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• Distributed systems are critical! 

• Reasoning about concurrency and fault-tolerance is 
extremely challenging 
 
 
 
 
 
 
 

We need robust distributed systems



Verification of distributed systems

Recently applied to implementations of DSs 
 
 
 
 
 
 
 
 

IronFleet: Proving Practical Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,

Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research

Abstract
Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. Introduction
Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints, e.g., that real logs
cannot grow without bound. Thorough testing is considered
best practice, but its efficacy is limited by distributed systems’
combinatorially large state spaces.

In theory, formal verification can categorically eliminate
errors from distributed systems. However, due to the com-
plexity of these systems, previous work has primarily fo-
cused on formally specifying [4, 13, 27, 41, 48, 64], verify-
ing [3, 52, 53, 59, 61], or at least bug-checking [20, 31, 69]
distributed protocols, often in a simplified form, without
extending such formal reasoning to the implementations.
In principle, one can use model checking to reason about
the correctness of both protocols [42, 59] and implemen-
tations [46, 47, 69]. In practice, however, model checking
is incomplete—the accuracy of the results depends on the
accuracy of the model—and does not scale [4].
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This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of non-trivial distributed system implementations.
The IronFleet methodology is practical: it supports complex,
feature-rich implementations with reasonable performance
and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation
of a distributed system meets a high-level, centralized spec-
ification. For example, a sharded key-value store acts like
a key-value store, and a replicated state machine acts like
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recov-
ery [70]. Moreover, it not only rules out bad behavior, it tells
us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; e.g., replicated-state-machine linearizabil-
ity says that clients never see inconsistent results. A liveness
property says that the system eventually performs a useful
action, e.g., that it eventually responds to each client request.
In large-scale deployments, ensuring liveness is critical, since
a liveness bug may render the entire system unavailable.

IronFleet takes the verification of safety properties further
than prior work (§9), mechanically verifying two full-featured
systems. The verification applies not just to their protocols
but to actual imperative implementations that achieve good
performance. Our proofs reason all the way down to the
bytes of the UDP packets sent on the network, guaranteeing
correctness despite packet drops, reorderings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our
knowledge, IronFleet is the first system to mechanically
verify liveness properties of a practical protocol, let alone an
implementation.

IronFleet achieves comprehensive verification of complex
distributed systems via a methodology for structuring and
writing proofs about them, as well as a collection of generic
verified libraries useful for implementing such systems. Struc-
turally, IronFleet’s methodology uses a concurrency contain-
ment strategy (§3) that blends two distinct verification styles
within the same automated theorem-proving framework, pre-
venting any semantic gaps between them. We use TLA-style
state-machine refinement [36] to reason about protocol-level
concurrency, ignoring implementation complexities, then use
Floyd-Hoare-style imperative verification [17, 22] to reason
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Abstract
Distributed systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, their behavior is often too complex to permit exhaustive
testing. Bugs in these systems have led to the loss of critical data
and unacceptable service outages.

We present Verdi, a framework for implementing and formally
verifying distributed systems in Coq. Verdi formalizes various net-
work semantics with different faults, and the developer chooses the
most appropriate fault model when verifying their implementation.
Furthermore, Verdi eases the verification burden by enabling the
developer to first verify their system under an idealized fault model,
then transfer the resulting correctness guarantees to a more realistic
fault model without any additional proof burden.

To demonstrate Verdi’s utility, we present the first mechanically
checked proof of linearizability of the Raft state machine replication
algorithm, as well as verified implementations of a primary-backup
replication system and a key-value store. These verified systems
provide similar performance to unverified equivalents.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Formal verification, distributed systems, proof assis-
tants, Coq, Verdi

1. Introduction
Distributed systems serve millions of users in important applications,
ranging from banking and communications to social networking.
These systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, the behavior is often too complex to permit exhaustive
testing. Thus, despite decades of research, real-world implemen-
tations often go live with critical fault-handling bugs, leading to
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data loss and service outages [10, 42]. For example, in April 2011 a
malfunction of failure recovery in Amazon Elastic Compute Cloud
(EC2) caused a major outage and brought down several web sites,
including Foursquare, Reddit, Quora, and PBS [1, 14, 28].

Our overarching goal is to ease the burden for programmers
to implement correct, high-performance, fault-tolerant distributed
systems. This paper focuses on a key aspect of this agenda: we de-
scribe Verdi, a framework for implementing practical fault-tolerant
distributed systems and then formally verifying that the implemen-
tations meet their specifications. Previous work has shown that
formal verification can help produce extremely reliable systems,
including compilers [41] and operating systems [18, 39]. Verdi en-
ables the construction of reliable, fault-tolerant distributed systems
whose behavior has been formally verified. This paper focuses on
safety properties for distributed systems; we leave proofs of liveness
properties for future work.

Applying formal verification techniques to distributed system im-
plementations is challenging. First, while tools like TLA [19] and Al-
loy [15] provide techniques for reasoning about abstract distributed
algorithms, few practical distributed system implementations have
been formally verified. For performance reasons, real-world imple-
mentations often diverge in important ways from their high-level
descriptions [3]. Thus, our goal with Verdi is to verify working code.
Second, distributed systems run in a diverse range of environments.
For example, some networks may reorder packets, while other net-
works may also duplicate them. Verdi must support verifying ap-
plications against these different fault models. Third, it is difficult
to prove that application-level guarantees hold in the presence of
faults. Verdi aims to help the programmer separately prove correct-
ness of application-level behavior and correctness of fault-tolerance
mechanisms, and to allow these proofs to be easily composed.

Verdi addresses the above challenges with three key ideas. First,
Verdi provides a Coq toolchain for writing executable distributed
systems and verifying them; this avoids a formality gap between
the model and the implementation. Second, Verdi provides a flex-
ible mechanism to specify fault models as network semantics.
This allows programmers to verify their system in the fault model
corresponding to their environment. Third, Verdi provides a com-
positional technique for implementing and verifying distributed
systems by separating the concerns of application correctness and
fault tolerance. This simplifies the task of providing end-to-end
guarantees about distributed systems.

To achieve compositionality, we introduce verified system trans-
formers. A system transformer is a function whose input is an
implementation of a system and whose output is a new system
implementation that makes different assumptions about its environ-
ment. A verified system transformer includes a proof that the new
system satisfies properties analogous to those of the original system.
For example, a Verdi programmer can first build and verify a system
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Abstract
Today’s Internet services are often expected to stay available and
render high responsiveness even in the face of site crashes and
network partitions. Theoretical results state that causal consistency
is one of the strongest consistency guarantees that is possible
under these requirements, and many practical systems provide
causally consistent key-value stores. In this paper, we present
a framework called Chapar for modular verification of causal
consistency for replicated key-value store implementations and their
client programs. Specifically, we formulate separate correctness
conditions for key-value store implementations and for their clients.
The interface between the two is a novel operational semantics for
causal consistency. We have verified the causal consistency of two
key-value store implementations from the literature using a novel
proof technique. We have also implemented a simple automatic
model checker for the correctness of client programs. The two
independently verified results for the implementations and clients
can be composed to conclude the correctness of any of the programs
when executed with any of the implementations. We have developed
and checked our framework in Coq, extracted it to OCaml, and built
executable stores.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks]: Network Protocols—Verification; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Correctness
Proofs

General Terms Algorithms, Reliability, Verification

Keywords causal consistency, theorem proving, verification

1. Introduction
Modern Internet servers rely crucially on distributed algorithms for
performance scaling and availability. Services should stay available
even in the face of site crashes or network partitions. In addition,
most services are expected to exhibit high responsiveness [21].
Hence, modern data stores are replicated across continents. During

Program 1 (p1): Uploading a photo and posting a status
0! Alice
put(Pic, ); . uploads a new photo
put(Post , ) . announces it to her friends

1! Bob
post  get(Post); . checks Alice’s post
photo  get(Pic); . then loads her photo
assert(post = ) photo 6= ?)

put(Pic, ) put(Post , )

get(Post): get(Pic):?

Figure 1. Inconsistent trace of Photo-Upload example

the downtime of a replica, other replicas can keep the service
available, and the locality of replicas enhances responsiveness.

On the flip side, maintaining strong consistency across repli-
cas [30] can limit parallelism [35] and availability. When avail-
ability is a must, the CAP theorem [19] formulates a fundamental
trade-off between strong consistency and partition tolerance, and
PACELC [3] formulates a trade-off between strong consistency
and latency [5]. In reaction to these constraints, modern storage
systems including Amazon’s Dynamo [17], Facebook’s Cassan-
dra [27], Yahoo’s PNUTS [16], LinkedIn’s Voldemort [1], and mem-
cached [2] have adopted relaxed notions of consistency that are
collectively called eventual consistency [48]. The main guarantee
that eventually consistent stores provide is that if clients stop is-
suing updates, then the replicas will converge to the same state.
Researchers [13, 44, 46] have proposed eventually consistent algo-
rithms for common datatypes like registers, counters, and finite sets.
Recent work [12, 14, 54] has formalized and verified the eventual-
consistency condition for these algorithms.

Weaker consistency is a double-edged sword. It can lead to
more efficient and fault-tolerant algorithms, but at the same time
it exposes clients to less consistent data. Programming with weak
consistency is challenging and error-prone. As an example, consider
Program 1, which shows two client routines (0 for Alice and
1 for Bob) running concurrently. An execution of the program
with an eventually consistent store is shown in Figure 1. Alice
uploads a photo of herself and then posts a message that she
has uploaded a photo . Bob reads Alice’s post announcing the
upload. He attempts to see the photo but only sees the default value.
The message containing the photo arrives late. The post is issued
after the photo is uploaded in Alice’s node. We call this a node-
order dependency from the post to the upload. If Bob can see the
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Are verified systems bug-free?

Bug consequence Component Trigger
1 Crash server Client-server 

communication
Partial socket read

2 Inject commands Client-server 
communication

Client input
3 Crash server Recovery Replica crash
4 Crash server Recovery Replica crash
5 Incomplete recovery Recovery OS error on recovery
6 Crash server Server communication Lagging replica
7 Crash server Server communication Lagging replica
8 Crash server Server communication Lagging replica
9 Violate causal 

consistency
Server communication Packet duplication

10 Return stale results Server communication Packet loss
11 Hang and corrupt data Server  communication Client input
12 Void exactly-once 

guarantee
High-level specification Packet duplication

13 Void client guarantee Test case check -
14 Verify incorrect 

programs
Verification framework Incompatible libraries

15 Verify incorrect 
programs

Verification framework Signal
16 Prevent verification Binary libraries -

We found 16 bugs in the three verified systems
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13 Void client guarantee Test case check -
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Are verified systems bug-free?

All bugs were found in the trusted computing base

No protocol 
bugs found

We found 16 bugs in the three verified systems
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Executable code

Application

OS

Verification guarantees

Verifier
and compiler

Specification

Verifier
and compiler
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Specification

Verified code

Shim layer11 bugs

2 bugs

Aux. tools Verifier
and compiler

3 bugs

Tiny fraction of the TCB



Study methodology

• Relied on code review, testing tools, and 
comparison between systems 

• Analyzed source code, documentation, specification 

• PK testing toolkit

Overall server 
correctness

(including non-verified 
components)

Verification 
guarantees+
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Marshal.to_channel(…)
OCaml 
Marshaling

Blocks

Example #1: Library semantics
SendMessage(…)

Channel
Buffer

put(…) put(…) put(…) put(…) put(…)

UDP max

OCaml 
Channel

Ignore exception

Fail
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Example #2: Resource limits
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means that a transient error returned by the open system
call – which can be caused by insufficient kernel memory
(ENOMEM) or by exceeding the system maximum number
of files opened (ENFILE) – causes the server to silently
ignore the snapshot.

In our experiments, we were able to create a test case
that causes the servers to silently return results as if
no operations had been executed before the server had
crashed, even though they had. This bug may also lead
to other forms of safety violations given that the server
discards a prefix of events (the snapshot) but read the
suffix (the log), potentially passing the validation steps.
Further, the old snapshot can also be overwritten after a
sufficient number of operations are executed.

4.1.3 Resource limits

In this section we describe three bugs that involve ex-
ceeding resource limits.

Bug V6: Large packets cause server crash.

The server code that handles incoming packets in
Verdi had a bug that could cause the server to crash un-
der certain situations. The bug was due to an insuffi-
ciently small buffer in the OCaml code of the server that
would cause incoming packets to truncate large packets
and subsequently prevent the server from correctly un-
marshaling the message.

More specifically, this bug could be triggered when
a follower replica substantially lags behind the leader.
This can happen if the follower crashes and stays offline
while the rest of the servers process approximately 200
client requests. In this situation, during recovery, the fol-
lower would request the list of missing operations, which
would all be combined into a single large UDP packet
thus exceeding the buffer size and crashing the server.

The solution to this problem was to simply increase
the size of the buffer to the maximum size of the con-
tents of a UDP packet. However, bugs Bug V7 and Bug V8,
which we describe next, were also related to large up-
dates caused by lagging replicas but are harder to fix.

Bug V7: Failing to send a packet causes server to stop
responding to clients.

Another bug that we found in Verdi caused servers
to stop responding to clients when the leader tries to
send large packets to a lagging follower. The problem
is caused by wrongly assuming that there is no limit on
the size of packets and by incorrectly handling the error
produced by the sendto system call. This bug was trig-
gered when a replica, that is lagging behind the leader by
approximately 2500 requests, tries to recover.

In contrast to Bug V6, this bug is due to incorrect code
on the sender side. In practice, the consequence is that
a recovering replica can prevent a correct replica from

let rec findGtIndex orig_base_params raft_params0
entries i =

match entries with
| [] -> []
| e :: es ->
if (<) i e.eIndex

then e :: (findGtIndex orig_base_params
raft_params0 es i)

else []

Figure 6: OCaml code, generated from verified Coq code, that
crashes with stack overflow error (Bug V8). In practice, the
stack overflow is triggered by a lagging replica.

working properly. The current fix applied by the devel-
opers mitigates this bug by improving the error handling
but it still does not allow servers to send large state.

Bug V6 and Bug V7 were the only two bugs that we did
not have to report to developers because the developers
independently addressed the bugs during our study.

Bug V8: Lagging follower causes stack overflow on
leader.

After applying a fix for Bug V6 and Bug V7, we found
that Verdi suffered from another bug that affected the
sender side when a follower tries to recover. This bug
causes the server to crash with a stack overflow error
and is triggered when a recovering follower is lagging
by more than 500,000 requests.

After investigating, we determined that the problem is
caused by the recursive OCaml function findGtIndex()
that is generated from verified code. This function is re-
sponsible for constructing a list containing the log entries
that the follower is missing and is executed before the
server tries to send network data. This is an instance of a
bug caused by exhaustion of resources (stack memory).

Figure 6 shows the generated code responsible for
crashing the server with the stack overflow. This bug
appears to be hard to fix given that it would require rea-
soning about resource consumption at the verified trans-
formation level §2.3. It is also a bug that could have
serious consequences in a deployed setting because the
recovering replica could iteratively cause all the servers
to crash, bringing down the entire replicated system.

Summary and discussion

Finding 1: The majority (9/11) of the implementation
bugs cause the servers to crash or hang.

The goal of replicated distributed systems is to in-
crease service availability by providing fault-tolerance.
Thus, bugs that cause servers to crash or otherwise stop
responding are particularly serious. This result suggests
that proving liveness properties is important to ensure
that distributed systems satisfy the user requirements.

Finding 2: Incorrect code involving communication is
responsible for 5 of the 11 implementation bugs.

This suggests that verification efforts should extend to
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that proving liveness properties is important to ensure
that distributed systems satisfy the user requirements.

Finding 2: Incorrect code involving communication is
responsible for 5 of the 11 implementation bugs.

This suggests that verification efforts should extend to
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State State
State

Request state

Missing state

Large requests cause servers to crash

Lagging replica

Server crashShim layer

Stack overflow

State



Preventing shim-layer bugs

Shim layer

Verified codeTest

Shim layer

Verified codeTest

vs

Server application



Server application

Preventing shim-layer bugs

Shim layer

Verified code

Shim layer

Test

Test Shim layer driver

Fuzzer

Check expected  
properties

Simulate  
environment

PK testing 
toolkit
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Example #3: Specification bug

“Implementing Linearizability at Large Scale and Low Latency” [SOSP’15] 

=

Replicated state machine protocols

Linearizability



Example #3: Specification bug

“Implementing Linearizability at Large Scale and Low Latency” [SOSP’15] 

=
Ensure that operations  

are executed exactly once

Linearizability

Verified code

Specification

Implementation 
with exactly-once

Current implementation

Verified code

Specification

Implementation 
without exactly-once

Other implementations

7-line difference



Example #3: Specification bug

• Exactly-once semantics is  
critical for applications 

• Fixing:                                 or  
 
 
 
 
  Specification Void exactly-once 

guarantee

Remove semantics  
from implementation

Add semantics to  
specification and verify it



• Testing for underspecified implementations  
 
 
 
 
 

• Proving specification properties

Preventing specification bugs

Implementation

Specification

Mutation 1
Mutation 1Mutation 1

Generate

Verifies?
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Example #4: Verifier bug
• Bug causes NuBuild to report that 

any program is verified 
• Incorrect parsing of Z3 output 
• Z3 crash is mistaken for success  

• Non-deterministic  
• Verifier offloads tasks to remote 

machines  
 
 
 
 

Dafny 
(high-level verifier)

Boogie 
(low-level verifier) 

NuBuild 
(make tool)

Z3 
(SMT solver)

Aux. tools Void guarantees



Preventing verifier bugs

• Construct and apply sanity-checks 
• Detect obvious problems in solvers, offloading, cache 

• Design fail-safe verifiers

Fail-safe

Verifier

WarningWrong result
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Verifier bugs 

Towards “bug-free” distributed system  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Existing real-world deployed systems

• Analyzed bug reports of unverified DSs 
• 1-year span 
• Differences: system size, maturity, etc.

Component Total
Communication 17

Recovery 8
Logging 21
Protocol 12

Configuration 3
Reconfiguration 42

Management 160
Storage 230

Concurrency 24

Protocol bugs remain a problem  

Management and storage  
have most of the bugs



Conclusion

• Empirical study on verified systems 

• No protocol-level bugs found in verified systems 

• 16 bugs found suggest interface between 
verified code and the TCB is bug-prone 
• Specification, shim-layer, and auxiliary tools 
• Testing toolchains complement verification


