
SoK: Understanding the Prevailing Security Vulnerabilities in
TrustZone-assisted TEE Systems

David Cerdeira
Centro Algoritmi

Universidade do Minho
david.cerdeira@dei.uminho.pt

Nuno Santos
INESC-ID / Instituto Superior Técnico

Universidade de Lisboa
nuno.santos@inesc-id.pt

Pedro Fonseca
Department of Computer Science

Purdue University
pfonseca@purdue.edu

Sandro Pinto
Centro Algoritmi

Universidade do Minho
sandro.pinto@dei.uminho.pt

Abstract—Hundreds of millions of mobile devices worldwide
rely on Trusted Execution Environments (TEEs) built with Arm
TrustZone for the protection of security-critical applications (e.g.,
DRM) and operating system (OS) components (e.g., Android
keystore). TEEs are often assumed to be highly secure; however,
over the past years, TEEs have been successfully attacked
multiple times, with highly damaging impact across various
platforms. Unfortunately, these attacks have been possible by
the presence of security flaws in TEE systems. In this paper, we
aim to understand which types of vulnerabilities and limitations
affect existing TrustZone-assisted TEE systems, what are the
main challenges to build them correctly, and what contributions
can be borrowed from the research community to overcome
them. To this end, we present a security analysis of popular
TrustZone-assisted TEE systems (targeting Cortex-A processors)
developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro.
By studying publicly documented exploits and vulnerabilities as
well as by reverse engineering the TEE firmware, we identified
several critical vulnerabilities across existing systems which
makes it legitimate to raise reasonable concerns about the security
of commercial TEE implementations.

Index Terms—TEE, TrustZone, Security Vulnerabilities, Arm

I. INTRODUCTION

Trusted Execution Environments (TEE) are a key security
mechanism to protect the integrity and confidentiality of
applications. By leveraging dedicated hardware, TEEs enable
the execution of security-sensitive applications inside protected
domains isolated from the platform’s operating system (OS).
Arm TrustZone [1] has become the de facto hardware technol-
ogy to implement TEEs in mobile environments and has been
employed in industrial control systems [2], servers [3], and
low-end devices [4]. In the future, where trillions of TrustZone-
enabled IoT devices are expected worldwide [5], TEEs can
provide secure environments for data processing at the edge.

TrustZone-assisted TEEs are generally assumed to be more
secure than modern OSes due to the hardware-based separation
enforced by TrustZone technology and their smaller Trusted
Computing Base (TCB), which is several orders of magnitude
smaller than standard OSes’. For this reason, TEEs have
become widely adopted for securing mobile devices against
malware [6–10]. For instance, Android platforms incorpo-
rate TrustZone-assisted TEEs to secure application-specific
operations involving, e.g., user authentication [11], online
banking [12], or DRM [13]. Unfortunately, some of these
systems have been exploited over the past years, which casts
doubt on the real security guarantees that existing commercial
TEEs can effectively provide.

In this paper, we perform a systematic study of publicly dis-
closed vulnerabilities in commercial TrustZone-assisted TEEs
for Arm Cortex-A devices. Despite the existence of multiple
security reports affecting such systems, this information tends
to be scattered and, in certain cases, unverified, which makes
it difficult to obtain a comprehensive understanding of the
prevailing vulnerabilities and overall security properties of these
systems. To fill this gap, we analyzed 207 TEE bug reports
spanning a nearly 5 years, from 2013 until mid-2018, focusing
on widely deployed TEE systems developed for Arm-based
devices by five major vendors: Qualcomm, Trustonic, Huawei,
Nvidia, and Linaro. We examined and categorized numerous
vulnerabilities, in particular, some of those that have been
leveraged to carry out successful attacks. From our analysis,
along with the manual inspection of TEE firmware, we have
gained multiple insights about the extent and causes of existing
vulnerabilities, and about potential solutions to mitigate them.

One first observation is that TEE systems have a long history
of critical implementation bugs. Numerous bugs have been
(and continue to be) found inside TEE applications – named
Trusted Applications (TAs) – and inside the trusted kernel
responsible for managing the TEE runtime. Many bugs involve
classic input validation errors, such as buffer overflows. As
shown by multiple attacks, these bugs can be leveraged to
hijack Android’s Linux kernel or to entirely compromise the
TEE kernel of devices featuring TEEs by Qualcomm [14, 15],
Trustonic [16, 17], or Huawei [18].

Second, exploiting vulnerable TAs is facilitated by the
numerous architectural deficiencies of TrustZone-assisted TEE
systems. For instance, the memory protection mechanisms
commonly found in modern OSes, e.g., ASLR or page guards,
are almost absent or ill-implemented in most analyzed systems.
TEE systems also tend to expose a large attack surface,
including dangerous TEE kernel system calls that can be
invoked by TAs. For example, on Qualcomm’s TEE, any TA
can map in memory regions of the host OS. As a result, by
hijacking a vulnerable TA, e.g., leveraging a buffer overflow,
an attacker can easily control Android [15].

Third, important hardware properties are overlooked in most
TrustZone systems at the architectural and microarchitectural
levels, which can compromise the security of the TEE. Some
vulnerabilities are caused by unexpected behavior of trusted
hardware components due to microarchitectural side-channels
(e.g., in caches) [19–23]. Others are caused by components that
can be leveraged to exfiltrate sensitive data from TEE-restricted



memory, for instance via reconfigurable hardware (FPGAs)
embedded into the modern SoCs [24, 25].

Although many of these problems remain difficult to solve
for software systems in general, we observe that the defense
mechanisms currently implemented in the studied TEEs lag
considerably behind the state-of-the-art defenses incorporated
into commodity mainstream OSes and proposed by the research
community. We argue that, by adopting up-to-date defenses,
commercial TrustZone-assisted TEEs could be made signifi-
cantly more secure and capable of countering many prevailing
vulnerabilities. We present a collection of relevant defense
techniques according to their suitability to address specific kinds
of issues: architectural, implementation or hardware issues.

In summary, this paper makes the following contributions:
(1) presents the first systematic study of known vulnerabilities
in widely used TrustZone-assisted TEE systems (Section III);
(2) analyzes the main architectural flaws of TEE systems in
perspective with modern OSes (Section IV); (3) introduces a
taxonomy for classifying implementation bugs that are more
likely to be used for exploiting TEE systems (Section V); (4)
raises awareness of hardware elements that can be leveraged for
attacking TEEs (Section VI); (5) analyzes the main defenses
techniques proposed by the research community (Section VII);
and (6) puts TrustZone-assisted TEEs in perspective with
alternative TEE enabling technologies (Section VIII).

II. BACKGROUND AND MOTIVATION

This section provides context on TrustZone-assisted TEEs.
Also, it motivates our study by showing the impact of TEE
vulnerabilities on the security of widely-used mobile devices.

A. Trusted Execution Environment and Arm TrustZone

A TEE provides an isolated environment for secure pro-
cessing of sensitive data, without the need to rely on the
integrity of the OS. TEEs aim at guaranteeing the secure
execution of programs, known as TAs or trustlets. TEE systems
rely on trusted hardware, such as Arm TrustZone [26], which
has been supplied on Arm application processors (Cortex-A)
since 2004 [27] and it was recently re-engineered for the new
generation of Arm microcontrollers (Cortex-M) [28]. Our work
focuses primarily on the Cortex-A TrustZone implementation,
which is widely used on mobile devices.

TrustZone is centered around the concept of protection
domains named secure world (SW) and normal world (NW).
Each physical processor core provides two virtual cores, one
considered ‘secure’ (SW) and the other ‘non-secure’ (NW), as
well as a mechanism to securely switch between them. The state
of the system is identified by the NS bit of the processor, which
identifies the current executing world. Hardware logic present
in the TrustZone-enabled AMBA bus extends the security state
of the processor to other system components, ensuring that
SW resources cannot be accessed by NW components.

B. Software Architecture of TrustZone-assisted TEE

The typical software architecture of a TrustZone-assisted
TEE runs the untrusted OS inside NW – named Rich Execution

Figure 1. Software architecture of a TrustZone-assisted TEE system.

Environment (REE) – and the TEE software components run
in the SW (see Figure 1). Inside SW, the trusted OS runs in
supervisor mode (protection ring EL1) and provides runtime
support for sustaining the lifecycle of TAs, which run in user
mode (protection ring EL0). The core of the trusted OS is
the trusted kernel, which provides the basic OS primitives for
scheduling and managing TAs. The trusted OS additionally
implements device drivers for accessing trusted peripherals,
handles cross-world requests through the world switching
SMC instruction and shared memory, and implements shared
libraries (e.g., cryptographic) and TEE primitives, namely
remote attestation, trusted I/O, and secure storage.

Beyond the trusted OS, a TEE comprises two fundamental
software components. The secure monitor implements mecha-
nisms for secure context switching between worlds and runs
with highest privilege, in protection ring EL3. The TEE
bootloader bootstraps the TEE system into a secure state, and it
is critical to implement the trusted boot primitive. It is split into
two parts which run, first, in EL3, and then in EL1. Together,
trusted OS, secure monitor, and TEE bootloader constitute the
software TCB of a typical TEE system. For this reason, TEE
designers aim for small and bug-free implementations.

C. Attacking TEE-enabled Devices

Over the past years, critical security vulnerabilities have been
identified in TEE systems of widely deployed mobile devices.
Some vulnerabilities can be exploited to acquire privileged
access to targeted devices and sensitive information stored
therein. In this section, we explain how this can be achieved
using the set of representative exploits listed in Table I to
hijack two critical components of a TEE-enabled device: the
TEE kernel and the REE kernel (i.e., Linux). Altogether, these
exploits demonstrated how to escalate its privileges from a
user-level NW application on a platform running Qualcomm’s
TEE system. Since then, a similar methodology has been
successfully employed to attack devices featuring other popular
TEE systems.

Compromising the TEE kernel: Targeting Qualcomm TEE
(QSEE), the TEE system developed by Qualcomm, Gal
Beniamini showed how to hijack the TEE kernel from an
unprivileged user-level NW application in two different ways.
One way requires escalating privileges into the Linux kernel



ID Ref Year Description Component Vulnerabilities Impact

E1 [29] 2015 Input validation weakness can be used as a zero-write primitive
anywhere on memory QSEOS’s virtual memory to obtain arbitrary
code execution in trusted OS. Requires root privileges in Linux kernel.

SW Monitor [30] Full control of
TZ kernel

E2 [31] 2015 Exploits bug in the TrustZone Linux driver, which allows an attacker
to obtain root privileges and thus launch the E1 attack.

NW Driver CVE-2014-
4322

Full control of
Linux kernel

E3 [32] 2016 Vulnerability in Android’s Mediaserver process which allows an
unprivileged REE application to gain access the Qualcomm’s TrustZone
interface driver. When used with E1 and E2, allows an unprivileged
application to obtain trusted OS-level arbitrary execution.

NW Service CVE-2014-
7920, CVE-
2014-7921

Full control of
Android
Mediaserver

E4 [33] 2016 Privilege escalation attack to obtain arbitrary execution in the context
of a TA. The vulnerability occurs in the Widevine TA, and can be
exploited by accessing the TrustZone interface Linux driver using E3.

SW TA CVE-2015-
6639

Full control of
Widevine TA

E5 [14] 2016 Lack of input validation in Qualcomm’s trusted OS system calls allows
a TA to write to any address within the OS and hijack the TEE kernel.
Requires privilege escalation into TA through the TA’s interface.

SW Kernel CVE-2016-
2431

Full control of
TZ kernel

E6 [15] 2016 An attacker with TA-level execution privileges can gain control of the
Linux kernel. This attack can be built upon E4.

NW Kernel Bad system call Full control of
Linux kernel

Table I
Representative vulnerability exploits for QSEE, Qualcomm’s TEE system, showing the diversity of affected components and security impact.

(see Figure 1) in several steps. First, use exploit E3 to control
Android’s Mediaserver, which has privileged access to the TEE
driver. Then elevate privileges into the Linux TrustZone driver
to access the SMC interface (E2). A third exploit (E1) takes
advantage of a bug in the TEE kernel and achieves arbitrary
code execution with EL1 privileges in SW. Once in control
of the TEE kernel, an attacker can launch other attacks, e.g.,
hijack a guest TA to extract secret keys and break Android’s
full disk encryption [34], or unblock the device bootloader [35].
A second way to compromise the TEE kernel only requires
access to the interface of a vulnerable TA. Using E4, an attacker
can hijack the Widevine TA, a DRM service for Android OS.
Then, through a vulnerability in the system call interface, the
attacker can further elevate privileges into the TEE kernel (E5).

Compromising the REE kernel: Additionally, it is possible to
compromise Linux without even the need to gain control of the
TEE kernel. This can be achieved by using a vulnerable TA
as a trampoline for privilege elevation into the Linux kernel.
For instance, exploit E6 allows an attacker to take over the
Linux kernel by sending crafted input from a user-level NW
application into the Widevine TA. A vulnerability in this TA
along with QSEE’s system calls that allow TAs to map in
NW physical memory, enable an attacker to modify memory
regions allocated to the Linux kernel and control the system.

The extent of the problem. Several other exploits have been
developed for the Qualcomm TEE [17, 36–38]. Beyond mobile
devices shipping Qualcomm chips, other platforms have been
attacked, namely devices running Trustonic’s TEE system,
renamed from Mobicore to Kinibi [16, 17, 39, 40], and
Huawei’s proprietary TEE named Trusted Core [18, 41].
Most of these exploits adopt the divide-and-conquer strategy
presented in Table I. Considering that Trustonic’s TEE is
estimated to run on 1.7 billion devices (mostly Samsung’s) and
Huawei’s mobile devices are widely adopted (200 million sold
in 2018), TEE flaws can have a large impact worldwide.

III. OVERVIEW

This section provides an overview of our study of security
vulnerabilities on commercial TrustZone-assisted TEE systems.

A. Methodology of our study

Performing a comprehensive security assessment of commer-
cial TEE systems entails several challenges. For many such
systems, the source code is not available. Their binaries also
tend to be inaccessible or difficult to analyze due to the lack
of documentation and the employment of code obfuscation
techniques. Additional complexity is caused by the co-existence
of legacy TEE software versions by the same vendor and the
diversity and heterogeneity of TrustZone hardware. We cope
with these challenges by adopting the following methodology.

Adversary model: We consider an attacker that pursues one or
more of the following objectives: a) obtain secrets from the
TEE, b) obtain secrets from the REE, c) escalate privileges
to the REE kernel, or d) escalate privileges to the TEE. He
can access the SMC interface exclusively from the NW in two
ways: either directly by obtaining code execution privileges in
supervisor mode (N-EL1), allowing for crafting arbitrary SMC
calls, or indirectly from unprivileged user-level applications
(N-EL0) by issuing commands toward some target TA. All
NW components are assumed to be untrusted.

Analyzed TEE Systems: We analyzed TEE systems by Qual-
comm, Trustonic, Huawei, Nvidia, and Linaro. Nvidia main-
tains a proprietary TEE used mostly for Nvidia chips. Linaro
maintains OP-TEE, an open source TEE software very popular
for TrustZone development. All these systems are actively
maintained, are widely adopted for commercial purposes, and
a fair amount of information can be obtained about them. We
excluded research prototypes (e.g., Andix [2]) or commercial
products not currently deployed at scale (e.g., SierraTEE [42]).
We also consider relevant cross-cutting vulnerabilities, e.g.,
hardware side-channels. For the sake of readability, henceforth,



TEE System CVE SVE SP MR SC Total

Qualcomm TEE 92 - - 7 - 99
Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40
Other 11 - 15 2 - 28

Total 124 17 15 15 36 207

Table II
Sources of reports: CVE (CVE databases), SVE (SVE databases), SP

(scientific publications), MR (miscellaneous reports), and SC (source code).

we refer to each analyzed TEE by the company name rather
than by software name (e.g., Qualcomm TEE means QSEE).

Data sources: We resorted to multiple sources that we grouped
into four areas (see Table II). We analyzed bug reports from
the CVE database [43] relative to the TEE systems under
study. We retrieved the CVE reports published officially by
Qualcomm [44, 45], Nvidia [46] and Huawei [47] which are
documented also in their respective security bulletins. We gath-
ered additional CVE reports by searching for relevant keywords,
e.g., the TEE names, “TrustZone”, etc. We also collected bug
reports from Samsung Vulnerabilities and Exposures (SVE)
database [48] which have not been assigned specific CVE
IDs. We analyzed scientific publications (SP) in major security
conferences from the past 10 years, miscellaneous reports (MR)
available online (e.g., [17, 33, 49–52]), and inspected source
code (SC) for TEEs’ with public source code, namely Linaro’s
OP-TEE. For OP-TEE, we also analyzed its changelog to
identify security fixes and interviewed the system designers.

Classification of disclosed security vulnerabilities: After col-
lecting the vulnerability reports, we manually analyzed and
categorized them. For the vulnerabilities assigned with a CVSS
score [53], we adopted a classification metric based on the
attribute score. Our rating system comprises four categories:
critical (CVSS ≥9), severe (CVSS [7,9[), medium (CVSS [5,7[),
and low (CVSS [0,5[). The severity of a specific vulnerability
may have different security implications. A critical vulnerability
is normally one that can lead to a complete compromise of
confidentiality or integrity in the TEE, in the REE, or both.

Binary analysis: To obtain accurate details about the studied
TEE systems, we reverse engineered a subset of them. First, this
method allowed us to quantify the size of each system’s TCB.
Second, it helped determine the specific software architecture
of each system, for example, that Huawei uses Arm Trusted
Firmware (ATF) as a base for its secure monitor software, while
Qualcomm uses its own implementation. Third, it allowed us to
analyze the memory protection features implemented by each
TEE. For Trustonic TEE we analyzed the firmware for Samsung
Galaxy S7 (Exynos) version G930FXXS1APG3, for Qualcomm
TEE the Pixel XL firmware version PQ2A.190205.003, and for
Huawei TEE the P8-Lite system image ALE-L21C432B603.

Threats to validity: Since most vulnerabilities have no proof-
of-concept exploits or their CVE descriptions may not provide
enough detail, our identification and classification of vulnera-
bilities might have some imprecisions. The lack of information

System Critical Severe Medium Low Total

Qualcomm TEE 52 19 12 9 92
Trustonic TEE 1 - 0 4 5
Huawei TEE - 2 - 1 3
Nvidia TEE - 5 1 4 10
Linaro TEE - - 2 1 3
Other - 1 7 3 11

TEE Total 53 27 22 22 124

FreeRTOS - - 5 8 13
VxWorks 2 2 5 1 10
Linux 242 254 393 758 1647

Table III
Number of disclosed CVEs per system from 2013 to 2018.

regarding the vulnerabilities existing in proprietary systems
may have also led to inaccurate classifications. There is also the
risk of over-representation of a given TEE system, particularly
in the case that the number of publicly reported vulnerabilities
about that system largely outnumbers those of other systems.
In such cases, we require extra care while drawing general
conclusions. Lastly, we analyzed only vulnerabilities that
have been previously reported. As a result, unknown types
of vulnerabilities might exist that could reveal additional
fundamental security issues in TEE systems.

B. Summary of Observations

We analyzed the vulnerability reports of all major commer-
cial TEEs, namely the TEE systems by Qualcomm, Trustonic,
Huawei, and Nvidia. Considering the reports obtained from
CVE databases, which are classified with a severity score, we
manually identified, in total, 124 TEE vulnerabilities during a
time window of six years (i.e., 2013 – 2018).

Table III quantifies the number of disclosed vulnerabilities
associated with each system according to their severity. Almost
half of the bug reports are rated as critical or severe. In
particular, 53 of the 124 reports (42%) disclosed security
vulnerabilities are considered critical. Perhaps even more
surprising, every single TEE that we analyzed was found to
have at least one non-low severity vulnerability during the
considered time period: Trustonic has 1 critical vulnerability,
and Nvidia and Huawei’s systems have, respectively, 5 and 2
classified as severe. Considering that collectively these systems
are widely deployed, millions of users worldwide may have
been seriously affected by these vulnerabilities.

Although it stands out that the Qualcomm TEE accounts
for the largest fraction of disclosed vulnerabilities (74%), we
caution that we cannot conclude from this data that it is the
least secure TEE; or similarly compare individual TEEs. This
is due to the disparity in methodology with regards to the
CVE reporting process and could simply be a consequence
of higher reporting diligence of Qualcomm developers and
users. However, these results are useful because they allow
us to establish a lower bound on the vulnerabilities of such
systems, reason about aggregate trends, and compare general
TEE trends against the trends of other types of systems.

For instance, we observed that during the same time window
the entire Linux operating system, which is several orders of



Figure 2. Detailed architecture of the studied TEE systems. A few relevant common features include: (a) the communication between a NW application and
the SW is mediated by a privileged OS daemon which uses a TrustZone driver to issue SMC calls to the SW; (b) in four cases, the monitor is based on
ATF [54], which consists of the reference implementation provided by Arm for the secure bootloader and monitor software.

magnitude larger than any of these TEEs, only had 1647 CVEs
(see Table III). When comparing the studied TEEs against
Linux and real-time OSes of similar complexity (FreeRTOS
and VxWorks) both classes of OSes account for a smaller
relative percentage of critical and severe vulnerabilities. These
observations suggest that the current development methodolo-
gies for some of the most popular TEEs are not as robust
as the development methodologies of other systems, and may
benefit from the adoption of such methodologies.

C. Sources of Vulnerabilities in TrustZone-assisted TEEs
Overall, we identified three main sources of security vulnera-

bilities in existing TEE systems: architectural, implementation,
and hardware. Architectural issues involve deficiencies in the
overall TEE system architecture, e.g., absence of memory
protection using ASLR. Implementation issues correspond to
flaws in the TEE system’s software, e.g., buffer overflows.
Hardware issues concern hardware behavior that can be abused
to undermine the security of a TEE, e.g., side-channels.

To a great extent, these problems continue to persist. Apart
from incremental improvements, TEE systems preserve their
original architectural features and retain serious weaknesses.
Even the systems which present less critical and severe
vulnerabilities, such as Trustonic TEE, suffer from important
architectural limitations. Vulnerability reports abound which
reveal the presence of critical implementation bugs. Many of
these bugs have a similar nature as the ones exploited by
the attacks described in Table I. We identified other kinds
of bugs that can further be exploited, e.g., concurrency bugs.
Hardware issues are prevalent in TrustZone-enabled SoCs and
can potentially be leveraged for launching highly damaging
attacks in the future. In the next sections, we present our
findings in detail by covering each type of issues.

IV. ARCHITECTURAL ISSUES

This section presents the main architectural security issues
of existing TEE systems. We group these issues into several
categories, and refer the reader to the diagram of Figure 2
which presents the specific internal details of each system.

A. TEE Attack Surface
TEE systems expose a wide attack surface that can potentially

be exploited to compromise the overall security.

I01. SW drivers run in the TEE kernel space: In general,
a TEE system requires the existence of drivers in the SW to
mediate access to security-sensitive devices, e.g., a fingerprint
sensor for user authentication purposes, or the display frame-
buffer for secure output of DRM-protected content. Given that
drivers tend to be complex and a traditional source of bugs,
they should not run in the TEE kernel space (i.e., in S-EL1
mode). Trustonic and Nvidia follow this approach by adopting
a microkernel architecture where drivers run in the SW user
space (S-EL0). In contrast, Qualcomm, Huawei, and Linaro
run TEE drivers in S-EL1 mode. Both Qualcomm and Linaro
adopt a monolithic architecture where all the privileged code
runs in kernel space. Huawei delegates some of the trusted OS
functionality to user space, namely the job of controlling the
lifecycle of TAs which is assigned to a privileged TA called
GlobalTask (see Figure 2).

I02. Wide interfaces between TEE system subcomponents:
These interfaces have become worryingly large for TEE
systems. In Android OS, at least four daemons have privileged
access to the TrustZone driver. The SMC call interface exposed
by the TEE kernel gives NW software access to a considerable
number of TAs (e.g., Trustonic TEE counts 32 different TAs).
The set of commands handled by TAs also tends to be fairly
large. For instance, the Widevine TA implements 70 different
commands, many of them manipulate complex media data
structures. The TEE kernel exposes a large number of system
calls to TAs: 69 syscalls in Qualcomm’s TEE. Moreover,
access permissions to the TEE system calls are frequently
coarse-grained, such as in Qualcomm TEE where TAs have
promiscuous access to all system calls. In certain cases, the
interface provided by the secure drivers can grow very large,
such as in the Trustonic TEE, where the TA that controls access
to the fingerprint device driver gives access to virtually every TA
deployed in the TA. Most of these issues have been instrumental
for the development of the exploits listed in Table I.

I03. Excessively large TEE TCBs: Part of the design philoso-
phy of a TEE system is that it should rely on a small TCB. To
verify whether this principle holds for the studied TEE systems,
we analyzed their TCB sizes based on their firmware and, when
available, on their source code. Given that TAs implement
security-sensitive REE functions, we include in the TCB both



System Core (bin / src) TAs Details

Qualcomm TEE
(Google Pixel XL)

1.61MB / – 2.71MB Binary contains the secure monitor (96.2KB) and QSEOS(1.50MB). TAs include device
management: bootlocker (76 kB); Android services: keymaster (332 kB), fingerprint (600 kB);
DRM and decoding: venus (924 kB), Widevine (391 kB); Common libs: cmnlib32,64(204/256 kB)

Trustonic TEE
(Samsung S7)

350KB / – 5,02MB The monitor (140KB) and trusted OS (210 KB) binaries are separate. There are 3 built in TAs,
and 33 loadable TAs taking, which add to 5.02MB, implementing Android system functionality,
DRM, kernel integrity management, secure element I/O, etc, either as TAs or drivers.

Huawei TEE
(Huawei P8 Lite)

744KB /– 479KB Secure monitor (47KB) based on ATF. Trusted OS binary contains kernel (305KB) and GlobalTask
(329KB). TAs include libc shared library (5KB) and implement Android system services, e.g.,
keymaster (188KB) and gatekeeper (27KB), amongst several others services.

Nvidia TEE
(Nvidia Tegra)

97KB / 123Kloc 80KB The kernel (60KB/23kloc) is based on little kernel (lk) and the monitor we consider ATF Monitor
(36.9KB/100kloc). Two test TAs are considered, trusted_app1 (45KB), implements two tests,
swapping operands, and copying a string to a buffer. The second, trusted_app2 (35KB), increments
the operands by one, and then overwrites them when replying to the client.

Linaro TEE
(Hikey960)

365KB /210Kloc - The kernel (328.5KB/110kloc), incorporates pseudo-TAs: kernel modules benefiting from full
S-EL1 privileges. In Linaro TEE the monitor is the ATF (36.9KB/100kloc).

Linux (4.14.rc7) 19MB / 15Mloc - Linux kernel on hikey960 configured with a number of kernel services and drivers built in.

seL4 (kernel) 166.5KB / 19Kloc - Formally verified microkernel. When configured correctly guarantees logical task separation.

Table IV
TCB sizes of TEE systems vs. reference OSes (respectively above and below the middle line): Values obtained from TEE binaries and loadable TAs in firmware

/ system image file system. For open source systems, software was compiled enabling optimizations. Lines of code were counted using SLOCCount [55].

trusted OS and TAs. Table IV presents our results comparing
them against a few reference OSes. We find that TCBs of
TEE systems are substantial, e.g., reaching 1.6 MB in the
Qualcomm TEE. Further, these numbers are conservative since
additional TAs that are not included the firmware package can
be dynamically loaded. Strikingly, some TAs have individually
considerable sizes. With such sizes, confidence in the full
correctness of these TAs is weakened: since TAs accept inputs
from the NW via SMCs, potential vulnerabilities are exposed
to easy exploitation. To put TCB sizes in perspective, Table IV
shows that although existing TEE kernels are significantly
smaller than the Linux kernel (by about three orders of
magnitude), most of them are growing considerably larger
than a microkernel of comparable complexity (seL4).

B. Isolation between Normal and Secure Worlds

A TEE system must enforce strong isolation between NW
and SW while enabling efficient communication across worlds.
In some TEE systems, this isolation can be undermined by the
exposure of dangerous system calls by the TEE kernel.

I04. TAs can map physical memory in the NW: Certain ap-
plications, e.g., for DRM-protected video rendering, require an
efficient shared-memory mechanism that allows for exchanging
high volumes of data across worlds with low latency. However,
some TEE systems provide mechanisms that can easily be
abused for privilege escalation. For example, Qualcomm TEE
exposes a trusted OS system call that allows any TA to map
any physical memory belonging to the NW, including to the
REE OS kernel. As a result, by compromising a TA, an attacker
can automatically takeover the Android OS by scanning the
physical address space for the Linux kernel and patch it to
introduce a backdoor (see E6 in Table I).

In contrast, Trustonic TEE prevents TAs from mapping in and
modifying physical memory. Instead, this operation is restricted

to specific driver TAs. Hence, TAs willing to exchange data
volumes via shared memory must issue a request to a dedicated
driver TA. Samsung uses this approach to split the functionality
of the TrustZone-based Integrity Measurement Architecture
(TIMA): a TA driver provides the ability to map physical
memory while another TA uses this service to measure the
integrity of system image. A white list is used to prevent access
to the TA driver by arbitrary TAs. However, the white list is
hard-coded in the TA driver and the number of allowed TAs
reaches 34, which is fairly large. By compromising any of
these TAs, an attacker has free way to hijack Android.

I05. Information leaks to NW through debugging channels:
Another source of isolation breaches is caused by leakage
of information from the SW to the NW via TEE debug
mechanisms. Some exploits described in Table I have been
facilitated by this feature. A privilege escalation attack [18]
leverages a system call of the Huawei TEE that allows a TA
application to dump its stack trace to a memory region in the
NW. Using this mechanism, the attacker can learn the physical
address space of the GlobalTask and use this information
to craft the exploit. Debugging logs exposed to the NW are
also common in the Trustonic TEE which may help disclose
sensitive information about the internals of TAs.

C. Memory Protection Mechanisms

Most TEE system exploits have been facilitated by poorly
designed memory protection mechanisms. Table V summarizes
our findings with respect to the mechanisms implemented for
each analyzed TEE system. We highlight the following issues.

I06. Absent or weak ASLR implementations: In all analyzed
TEE systems, ASLR is either absent or poorly implemented. In
Trustonic TEE, TAs are all loaded into the same fixed address in
the virtual address space (0x1000). Each TA is provided with a
common library which is also mapped to a constant address for



Mechanisms Qualcomm Trustonic Huawei Nvidia Linaro

User ASLR G# # # # #
Space SC  # # # #

GP # # – – –
XP WXN WXN # UXN/PXN UXP/PXN

Kernel KASLR # # # # #
Space SC  # # # #

XP WXN WXN # UXN/PXN UXN/PXN

Table V
Memory protection mechanisms for user and supervisor modes. Filled circle:
fully implemented. Half-circle and empty circle: partially implemented or not

implemented. Dash: implementation-related information not found.

each TA (0x7D01000). Thus, any vulnerability found in a TA
can be exploited without requiring extra effort in determining
the TA’s loading address. Furthermore, this common library,
named mcLib (see Figure 2), contains a substantial amount of
code, which can provide a source of gadgets to call functions,
invoke trusted OS system calls, etc.

Likewise, Huawei, Nvidia, and Linaro TEEs offer no ASLR
mechanisms. The Qualcomm TEE provides a form of ASLR
for all TAs but uses only a small segment of physical memory
into which the TA code is loaded. All TAs are loaded into
a relatively small region of continuously allocated physical
memory spanning around 100MB in size. Consequently, the
amount of entropy offered by the ASLR is limited by this
region’s size. Thus, while it would be theoretically possible
to implement high entropy ASLR by using a 64-bit virtual
address space, the ASLR implemented by Qualcomm TEE
is limited approximately to 9 bits, which greatly reduce the
number of guesses an attacker would need to try to guess a
TA’s base address. None of the studied TEE systems features
KASLR, i.e., ASLR for the TEE kernel.

I07. No stack cookies, guard pages, or execution protection:
In addition to ASLR, modern OSes employ additional memory
protection mechanisms. Stack cookies (SC) are unique values
that help detect stack smashing instances and abort the program
execution. Guard pages (GP) delimit the mutable data segments
in each process (namely, stack, heap, and global data) to
prevent attackers from using an overflow in one segment to
corrupt another by triggering a fault in case of illegal access.
Execution protection (XP) prevents programs from executing
within certain memory regions and can be achieved by various
means. On Arm, the WXN bit in the SCTLR register can be
used whereby writable memory regions are implicitly marked
as Execute Never (XN). Another option is to use memory page
attribute XN, Unprivileged XN (UXN), and Privileged (PXN).

However, TEE systems only partially implement these mech-
anisms (see Table V), which has facilitated exploitation [18].
Trustonic TEE, in spite of its security-driven goals, lacks stack
cookies, making it relatively easy to exploit stack overflows
in vulnerable TAs. It allocates both globals and stack from
the TA’s data segment without providing guard pages in
between. Moreover, the memory layout places the stack at
the end of the data segment and the globals before it; this is
the perfect configuration for overflowing one region into the
other. Qualcomm TEE implements randomized pointer-sized
stack cookies, but it does not provide guard pages between

Figure 3. Secure boot process: Implements a chain of trust that starts with the
execution of a trusted component – Trusted Board Boot – stored in an on-SoC
ROM. Then, each loaded component verifies the authenticity and integrity
of the subsequent module, or modules, and loads them if no anomalies are
detected. A vendor digitally signs the SW image with its private key, while
the respective public key (or its digest) is burned, or flashed into a one-time
programmable memory, typically eFuses. The public key is used to verify that
the binary has not been modified and it was provided by the vendor.

globals, heap, and stack. Huawei TEE has no stack canaries,
no data execution protection, and no write-protected .text
section, possibly because Huawei TEE is based on the Micrium
µ/OS, an RTOS which leaves aside most of the said memory
protection mechanisms to deliver maximum performance.

D. Trust Bootstrapping

We report a number of architectural issues which might un-
dermine the process of trust bootstrapping by client applications
– local or remote – on a TrustZone-assisted TEE platform.

I08. Lack of software-independent TEE integrity reporting:
Secure boot ensures the authenticity of the software running
on a device. Figure 3 illustrates a possible secure boot process,
including the booting of TAs. However, Arm TrustZone lacks
the hardware mechanisms for securely reporting the software
integrity measurements to a remote third party. In the absence of
hardware support, remote attestation needs to be implemented
in software by one of the TEE components. This weakens the
security of remote attestation as it requires the correctness of
all SW software of the trust chain running in EL3 mode.

I09. Ill-supported TA revocation: Problems have been iden-
tified with the way Android OEMs deal with TA revocation
[17]. TA revocation is necessary to prevent patched TAs from
being downgraded. Updates allow for vulnerabilities and other
errors to be corrected, increasing the overall security of the
device. To make them easier to update, TAs are usually loaded
from the REE filesystem and to prove their authenticity they
are digitally signed. However, the TEE must revoke old TAs to
prevent attackers in the REE from intentionally loading an old,
known vulnerable TA and exploiting it to gain code-execution
within the TEE. The successful downgrading of the Widevine
TA to a previous, known vulnerable, version in Qualcomm and
Trustonic TEEs has been shown [17].



Class Subclass # Bugs

Validation Bugs Secure Monitor 2 (1.07%)
Trusted Applications 62 (33.16%)
Trusted Kernel 52 (27.81%)
Secure Boot Loader 5 (2.67%)

Functional Bugs Memory Protection 32 (17.11%)
Peripheral Configuration 8 (4.28%)
Security Mechanisms 11 (5.88%)

Extrinsic Bugs Concurrency Bugs 11 (5.88%)
Software Side Channels 4 (2.14%)

Table VI
Number of bug reports involving implementation issues.

V. IMPLEMENTATION ISSUES

In addition to architectural weaknesses, many TEE vulner-
abilities are caused by implementation bugs. To characterize
the prevalence of these issues, our primary source consisted of
bug reports retrieved from public CVE databases and vendor
bulletin reports. Table VI lists how we classified all the analyzed
bugs into a few meaningful categories which we present below.

A. Validation Bugs

A common type of software bugs in TEE systems involves
improper handling of input and/or output values which we
refer to by the name validation bugs. Examples include buffer
overflows, incorrect parameter validation, mishandled integer
overflows, etc. Bugs of this nature are very prevalent and
frequently used as entry points for privilege escalation. They
can be found in all major components of existing TEE systems.

I10. Validation bugs within the secure monitor: By exploit-
ing a bug in the secure monitor, an attacker can automatically
gain full control of the device. For instance, the vulnerability
abused by exploit E1 for hijacking the Qualcomm TEE kernel
(see Table I) allowed an attacker to write a zero double word
anywhere in the SW memory by crafting an input into an SMC
call. To reduce the chance of critical bugs, most TEE systems
(excepting Qualcomm TEE) use Arm’s reference monitor (ATF)
implementation (see Figure 2). Unfortunately, critical validation
bugs have been reported within ATF itself. Ironically, one bug
was located on a C macro whose goal was to help detect
arithmetic overflows (CVE-2017-9607). Shown in Listing 1,
any AArch32 code relying on this macro to detect integer
overflows is not protected. This means that multiple monitor
entry points that use this macro could be vulnerable.

I11. Validation bugs within TAs: Besides the secure monitor,
TAs are mostly exposed to attacks from the NW through
the SMC interface. As it turns out, the largest fraction of
vulnerability reports in TEE systems corresponds to validation
bugs within TAs. For instance, critical vulnerabilities in the
ESECOMM trustlet can be leveraged to compromise client
applications such as Samsung Pay [16]. In Trustonic TEE,
validation bugs can be exploited systematically using the
respective bug fixes [39]. Some TA validation bugs (e.g., CVE-
2016-5349) may allow for direct privilege escalation into the
Linux kernel through boomerang attacks [56], in which a

/* Evaluates to 1 if (ptr + inc) overflows, 0 otherwise.
* Both arguments must be unsigned pointer values (i.e.

↪→ uintptr_t). */
#define check_uptr_overflow(ptr, inc) \

(((ptr) > UINTPTR_MAX - (inc)) ? 1 : 0)

Listing 1. Vulnerability in ATF macro. Located in header file
include/lib/utils_def.h, this macro aims at detecting arithmetic overflows
when computing the sum of a base pointer and an offset. However, if the
sum of the input base pointer and offset wraps around, unpredictable behavior
might occur. In AArch32 images, it fails to detect overflows when the sum of
its two parameters falls into the (232, 264 - 1) range.

signed int __fastcall sys_call_overwrite(int a1, int a2) {
signed int v2; // r3@2
int v4; // [sp+0h] [bp-14h]@1
int v5; // [sp+4h] [bp-10h]@1
v5 = a1;
v4 = a2;
if ( *(_DWORD *)a1 == 0x13579BDF ) {
// write (*(int*)(arg1 + 0x18C) + 7) >> 3 to arg2
*(_WORD *)v4 = (unsigned int)(*(_DWORD *)(v5 + 0x18C) + 7)

↪→ >> 3;
v2 = 0;

}
return v2;
}

Listing 2. Reverse-engineered syscall from Huawei TEE (RTOSck) without
any input check. An attacker can overwrite memory anywhere in NW or SW.

vulnerable TA does not properly validate the input memory
addresses, allowing an attacker to access NW memory region
and read or write memory allocated to REE apps or OS.

I12. Validation bugs within the trusted kernel: By hijacking
a TA, an attacker may successfully elevate its privileges by
exploiting a vulnerability in the TEE kernel’s system call
interface. For instance, an attack on the Huawei TEE [18]
relied on a vulnerable system call where its inputs are entirely
unchecked for bypassing a security check within the trusted
kernel (see Listing 2). Even more worrisome, the Qualcomm
TEE kernel lacks any code for validating supplied input pointers,
which means that all the system calls are vulnerable [14].

I13. Validation bugs in secure boot loader: The boot loader
may also be prone to attacks by exploiting validation bugs upon
system bootstrap. An example is documented in CVE-2017-
7932. This vulnerability is due to a stack-based buffer overflow
in the X.509 certificate parser which allows an attacker to
potentially install or load a crafted X.509 certificate during the
image verification. As a result, the legitimate TEE software
image can be replaced to attain arbitrary code execution.

B. Functional Bugs

By functional bugs we refer to programming errors caused,
not by flaws in validating inputs/outputs, but by inconsistencies
between the implementation and the program specification
intended by the programmer (e.g., incorrectly programming
of a cryptographic algorithm). We identified three types of
functional bugs that can lead to security breaches in TEEs.

I14. Bugs in memory protection: Some functional bugs may
introduce security vulnerabilities in the memory protection
mechanisms of a TEE system. For instance, a vulnerability



reported for ATF [57] involves a configuration error of memory
translation tables which allows read-only memory areas to
always be executable in the context of the S-EL1. In OP-
TEE, we identified 15 bug reports causing memory protection
vulnerabilities. For instance, one error in the OP-TEE’s secure
monitor code responsible for saving and restoring FIQ registers
for ARMv7 may allow the REE to escalate privileges to obtain
code execution in the TEE [58].

I15. Bugs in configuration of peripherals: Misconfiguration
of certain peripherals may also be security-critical. In Qual-
comm TEE, a flaw disclosed as CVE-2016-10423, allows a TA
to read data on an SPI interface previously opened by another
TA due to non-exclusive access of the SPI bus. In OP-TEE,
one patch [59] aimed to fix a misconfiguration of the pseudo
random number generator causing an insufficient source of
entropy for the cryptographic libraries used within OP-TEE.

I16. Bugs in security mechanisms: Another potential source
of vulnerabilities is the existence of bugs in the implementation
of security protocols or cryptography primitives. In ATF, an
attacker could bypass the Amlogic S905 SoC secure boot
process [51] due to a deficiency in the authentication checks,
where only the integrity of the boot image was checked, not
the signature. In OP-TEE, for example, a Bellcore attack
vulnerability in LibTomCrypt could compromise a private RSA
key (CVE-2017-1000412), and a hardcoded security key for
RPMB result in the key leakage (fix on 23 Jan 2017).

C. Extrinsic Bugs

Lastly, we use the term extrinsic bugs to refer to program-
ming defects that are not related with validation of values or
functional correctness of code, but with the proper handling of
external factors that might introduce security vulnerabilities. In
particular, we identify two classes of bugs that fit this category.

I17. Concurrency bugs: Caused by the interference of multiple
concurrent programs, we consider concurrency bugs as extrinsic
because their manifestation depends on factors external to the
program itself (e.g., thread interleaving). Some concurrency
bugs may introduce security vulnerabilities within TEE systems.
For instance, in OP-TEE, one bug due to concurrent access to
the file system by different TAs [60] allowed a TA to delete
a directory on trusted storage while being created by another
TA. Samsung reported two race condition vulnerabilities in
the TIMA driver deployed in Trustonic TEE (SVE-2017–8974
and SVE-2017–8975). A specific instance of race conditions
may lead to TOCTOU vulnerabilities, where some aspect of
the system state changes after a condition check, such that
the condition-check results are no longer valid. A TOCTOU
vulnerability was reported in a DRM TA of the Nvidia TEE
which may lead to privilege escalation (CVE-2017-6296).

I18. Software side-channels: Another instance of bug types
that we consider to be extrinsic is software side-channels,
which are caused by specific implementation artifacts that
are foreign to the program logic but can reveal undesired
information based on the program execution time. For example,
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Figure 4. Hardware architecture of a TrustZone-assisted TEE system, including
programmable logic present in FPGAs. The fully shaded boxes represented the
trusted components exclusively allocated to the TEE software running in the
SW, SPI/UART, for example, allow communication with off-SoC peripherals
(e.g., for biometric authentication or smartcard interaction). Partially colored
boxes represent components that can be partially, or totally, restricted to the
SW, such as DRAM, and storage (e.g., to provide secure storage to TAs).

a timing side-channel was found in the cryptographic library
LibTomCrypt used by OP-TEE’s trusted kernel (CVE-2017-
1000413). This vulnerability was caused in the optimization
of modular exponentiation which leaked information about the
exponent. It was fixed by ensuring constant time exponentiation.

VI. HARDWARE ISSUES

TEEs rely not only on the correctness of the software
architecture and implementation, but also on the correctness of
trusted hardware components. Figure 4 provides an overview
of the typical hardware architecture of a TrustZone-assisted
TEE system and shows how these components are connected
by an AXI bus. Since hardware components are part of the
TCB of a TEE, the TEE developers must correctly configure
and interface with these components, as well as carefully take
into consideration all the implications of the microarchitecture.

A. Architectural Implications

TEE developers must be well aware of all architectural
hardware components, such as FPGAs, and all architectural
details, both inside and outside the SoC boundary.

I19. Attacks through reconfigurable hardware components:
Reconfigurable platforms, i.e., FPGA SoCs, combine a con-
ventional CPU architecture with programmable hardware
logic. Although there is no evidence of massive adoption of
reconfigurable platforms in the context of mobile devices, OP-
TEE supports the Xilinx Zynq-7000 and Zynq UltraScale+
platforms on its mainline. Unfortunately, the addition of new
hardware increases the attack surface. Configurable hardware
within FPGA SoCs is typically connected to the main bus,
which means that hardware must block access to memory
regions that are managed by the software running in the
main CPU. On TrustZone-enabled systems, the AMBA AXI



Component Attack Device SoC TEE Outcomes

Cache

[19] Freescale i.MX53 i.MX53 (ARMv7-A) – Cache rootkit can evade NW and SW detection

[20] Raspberry Pi2 BCM2836 (ARMv7-A) Self Developed AES 128-bit key recovery

[21] Galaxy S6 Exynos 7420 (ARMv8-A) Trustonic TEE AES 128-bit key recovery

[22] Freescale i.MX53 i.MX53 (ARMv7-A) Self-Developed AES 128-bit key recovery

[23]
Samsung Tizen TV (ARMv7-A) SecureOS Cross-Core Covert Channels demonstrated by

transmitting images from SW to NWHikey Kirin 620 (ARMv8-A) Linaro TEE

Branch Predictor [61] LG Nexus 5X Snapdragon 808 (ARMv8-A) Qualcomm TEE Extract 256-bit private keys from Keystore TA

DRAM [62] - Cortex A-9 (ARMv7-A) Trusty Derive RSA private key

Table VII
Microarchitectural issues exploited to attack TrustZone-assisted TEEs.

interface includes an additional control bit (NS bit) for both
read (ARPROT) and write (AWPROT) channels on the main
system interconnect. This lets all hardware components become
aware of the security state of the CPU. Nevertheless, some
unusual exploits can take advantage of reconfigurable hardware
logic to break the security of TrustZone-based systems [24, 25].
One attack explores malicious hardware deployed on an FPGA
to break the secure boot process [24]. In a study about NS bit
propagation to FPGA, six different attacks were exposed using
small malicious modifications on the hardware logic [25].

I20. Attacks through energy management mechanisms:
Software-exposed energy management mechanisms can pose
significant challenges to system security, possibly in subtle
ways. For instance, CLKSCREW [63] relies on a malicious
(non-secure) kernel driver to push frequency and voltage
regulators to operate beyond the vendor-recommended limits,
until the point of inducing faulty computations. By influencing
the computation of SW operations, it is possible to break
the TrustZone hardware-enforced boundaries to extract secret
cryptographic keys and bypass code signing operations.

B. Microarchitectural Side-Channels

In addition to architectural-level details, the security of TEEs
also depends on microarchitectural details (e.g., caches). In this
section, we discuss three major classes of microarchitectural
aspects that can affect the security of TrustZone-assisted TEEs.

I21. Leaking information through caches: On TrustZone-
enabled processors, cache memory is shared between the
secure and normal worlds. Although the secure cache lines are
not accessible by the NW, both worlds are guaranteed equal
rights when competing for the use of cache lines. This cache
coherence design improves system performance at the cost of
cache contention between the two worlds [19]. This contention
is the main source of exploitation for extraction of information
from the SW by monitoring caches from the NW. R. Guanciale
et al. [20] implemented a low-noise cache storage channel
which can successfully extract a 128-bit key from an AES
encryption service. ARMageddon [21] uses the Prime+Probe
technique to infer activities on the SW and distinguish whether
a provided key is valid or not. TruSpy [22] also leverages
Prime+Probe to recover a full 128-bit AES encryption key

in two different ways. Prime+Count was also employed for
enabling cross-world covert channels on TrustZone [23].

I22. Leaking information through branch predictor: The
branch predictor can also be leveraged to attack TrustZone.
Modern processors include a branch target buffer (BTB) unit,
which stores the computed target addresses of taken branch
instructions and fetches them when the corresponding branch
instructions are predicted [64]. Since the BTB is shared between
NW and SW, Prime+Probe can be performed to leak secure
information to the NW. The process encompasses priming
the BTB by executing many branches, and later let the victim
process execute which will evict the attacker BTB entries. When
the attacker gets control of execution, the attacker re-executes
those branches to detect mispredictions. Given that the internal
hardware structure of the BTB works at byte granularity instead
of cache-line granularity, this particular attack vector increases
considerably the spatial resolution of the probe mechanism. A
256-bit private key has been fully recovered from Qualcomm’s
hardware-backed keystore [61].

I23. Leaking information using Rowhammer: Rowhammer
is a software-induced hardware fault that affects DRAM
memories and enables an attacker to flip bits in physical
memory by solely performing memory read operations [65, 66].
This type of attack has been explored to subvert TrustZone [62].
A malicious Linux kernel module is used to generate faults
to a specific NW target address using Rowhammer, while a
secure signature service running on a Trusty TEE instance uses
the secure private RSA key to sign a specific message. If the
private key is allocated in a secure memory region adjacent
to the secure/non-secure memory boundary, the Rowhammer
generated by high-rate memory read operations on the non-
secure memory border induces faults on the secure one,
corrupting the private keys and generating a faulty RSA
signature. After retrieving a faulty generated signature on the
Linux side, it is possible to deduce the private key. Among
the discussed microarchitectural issues, this attack is harder to
conduct because it generally requires a higher degree of control
over the environment; plus, it is relatively easy to mitigate it.

VII. DEFENSES FOR TRUSTZONE-ASSISTED TEES

This section presents a compilation of defense techniques
that can help overcome the architectural, implementation,



Architectural Issues Implementation Issues Hardware Issues

Att. Surf. Wor. Iso. Mem. Pro. Tru. Boot. Val. Bugs Fun. Bugs Ext. Bugs Arch. Imp. Micro. S.D.

2014 TLR [67] # # #   # # # #

2015 TrustICE [68]  # # # # # # # #
SeCReT [69] #  # # # # # # #

2016
OSP [70]  # # # # # # # #
CaSE [71] # #  # # # # # #
R. Guanciale et al. [20], ARMageddon [21], Truspy [22] # # # # # # # #  

2017

BOOMERANG [72] #  # # # # # # #
Komodo [73] # # #     # #
MIPE [74] # # # #    # #
vTZ [3]  # # # # # # # #
CLKSCREW [63], Jacob et al. [24], Benhani et al. [25] # # # # # # #  #

2018
TFence [75] #  # # # # # # #
PrivateZone [76]  # # # # # # # #
RustZone [77] # # # #  #  # #

2019

TEEv [78]   # # # # # # #
PrOS [79]  # # # # # # # #
SANCTUARY [80]   # # # # # #  
Ginseng [81] # #  #  #  # #
K. Ryan [61] # # # # # # # #  

Table VIII
Examples of representative papers that contribute with relevant defense techniques (Dxx) for overcoming reported TrustZone-assisted TEE issues. For

architectural issues, filled circle in attack surface, world isolation, memory protection, or trust bootstrapping: the paper proposes D01, D02, D03, D04, respectively.
For implementation issues, a filled circle in validation bugs means it proposes any of D05, D06, or D07; in functional bugs proposes D07; and in extrinsic bugs, D06
or D07. For hardware issues, architectural implications and microarchitectural side-channels have a filled circle, respectively, if the paper proposes D08 or D09.

and hardware issues prevalent in commercial TEE systems.
Table VIII presents examples of some representative papers
that introduced some of these defenses. These examples are
shown chronologically, from 2014 to 2019. A filled bullet
indicates that the respective paper implements at least one
defense technique that can help address the issue indicated in
the heading of the corresponding column. The caption of the
table provides the reading key for interpreting which defenses
(numbered as Dxx) are relevant for each class of TEE issues.

A. Architectural Defenses

We highlight four relevant techniques that can help mitigate
the architectural issues identified in existing commercial
TrustZone-assisted TEEs. Each technique addresses a particular
subclass of issues presented in Section IV.

D01. Multi-isolated environments: This technique can be
employed to reduce the excessively large attack surface of
commercial TEE systems (see I01, I02, and I03). Multiple
isolated environments (other than the standard TA sandboxes
in SW) help to reduce exposure of TEE systems to attacks by (a)
increasing the isolation granularity between TEE components,
thus containing the extent of potential damage caused by
a security breach, and/or (b) limiting the amount of code
that runs in the SW, thereby reducing the chances of highly
damaging SW privilege escalation attacks. Different variants
have been proposed. One line of work aims at creating
strongly isolated compartments within the NW itself where
TAs would be allocated. To protect TAs, TrustICE [68] and
SANCTUARY [80] leverage different features of the TZASC.
OSP [70], PrivateZone [76], and vTZ [3] instead, explore the
hardware virtualization extensions available in NW (NS-EL2)

to implement isolated environments. A second line of research
retains TAs within the SW but aims to strengthen the isolation
between them, e.g., TEEv [78] and PrOS [79] implement a
minimalist hypervisor in SW, allowing TAs to run on multiple
isolated secure guest OSes. Due to the current lack of hardware
virtualization support in SW, both systems use same-privilege
isolation to secure the hypervisor from secure guest OSes.

D02. Secure cross-world channels: Isolation between worlds
can be threatened by vulnerabilities in SW triggered from
the NW. In particular, the reported TEE deficiencies that can
undermine this isolation (see I04 and I05) may lead to the
extraction of sensitive data from SW. Although these specific
issues can be addressed by fixing vulnerable TEE kernel
system calls, cross-world isolation can further be strengthened
by secure NW-SW channels. Proposed by different authors,
these mechanisms help to overcome two existing limitations
in mainstream TEEs: (1) absent or weak authentication when
accessing TEE resources from NW and (2) potentially insecure
shared-memory for data exchange within the channel. SeCReT
[69] provides a session key (to REE applications) that can
be utilized to encrypt the messages. To protect the session
key from untrusted REE kernel, SeCReT interposes mode
switches from/to the kernel and removes the key from memory
during kernel mode execution. TFence [75] further removes
this kernel dependency by creating a partially privileged
process – a shielded portion of the REE application process –
which can directly communicate with TEE. Both TEEv [78]
and SANCTUARY [80] implement exclusive shared memory,
and PrivateZone [76] enables communication without sharing
memory, i.e. through data copies. Aravind et al. [72] use pointer
sanitization for preventing boomerang attacks.



D03. Encrypted memory: Existing deficiencies in TEE mem-
ory protection (I06 and I07) can mostly be addressed with
mechanisms from mainstream OSes (e.g., ASLR, stack cookies).
Nevertheless, commercial TEEs can provide stronger security
defenses, e.g., against cold boot attacks, by implementing
encrypted memory capability. In contrast to Intel SGX, Trust-
Zone does not provide built-in support for on-chip memory
encryption. To bridge this gap, CaSE [71] allows TAs to
run entirely from the cache and ensures that their state is
encrypted while written back to main memory. Along the same
vein, Ginseng [81] protects variables tagged by the application
programmer as “sensitive”, by allocating them on CPU registers
and encrypting them at runtime before saving them in memory.

D04. Trusted computing primitives: Commercial TEEs rely
on secure boot to guarantee the integrity of the TEE image.
However, this mechanism, per se, is insufficient to enable a
TA’s client – local or remote – to verify the integrity and identity
of both TEE and TA binaries (see I08, I09). To overcome this
limitation, commercial TEEs can implement additional trusted
computing primitives that help provide such guarantees, namely
remote attestation and sealed storage. For instance, TLR [67]
includes a sealed storage primitive that allows for protecting
data cryptographically and bind it to specific hash values of
the TEE/TA software stack. Komodo [73] demonstrates how to
implement, for TrustZone-assisted TEEs, the security protocols
of sealed storage and remote attestation as originally specified
for enclaves (i.e., Intel SGX’s secure environments for TAs).
There is also a body of work in trusted I/O path primitives [82,
83] which aims at providing secure access to peripherals. Given
that we identified a relatively small number of vulnerabilities
involving access to peripherals, which can be mitigated using
standard hardware features for I/O mediation (e.g., SMMU,
bus bridges), Table VIII omits such references.

B. Implementation Defenses

With respect to defenses that can be leveraged to improve the
implementation correctness of TEE components and TAs, we
underline three main techniques. Some of these techniques can
be applied to prevent more than one single type of bugs, i.e.,
validation, functional, and/or extrinsic bugs (see Section V).

D05. Managed code runtimes: Commercial TEE systems are
mostly written in the C programming language which allows
for compiling highly efficient code but do not provide memory
safety. However, many validation bugs are caused by memory
violation errors introduced by the programmer. In alternative
TEE systems, such as in TLR [67], TAs are not compiled to
native code, but rather to .Net managed code which is then
interpreted by a small-sized managed code runtime (akin to
a JVM). At the expense of some performance overhead, the
managed runtime helps to prevent validation bugs, e.g., by
implementing run-time memory checks and garbage collection.

D06. Type-safe programming languages: Researchers have
explored the idea of using type-safe programming languages
to implement specific components of TrustZone-assisted TEE
software. Notably, RustZone [77] is an extension for OP-TEE

where TAs are implemented in the Rust programming language.
Given that Rust provides memory and thread-safety, RustZone
can help prevent validation bugs and some concurrency bugs
responsible for crippling TA software (see I11). The Rust
programming language has also been used in Ginseng [81] for
implementing a large part of the software that runs in monitor
mode, i.e., the GService (see I10).

D07. Software verification: Implementation bugs tend to exist
due to a mismatch between the expected requirements of a piece
of software and its actual implementation. Software verification,
which comprises techniques such as model checking, symbolic
execution, and formal methods, aims at preventing this mis-
match by ensuring that the implementation fully satisfies all
envisioned requirements. For this reason, it has the potential to
help prevent all three classes of prevalent TEE implementation
bugs. However, these techniques can be challenging to apply in
practice, not only because they require considerable effort and
skill, but also because they are difficult to scale for complex
programs. Despite these obstacles, important advances have
been achieved with the formal verification of specific TEE
components, e.g., a small TEE monitor named Komodo [73],
which implements the specification of Intel SGX enclaves, and
a memory manager called MIPE [74].

C. Hardware Defenses

Next, we cover relevant countermeasures known to date for
addressing hardware issues affecting TrustZone-assisted TEEs.

D08. Architectural countermeasures: Hardware manufactur-
ers tend to increasingly pack more components into the SoC
chips, becoming very difficult for TEE designers to fully
understand its implications to the security of a TEE system. To
prevent a growing abuse of reconfigurable hardware technology
(see I19), researchers have proposed: (1) the inclusion of
a small hardware wrapper into all IP cores endowed with
an AXI interface so as to restrict their operation during
system boot [24]; (2) the implementation of a dedicated AXI
interconnect for secure devices [25]; and (3) the inclusion of
a non-secure only port to connect all non-sensitive memory-
mapped IP cores and restrict its operation through memory
protection mechanisms (e.g. SMMU) [25]. To prevent misuse
of hardware voltage regulators (see I20), a possible approach is
to place specific operation limits into the software (i.e., drivers)
or into the hardware itself [63].

D09. Microarchitectural countermeasures: One way to pre-
vent cache side-channels (see I21) is through careful implemen-
tation of cryptographic algorithms in software [20–22, 61] or
using dedicated hardware (e.g., specific ISA instructions such
as AESD and AESE in Armv8-A) [21] to prevent information
leakage in cryptographic-related operations. Another path is to
leverage cache maintenance techniques to prevent information
leakage through caches. For TrustZone-assisted TEEs that
do not use shared L2 cache, one approach is to flush the
L1 cache on every SW exit [80]. If shared L2 cache is
used, although cache flushing (total or selective) or cache
normalization operations performed at every SW entry and



Dedicated
RAM

Cross-World
Isol. Encryp. Mem. Protection

Ring Attestation Previously
Exploited

Communication
w/ REE

CPU
Extensions

Arm TrustZone [1] # MMU + HW # -2 sec. boot.  sh. mem.
Intel SGX [84] # MMU + HW  1 remote att.  data copy
Intel SMM [85] # MMU # -2 sec. boot.  sh. mem.
Sanctum [86] # MMU + HW # -2 sec. boot. # data copy

Co-Processors
Apple SEP [87]  Phys. + HW  -3 sec. boot. # sh. mem.
Qualcomm SPU [88]  Phys. + HW  -3 sec. boot. # sh. mem.

Chips
Intel ME [89]  Phys.  -3 sec. boot.  sh. mem. + HECI
Google Titan-M [90]  Phys. # -3 sec. boot. # SPI/USB/I2C
TPM [91] # Phys. # -3 sec. boot.  SPI/I2C/LPC

Virtualization
Windows VSM [92] # MMU # -1 sec. boot.  sh. mem.
AMD SEV [93] # MMU  -1 remote att.  sh. mem.

RISC-V
Multizone [94] # PMP # -2 sec. boot. # data copy
Keystone [95] # PMP # -2 remote att. # sh. mem.

Table IX
Dedicated RAM: used for allocation of security-sensitive state and isolation from potentially insecure main RAM. Cross-world isolation: implemented using
memory management components (MMU / PMP) or in combination with HW-specific features (e.g., TrustZone’s TZASC); dedicated off-SoC chips achieve

isolation through physical separation. Encrypted memory: filled circle indicates that hardware-enforced memory encryption is supported. Protection Ring:
classified in five levels [26], i.e., 1 (user), 0 (kernel), -1 (hypervisor), -2 (monitor), -3 (off-chip). Attestation: if the TEE runtime can perform local attestation
only (i.e. secure boot), or remote attestation also. Previously exploited: black circle indicates publicly known exploits to TEE systems enabled by that particular

technology. Communication mechanisms with REE: shared memory, data copying, and communication bus (e.g. USB or SPI).

exit may be sufficient to prevent cache-storage attacks [20],
L1 flushing may not be able to prevent Prime+Probe attacks
in multicore systems [21]. In this case (which also holds for
all aforementioned cases), cache partitioning can prevent an
attacker from leveraging contention with victim [21, 22, 80].
Carefully implemented cryptographic algorithms seem also to
be effective at preventing breaches through the BTB (see I22).
This was shown and highlighted by Keegan et al. [61], where
different versions of an algorithm were able to render side-
channels ineffective. To prevent Rowhammer attacks (see I23),
TEEs must avoid the use of memory at the NW-SW boundary.

VIII. BEYOND TRUSTZONE-ASSISTED TEES

Although our work is focused on TEEs specifically assisted
by TrustZone, there are alternative TEE-enabler hardware
technologies. In this section, we briefly present some related
technologies and highlight their main features in Table IX.

One class of hardware technologies provides a set of CPU
extensions where the processor is augmented with circuitry
that implements specific TEE-enabling security functionality.
TrustZone fits this category as well as technologies such as
Intel Software Guard Extensions (SGX) [84], Intel System
Management Mode (SMM) [85], and Sanctum [86], for
instance. Separate co-processors in the SoC, such as Apple
Secure Enclave Processor (SEP) [87] or Qualcomm Secure
Processing Unit (SPU) [88], may include dedicated non-volatile
storage and RAM which allows for reducing shared hardware
resources and help prevent side-channel attacks [21, 96]. In
dedicated security chips, the runtime environment comprises a
processor, memory, and persistent storage. For instance, Intel
Management Engine (ME) [89] is a firmware based on Minix
OS that runs on a separate processor in Intel systems. It is
designed to be an almost fully independent system, with access
to many peripherals and its own secure boot functionality.

Some security chips may be equipped with tamper detection,
as in the case of the Titan-M [90]. Others, such as Trusted
Platform Module (TPM) [91], implement specific functions for
trusted boot, remote attestation, and other primitives. Hardware
support for virtualization can also be used for implementing
TEEs. In Windows’ Virtual Secure Mode (VSM) [92] the
hypervisor establishes two hierarchical privileges modes VTL0
(analogous to the normal world) and VTL1 (analogous to secure
world). AMD Secure Encrypted Virtualization (SEV) [93]
provides the ability to encrypt virtual machine memory using
hardware-accelerated memory encryption. Lastly, RISC-V is an
instruction set architecture which, although not widely deployed
yet, can also be used for implementing TEEs [94, 95].

IX. CONCLUSION

This paper presents a vulnerability study of TrustZone-
assisted TEEs. Despite the common belief that TEEs are
secure due to their hardware-enforced isolation capability
and small TCB, our study reports on numerous pieces of
evidence that question this assumption. In particular, current
TEE systems have serious limitations at the implementation,
architecture, and hardware levels that potentially introduce
exploitable vulnerabilities affecting millions of devices. Based
on our analysis, we highlight multiple state-of-the-art defenses,
proposed by the research community, which we believe can
make commercial TEE systems substantially more secure.
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