
MultiNyx: A Multi-Level Abstraction Framework 
for Systematic Analysis of Hypervisors

Pedro Fonseca, Xi Wang, Arvind Krishnamurthy



Hypervisor correctness is critical

• Hypervisors need to virtualize correctly all the architecture details 

• Hypervisor bugs cause applications to crash, information 
leakage, etc.

App

Guest OS

Hypervisor

Guest OS

App

CPU

VM - VM isolation 

Modern hypervisors rely on CPU virtualization extensions

VM - host isolation 
App - guest OS isolation 



KVM bug (CVE-2017-2583)

• Several conditions are required to trigger the bug: 
• MOV has to be emulated by the VMM  
• MOV has to load a NULL stack segment 
• Had to be executed in long mode and with CPL=3 
• Other privilege related fields had to have specific 

values (SS.RPL=3, SS.DPL=3)

Incorrect virtualization  
of the MOV instruction

VM crash

Privilege escalation

Hard for fuzzing 
techniques to find 
such corner cases

How to effectively test hypervisors?



1. How to systematically generate test cases?

2. How to analyze the test case results?

MultiNyx: Systematic testing of modern hypervisors



Background: symbolic execution

function start(input){
  x = input + 200;
  if(x == 1000){
    assert(0); // Crash
  }
  return;
}

Goal: find inputs that explore different paths

Code input: 800

Phase 2:
Solve constraints

input + 200 == 1000

Phase 1: 
Encode constraints



Symbolic execution of hypervisors

function hypervisor(input){
  x = VMENTER(input);
  if(x == 1000){
    assert(0); // Crash
  }
  return;
}

Hypervisors use complex, system-level instructions

Hypervisor ??? == 1000

Phase 1: 
Encode constraints

How to encode complex 
instructions?

Virtualization instruction



•
• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.

• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit 0 in the CR0 field (corresponding to CR0.PE) is
0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 – 11 (data segment or non-conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

tiny subset of the  
checks for the  

VMENTER instruction

1 page 
of the Intel manual



Semantics of the virtualization instructions

>200 pages



MultiNyx approach: leverage a simulator

function hypervisor(input){
  x = VMENTER(input);
  if(x == 1000){
    assert(0); // Crash
  }
  return;
}

Hypervisor

CPU simulator

Path constraints

Phase 1: 
Encode constraints

Test cases

Phase 2:
Solve constraints

function VMENTER(input){
  x = input;
  x = x + 4
  …
  return x;
}

CPU Simulator



MOV 
ADD 
MOV

VMENTER
MOV 
CMP 
JE

VMRESUME
MOV 
ADD 
MOV 
SUB

MultiNyx: multi-level symbolic execution

Hypervisor  
trace

ADD 
MOV 
SUB 
ADD

Simulator 
trace

ADD 
MOV 
SUB 
ADD

Complex 
instructions



MOV 
ADD 
MOV

MOV 
CMP 
JE

MOV 
ADD 
MOV 
SUB

MultiNyx: multi-level symbolic execution

ADD 
MOV 
SUB 
ADD

ADD 
MOV 
SUB 
ADD

Multi-level trace

Challenge: Different abstractions have  
different state representations

Only contains simple instructions

MultiNyx converts between 
different state representations  

on each transition



Scaling symbolic execution to hypervisors

• Traditional tests execute millions of VM instructions

• Key observation: Hypervisor interface allows externally 
setting the initial VM state

HypervisorInitial VM

1. Set the initial VM state 

2. Run a single VM instruction 

3. Get the final VM state

MultiNyx: each test executes a single VM instruction



1. How to systematically generate test cases?

2. How to analyze the test case results?

MultiNyx: Systematic testing of modern hypervisors



How to analyze the test cases results?

Input Output
A

Hypervisor

Intel CPU

Output
B

Hypervisor

AMD CPU

Run the same test on different configurations

Consistent?



How to analyze the test cases results?

Input Output
A

Hypervisor 1

CPU

Output
B

Hypervisor 2

CPU

Run the same test on different configurations

Consistent?



MultiNyx implementation

• Symbolic execution engine: Triton + Z3 

• Executable specification: Bochs simulator

Component Language LOCs
KVM driver C 2,400

KVM annotations C 1,400
Low-level trace recording C++ 600
High-level trace recording C++ 1,300

Multi-level analysis C++ / Python 3,100
Diff. testing and diagnosis Bash / Python 4,400



Testing with MultiNyx

• +200,000 tests automatically generated for KVM 

• MultiNyx coverage is +8% higher than fuzzing 

• MultiNyx tests revealed 739 mismatching tests



Example of KVM bug found by MultiNyx

• Incorrect update of %SP register (2 bytes instead of 4 bytes) 
• And incorrect update of the VM memory 

• Instruction PUSH %ES
• EPT option disabled 
• Segment registers initialized with specific values 
• Execution in real mode 

• Bug we reported has been fixed in the latest KVM



Scale down testsMulti-level  
symbolic execution

Input

vs

Different VMMs

Differential testing

Modern hypervisor rely on complex instructions

MultiNyx:  
Systematic testing of modern hypervisors

MOV 
ADD 
MOV

MOV 
MOV 
ADD

MOV 
ADD 
MOV 
SUB

ADD 
MOV 
SUB 
ADD

ADD 
MOV 
SUB 
ADD

HypervisorInitial 
VM

Final 
VM


