MultiNyx: A Multi-Level Abstraction Framework
for Systematic Analysis of Hypervisors

Pedro Fonseca, Xi Wang, Arvind Krishnamurthy

UNIVERSITY of
WASHINGTON

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Hypervisor correctness is critical

* Hypervisors need to virtualize correctly all the architecture details

* Hypervisor bugs cause applications to crash, information
leakage, etc.

App

: S Guest OS &
VM - VM isolation

App - guest OS isolation

CPU

VM - host isolation

Modern hypervisors rely on CPU virtualization extensions

KVM bug (CVE-2017-2583)

VM crash
Incorrect virtualization M :

of the MOV instruction o
N Privilege escalation

« Several conditions are required to trigger the bug:
* MOV has to be emulated by the VMM

* MOV has to load a NULL stack segment Hdrd for fuzzing

techniques to find
 Had to be executed in long mode and with CPL=3 such corner cases

« QOther privilege related fields had to have specific
values (SS.RPL=3, SS.DPL=3)

How to effectively test hypervisors?

MultiNyx: Systematic testing of modern hypervisors

1. How to systematically generate test cases?

2. How to analyze the test case results?

Background: symbolic execution

Goal: find inputs that explore different paths

function start(input)/{

x = input + 200;

if(x == 1000){
assert(0); // Crash

}

return;

}

Phase 1: Phase 2:
Encode constraints Solve constraints

* input + 200 == 1000 * input: 800

Symbolic execution of hypervisors

Hypervisors use complex, system-level instructions

function hypervisor(1nfut/ Virtualization instruction

' = (VMENTER (input) ;)

if(x == 1000){
assert(0); // Crash

return, How to encode complex

} instructions?

Phase 1:
Encode constraints

® Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.
® Access-rights fields.

CS, SS, DS, ES, FS, GS.

If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.
Bit 4 (S) must be 1.

Bits 6:5 (DPL) must be 3.

Bit 7 (P) must be 1.

Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

If the guest will not be virtual-8086, the different sub-fields are considered separately:
Bits 3:0 (Type).

CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

Bit 4 (S). If the register is CS or if the register is usable, S must be 1.
Bits 6:5 (DPL).

Cs.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
aci:essed expand-up data segment) or if bit 0 in the CRO field (corresponding to CRO.PE) is
0.

DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 - 11 (data segment or non-conforming code segment).

Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

1 page
of the Intel manual

tiny subset of the
checks for the
VMENTER Instruction

Semantics of the virtualization instructions

By ary

MultiNyx approach: leverage a simulator

function hypervisor (input) { CPU Simulator
x =(VMENTER(1nput) ;) function VMENTER(input){
if(x == 1000){ X = 1nput;
assert(0); // Crash X =x + 4
} :
return; return Xy
} }
Phase 1: Phase 2:

Encode constraints Solve constraints

Hypervisor st
:_./i /’%’//r .‘/;:‘ S i _—
CPU simulator A —

Path constraints Test cases

MultiNyx: multi-level symbolic execution

Hypervisor Simulator
trace trace

MOV
ADD

MOV
Complex VMENTER

instructions MOV
CMP

JE
VMRESUME
MOV
ADD
MOV
SUB

MultiNyx: multi-level symbolic execution

Multi-level trace

Only contains simple instructions

Challenge: Different abstractions have
different state representations

MultiNyx converts between
different state representations
on each transition

Scaling symbolic execution to hypervisors

e Traditional tests execute millions of VM instructions

o Key observation: Hypervisor interface allows externally
setting the initial VM state

MultiNyx: each test executes a single VM instruction

1. Set the initial VM state

R 2. Run a single VM instruction

3. Get the final VM state

MultiNyx: Systematic testing of modern hypervisors

2. How to analyze the test case results?

How to analyze the test cases results?

Input e 2 Ou:\put
\ I Consistent?
tp
—

Run the same test on different configurations

How to analyze the test cases results?

Hypervisor 1

Input s e Ou:\put
I Consistent?
Hypervisor 2
5 Outhut
CPU

Run the same test on different configurations

MultiNyx implementation

e Symbolic execution engine: Triton + Z3

e Executable specification: Bochs simulator

Component Language
KVM driver

KVM annotations
Low-level trace recording
High-level trace recording

Multi-level analysis C++ / Python
Diff. testing and diagnosis Bash / Python 4,400

Testing with MultiNyx

e +200,000 tests automatically generated for KVM
* MultiNyx coverage is +8% higher than fuzzing

* MultiNyx tests revealed 739 mismatching tests

Example of KVM bug found by MultiNyx

* Incorrect update of $SP register (2 bytes instead of 4 bytes)
« And incorrect update of the VM memory

 |nstruction PUSH %ES
 EPT option disabled

* Segment registers initialized with specific values
e Execution in real mode

« Bug we reported has been fixed in the latest KVM

MultiNyx:
Systematic testing of modern hypervisors

Modern hypervisor rely on complex instructions

/@VS A‘:D -'

g Initial R, isor I Final § Different VMMs

VM VM

