Valiant
	Testing and Learning Discrete Distributions
	Instance Optimal Distribution Learning
	Identity Testing
	Digression: An Automatic Inequality Prover
	Beyond Worst Case Analysis for Other Testing Problems
	References and Bibliographic Notes
	Exercises

