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ABSTRACT
We propose a specification for weak consistency in the
context of a replicated service that tolerates Byzantine
faults. We define different levels of consistency for the
replies that can be obtained from such a service—we use
a real world application that can currently only tolerate
crash faults to exemplify the need for such consistency
guarantees.
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1. INTRODUCTION
Byzantine fault tolerance (BFT) enhances the reliability
of replicated services. In the Byzantine failure model,
no assumptions are made about the behavior of faulty
components; this enables a BFT replicated service to
withstand not only crash faults but also attacks, software
errors, heisenbugs, and non-crash hardware faults, etc.

Existing proposals for the building blocks used in to-
day’s data centers behind major Internet services, such as
Google’s GFS [7], Bigtable [3], or Amazon’s Dynamo [4],
all replicate data for increased availability and reliability,
but assume a benign failure model where nodes fail by
crashing or omitting some steps.

While BFT techniques would appear instrumental in im-
proving the resilience of such systems, current proposals
for BFT replication algorithms are not aligned with the
requirements of these building blocks for modern data
centers. This is because existing BFT proposals try to
ensure strong consistency (in particular, linearizable se-
mantics [8]), which implies that each operation must
contact a large “quorum” of more than 2

3
(or in some

protocols even more) of the replicas to conclude. As
a result, the replicated service can become unavailable
if more than 1

3
of the replicas are unreachable due to

maintenance events, network partitions, or other non-
Byzantine faults, which contradicts the principal design
choice for many of the systems running in these data
centers: choose availability over consistency to provide
continuous service to customers and meet tight SLAs [4].

In this paper we try to address the question of the right
consistency model for BFT replication algorithms, in or-
der to become aligned with the availability and perfor-
mance requirements of systems operating in the back-
bone of modern data centers. We propose two correct-

ness criteria corresponding to different levels of eventual
consistency, and we motivate these criteria with exam-
ples of services that would require such consistency guar-
antees. We also discuss some of the bounds that may be
required to implement such consistency levels.

Our correctness criteria build on the definition of a lin-
earizable Byzantine fault-tolerant (BFT) service based
on state machine replication, which is described by Cas-
tro [2] using the language of I/O automata [9, chapter
8]. Intuitively, our extension transforms a legal sequen-
tial history [8] [1, chapter 9], corresponding to a lineariz-
able service, into a legal history graph corresponding to a
collection of divergent views of the service evolution the
correct clients may have. We also show that, by imposing
conditions on the geometric properties of the graph, we
can reason about the “degree of consistency” exported
by the service.

2. PRELIMINARIES
In this section, we briefly describe our system model and
recall the definition of a strongly consistent (linearizable)
BFT service [2].

A generic BFT service is characterized by a set of clients
C, a set of servers (or replicas) Π, a set of states Q, an
initial state q0 ∈ Q, a set of operations O that can be
applied on the service, a set of responses O′ the service
can return, and a transition function g : C × O × Q →
O′ × Q. We assume that at most f < N = |Π| replicas
and any number of clients can be Byzantine faulty.

Figures 1 and 2 describe an I/O automaton correspond-
ing to a linearizable BFT service.

Faults of clients and replicas are modeled as input actions
CLIENT-FAILUREc and SERVER-FAILUREi, respectively.
Note that a SERVER-FAILUREi action is only enabled if
there are fewer than f faulty servers.

The input action REQUEST(o)c accepts a request from
client c and adds the request, equipped with the current
logical timestamp of c, to the incoming buffer in. In case
c is faulty, the action FAULTY-REQUEST(o)c may put
an arbitrary request to in.

Requests in the buffer in are processed by the internal
action EXECUTE(o, t, c) that applies operation o to the
current state of the service (val) using the transition func-



Signature:

Inputs: Internals:
REQUEST(o)c EXECUTE(o, t, c)
CLIENT-FAILUREc FAULTY-REQUEST(o, t, c)
SERVER-FAILUREi

Outputs:
REPLY(r)c

Here o ∈ O, c ∈ C, t ∈ N, i ∈ Π, r ∈ O′

State components:

val ∈ Q, initially q0
in ⊆ O × N× C, initially empty
out ⊆ O′ × N× C, initially empty
∀c ∈ C, last-reqc, last-repc ∈ N, both initially 0
∀c ∈ C, faulty-clientc ∈ Bool, initially false
∀i ∈ Π, faulty-serveri ∈ Bool, initially false
failed ≡ |{i|faulty-serveri = true}|

Figure 1: Specification of a linearizable service:
signature and state components.

tion g and adds the corresponding response r to the out-
going buffer out. The output action REPLY(r)c picks up
a processed request in out and returns the response r to
the client.

Note that the service guarantees that all requests are
processed in a total order. Indeed, EXECUTE actions
update the service state by applying operations in a se-
quential manner, so from correct clients’ perspective the
service looks like a single, correct, sequential server.

Liveness in the presence of faults can usually be achieved
only if the environment “behaves well.” Probably the
weakest assumption about the environment one should
make to be able to implement a live BFT service is that
the system is eventually synchronous [5]. In this paper,
we chose the following way to describe this synchrony
assumption. Let ∆ denote a default round-trip delay. A
system is eventually synchronous if there is a time af-
ter which every two-way message exchange between two
clients or servers takes at most ∆ time units. Now a
live linearizable BFT service ensures that in an eventu-
ally synchronous system every request issued by a correct
client is eventually provided a response.

3. GENERALIZED WEAK CONSISTENCY
IN BFT

In this section we present the correctness criteria for gen-
eralized weakly consistent BFT services. Our definitions
extend the correctness criteria of linearizable BFT ser-
vices [2] and eventually consistent crash fault-tolerant
services [6].

3.1 Overview
A weakly consistent BFT service provides clients with
two kinds of responses to their requests: strong responses
corresponding to strongly complete (or committed) re-
quests, weak responses, corresponding to weakly complete
requests. On one hand, strong responses are based on a
total order on requests: a history induced by clients’ re-
quests and the corresponding strong responses is lineariz-

Transitions:

CLIENT-FAILUREc SERVER-FAILUREi

Eff: faulty-clientc := true Pre: |failed| < f
Eff: faulty-serveri := true

REQUEST(o)c FAULTY-REQUEST(o, t, c)c

Eff: last-reqc := last-reqc + 1 Pre: faulty-clientc = true
in := in ∪ {(o, last-reqc, c)} Eff: in := in ∪ {(o, t, c)}

REPLY(r)c EXECUTE(o, t, c)
Pre: faulty-clientc∨ Pre: (o, t, c) ∈ in

∃t : (r, t, c) ∈ out Eff: in := in− {(o, t, c)}
Eff: out := out− {(r, t, c)} if t > last-repc then

(r, val) := g(c, o, val)
out := out ∪ {(r, t, c)}
last-repc := t

Figure 2: Specification of a linearizable service:
transitions.

able. We further distinguish between two levels of strong
responses: “oblivious” strong responses may not reflect
the effects of some of the weak operations that completed
before but reflects all strong responses, whereas “non-
oblivious” strong responses account for all responses (ei-
ther strong or weak) that were provided earlier.

On the other hand, the guarantee the service provides
with respect to weak responses are (1) every weak re-
sponse is based on some order of prior requests, and (2)
they will eventually become committed (as soon as the
network becomes sufficiently stable). Furthermore the
number of such coexisting orders may also be bounded,
which can be seen as a measure of consistency the service
exports.

We motivate our consistency guarantees by means of an
example. Consider a shopping cart application (which is
one of Amazon’s applications that uses Dynamo [4] as a
storage substrate) that exports the following operations:
AddItem, RemoveItem, and CheckOut. In this case, we
may want the AddItem and RemoveItem operation to
return after obtaining weak responses. This increases
the availability and performance of these operations, at
the expense that some subsequent operations may not
see items that were added or still see items that were
already removed (a slight inconvenience that the user
is likely to tolerate). Now let’s consider what happens
when the CheckOut operation is run under different con-
sistency guarantees. If it only waits for a weak response,
then it may subsequently be assigned a different posi-
tion in the final order of committed operations, which
may not be desirable (e.g., the weak response to Check-
Out does not see an AddItem operation that eventually
is serialized before the checkout). If CheckOut waits for
an “oblivious” strong response, this situation may not
occur because the position in the serial order is stable;
however, some items that were previously added may not
appear in the check out (or a removed item may still ap-
pear in the cart). This is probably acceptable provided
the customer is informed of which items were checked out
(though the customer may subsequently see these items
appear in subsequent sessions). Finally, if the check out
waits for a “non-oblivious” strong response, it is guaran-



Signature:

Inputs:
REQUEST(o)c

CLIENT-FAILUREc

SERVER-FAILUREi

Internals:
EXECUTE(o, t, c)
ENTER(o, t, c)
FAULTY-REQUEST(o, t, c)
FORK(o, t, c)
MERGE

Outputs:
WEAK-REPLY(r)c

STRONG-REPLY(r)c

(o ∈ O, t ∈ N, i ∈ Π, c ∈ C, r ∈ O′)

State components:

vals, multiset on (O × N× C)∗, initially {⊥}
in ⊆ O × N× C, initially empty
out ⊆ O′ × N× C, initially empty
∀c ∈ C, last-reqc ∈ N, initially 0
∀c ∈ C, faulty-clientc ∈ Bool, initially false
∀i ∈ Π, faulty-serveri ∈ Bool, initially false
committed, map from vals to (O × N× C)∗

failed ≡ |{i|faulty-serveri = true}|

Transitions:

REQUEST(o)c

Eff: last-reqc := last-reqc + 1
in := in ∪ {(o, last-reqc, c)}

CLIENT-FAILUREc

Eff: faulty-clientc := true

ENTER(o, t, c)
Pre: (o, t, c) ∈ in ∧ ∃v ∈ vals : (o, t, c) /∈ v

∧ |v − committed(v)| < Lmax

Eff: v := select v ∈ vals : (o, t, c) /∈ v
∧ |v − committed(v)| < Lmax

add (o, t, c) to the end of v

SERVER-FAILUREi

Pre: |failed| < f
Eff: faulty-serveri := true

FAULTY-REQUEST(o, t, c)c

Pre: faulty-clientc = true
Eff: in := in ∪ {(o, t, c)}

WEAK-REPLY(r)c

Pre: faulty-clientc = true ∨ ∃t : (r, t, c) ∈ out
Eff: out := out− {(r, t, c)}

STRONG-REPLY(r)c

Pre: faulty-clientc = true ∨ ∃t : (r, t, c) ∈ out-commit
Eff: out-commit := out-commit− {(r, t, c)}

MERGE
Pre: |vals| ≥ 2
Eff: select {v, v′} ⊆ vals

v′′ := merge v and v′

(application-specific conflict resolution)
(remove duplicates)
committed(v′′) := max(committed(v), committed(v′))
vals := vals− {v, v′}+ {v′′}

FORK
Pre: |vals| < Dmax

Eff: select v ∈ vals
vals := vals + {v}

COMMIT
Eff: select v ∈ vals with the longest committed prefix

committed(v) := v

EXECUTE(o, t, c)
Pre: ∃v ∈ vals: (o, t, c) ∈ v
Eff: select v ∈ vals: (o, t, c) ∈ v

r := response of (o, t, c) in v
if (o, t, c) ∈ committed(v) then

out-commit := out-commit ∪ {(r, t, c)}
else

out := out ∪ {(r, t, c)}

Figure 3: Specification of a weakly consistent service.

teed to see all of the operations that concluded previously
(both strong and weak).

In the following, we first describe a weakly consistent ser-
vice that provides weak and oblivious strong responses,
and then show how the service can be extended to cover
the case of non-oblivious commitments.

3.2 State and transitions
Figure 3 describes a generic weakly consistent service.
Below we pinpoint what makes the weakly consistent
service different from the linearizable service described
in the previous section.

The global state of the weakly consistent service, denoted
vals, is modeled now as a multiset of histories: sequences
of elements of the form (o, t, c) where o ∈ O, t ∈ N,
and c ∈ C. Each history v in vals is characterized by
a set of client requests, an order in which the requests
are applied, and a prefix of committed operations in v,
denoted committed(v), i.e., requests whose position in the

order is fixed in the current execution. The committed
prefixes of histories in vals monotonically grow and are
related by containment. Additionally, a request appears
exactly once in committed(v).

The service maintains two parameters, Dmax and Lmax.
Dmax bounds the number of concurrent histories that can
be maintained by the service. Lmax bounds the number
of not yet committed requests in a concurrent history.

A request o generated by a correct client c and the cor-
responding responses is modeled as an input action RE-
QUEST(o)c that computes the timestamp of the current
request of c and adds an element (o, t, c) to the input
buffer in. Internal action ENTER(o, t, c) adds a request
(o, t, c) ∈ in to the end of one or more histories in vals,
if the number of not yet committed requests in each of
these selected histories is less than Lmax and the request
is not already there. EXECUTE(o, t, c) chooses a history
v in vals that contains (o, t, c), computes the response
r that the request (o, t, c) returns after applying the se-



Signature:
. . .
Internals:
. . .
COMMIT-ALL
. . .

Transitions:
. . .
COMMIT-ALL
Eff: v := merge all histories in vals preserving committed order

(application-specific conflict resolution)
vals := {v}
committed(v) := v

. . .

Figure 4: Specification of a non-oblivious weakly
consistent service.

quence of operations prescribed by v to the initial state
and adds the entry (r, t, c) to out-commit or out , de-
pending on whether (o, t, c) is in committed(v). The cor-
responding (weak or strong) response r is modeled by an
output action WEAK-REPLY(r)c that is enabled if out
contains an element (r, t, c), or STRONG-REPLY(r)c that
is enabled if out-commit contains an element (r, t, c). If
a WEAK-REPLY(r)c (respectively, STRONG-REPLY(r)c)
action is triggered in response to request (o, t, c), we say
that the request is weakly complete (respectively, strongly
complete). Note that, since all committed prefixes are re-
lated by containment, the strongly complete requests are
totally ordered.

Our specification allows an operation (o, t, c) to appear
in multiple histories and hence EXECUTE can be called
multiple times for the same operation. Hence, out can
contain multiple responses for the same request. This is
to model situations, such as a flaky network, where an
AddItem operation appears in both sides of a partition
and is processed independently. However, out-commit
contains only one response per request since each request
gets a unique position in committed(v).

A history in vals may fork, i.e., decompose in a number
of identical “clones” (internal action FORK). An inter-
nal action MERGE produces a single history v from a
set of histories V in vals, adopting the longest commit-
ted prefix in V , removing duplicates, and ordering the
rest of the requests that appear in histories in V (here
the service may use application-specific conflict resolu-
tion policies [11]). At any time, one of the histories with
the longest committed prefix can commit all its requests
(action COMMIT).

3.3 Non-oblivious commitment
In the previous definition, even though committed re-
quests are totally ordered, it is still possible that a strong
operation misses some weak operations that had con-
cluded earlier. Figure 4 describes a modification to the
automaton in Figure 3 that ensure that committed re-
quests are non-oblivious: a committed request does not
miss any preceding complete request (weak or strong).
Essentially, we introduce a new COMMIT-ALL action
that merges all concurrent histories in vals implying that
every subsequent complete request will be based on the

extension of the committed history.

In a more general way, oblivious and non-oblivious oper-
ations can be combined. As a result, a client can specify
which requests should be committed in a non-oblivious
way, and which requests, once complete, should not be
missed by a subsequent non-obliviously committed oper-
ation.

Note that the evolution of the service state can now be
represented in the form of a directed acyclic graph G.
Vertices of the graph are histories and there is a directed
edge if (1) v′ = v · (o, t, c) where an ENTER(o, t, c) action
extended v ∈ vals with the request (o, t, c), or (2) v′ is
a result of merging a set of histories V such that v ∈
V . A COMMIT-ALL action produces a vertex that is
either predecessor or successor for any other vertex in
the graph. Now the parameter Dmax bounds the number
of pairwise concurrent vertexes in G, i.e., vertexes that
are not connected by a directed path.

3.4 Defining Liveness
One way to define the liveness properties is to require
that a weakly consistent service guarantees progress for
correct clients that can communicate with enough repli-
cas in a timely manner. More precisely, we say that a
tuple (C′, Π′), where C′ ⊆ C and Π′ ⊆ Π, is an eventu-
ally synchronous partition if there is a time after which
every two-way message exchange among correct agents
in C′ ∪ Π′ takes at most ∆ time units. We distinguish
between strong partitions in which Π′ contains a strong
quorum of QS correct replicas and weak partitions in
which Π′ contains a weak quorum of QW correct repli-
cas, respectively. The parameters QS and QW affect the
level of consistency of the service and will be specified
later.

Assuming that every two correct replicas eventually re-
liably communicate, we put our liveness requirements as
follows: (1) If there exists an eventually synchronous
weak partition (C′, Π′), then every request issued by a
correct client c ∈ C′ eventually triggers a (weak or strong)
reply. (2) If there exists an eventually synchronous strong
partition (C′, Π′), then every weakly complete request is
eventually committed.

Note that the properties imply that if a correct client c
belongs to an eventually synchronous strong partition,
then each request from c will eventually be committed.

3.5 Implementing Weakly Consistent BFT
We have designed and implemented a weakly consistent
BFT protocol, called Zeno [10], that meets both the
safety specification (with oblivious commitment) and live-
ness requirements described earlier. Zeno is live and safe
for f < N/3, QW = f + 1 and QS = dN+f+1

2
e At a high

level, the system ensures that a client makes progress as
soon as the client receives at least f +1 matching replies
to its request, i.e., f + 1 replies based on the same his-
tory. This implies that the request is produced by some
correct replica based on its history. To commit requests,
Zeno requires, like traditional BFT protocols, quorums
of size 2f + 1.



When a correct replica learns about a conflicting history,
it initiates a merge operation that combines the requests
of the concurrent histories. In case the service partitions,
a single history may fork into a number of concurrent
histories. If a merge operation involves a strong quorum
of replicas, then all involved requests are committed.

4. OPEN QUESTIONS
In our framework, the weakest form of consistency does
not bound the number of concurrently existing histories
(Dmax) and the number of requests a given history may
process in a speculative manner (Lmax). We anticipate
that, in many practical scenarios, these parameters can
in fact be bounded.

First, we expect that in an execution with f ′ faulty
servers (f ′ ≤ f), a weakly consistent service can be im-

plemented with Dmax ≤ b n−f ′

f−f ′+1
c. The intuition here

is that n − f ′ correct servers can be split into at most

b n−f ′

f−f ′+1
c groups of size f + 1, and thus at most that

many histories can coexist in that execution. In fact,
Zeno can be shown to match this bound.

On the other hand, we expect that Lmax can only be
bounded by strengthening synchrony assumptions of the
system (or by weakening the liveness requirements, by
saying the system may have to halt at some point until
an eventually synchronous strong partition is formed).
Indeed, Lmax is proportional to the length of the longest
period of partition, i.e., the period of time during which
a number of divergent concurrent histories are allowed to
coexist in the system. If this time can be bounded (e.g.,
by periodic human intervention), Lmax can be bounded
too.

It can be shown that with N = 3f + 1 replicas, QW =
f + 1, and QS = 2f + 1, it is not possible to imple-
ment a safe and live weakly consistent non-oblivious ser-
vice. This is because a QW and a QS intersect in only
one replica and it could be faulty and not report the
speculative operations it participated in during merges.
One potential approach is to increase the size of QW to
2f + 1. However, this does not provide tangible ben-
efits compared to traditional BFT protocols since quo-
rum sizes are now identical. But if N = 5f + 1, the non-
obliviousness property can be achieved with QW = 2f+1
and QS = 4f + 1. On the other hand, traditional BFT
protocols with 5f + 1 replicas are not available as soon
as ≥ f replicas are unreachable.

Proving the aforementioned conjectures and considering
related questions opens an avenue for future research
that both combines interesting theoretical challenges and
addresses actual practical needs in fault-tolerant distributed
computing.
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