
Pegasus: Transparent and Unified Kernel-Bypass
Networking for Fast Local and Remote

Communication
Dinglan Peng

Purdue University

West Lafayette, IN, USA

Congyu Liu

Purdue University

West Lafayette, IN, USA

Tapti Palit

Purdue University

West Lafayette, IN, USA

Anjo Vahldiek-Oberwagner

Intel Labs

Berlin, Germany

Mona Vij

Intel Labs

Hillsboro, OR, USA

Pedro Fonseca

Purdue University

West Lafayette, IN, USA

Abstract
Modern software architectures in cloud computing are highly
reliant on interconnected local and remote services. Popular
architectures, such as the service mesh, rely on the use of in-
dependent services or sidecars for a single application. While
such modular approaches simplify application development
and deployment, they also introduce significant communi-

cation overhead since now even local communication that
is handled by the kernel becomes a performance bottleneck.
This problem has been identified and partially solved for
remote communication over fast NICs through the use of
kernel-bypass data plane systems. However, existing kernel-
bypass mechanisms challenge their practical deployment
by either requiring code modification or supporting only a
small subset of the network interface.

In this paper, we propose Pegasus, a framework for trans-
parent kernel bypass for local and remote communication.
By transparently fusing multiple applications into a single
process, Pegasus provides an in-process fast path to bypass
the kernel for local communication. To accelerate remote
communication over fast NICs, Pegasus uses DPDK to di-
rectly access the NIC. Pegasus supports transparent kernel
bypass for unmodified binaries by implementing core OS
services in user space, such as scheduling and memory man-

agement, thus removing the kernel from the critical path.
Our experiments on a range of real-world applications show
that, compared with Linux, Pegasus improves the throughput
by 19% to 33% for local communication and 178% to 442% for
remote communication, without application changes. Fur-
thermore, Pegasus achieves 222% higher throughput than
Linux for co-located, IO-intensive applications that require

This work is licensed under a Creative Commons Attribution International
4.0 License.
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696083

both local and remote communication, with each communi-

cation optimization contributing significantly.

CCS Concepts: • Software and its engineering→ Oper-
ating systems.

Keywords: operating systems, kernel-bypass networking

1 Introduction
Cloud software design and deployments increasingly de-

pend on fast communication between loosely coupled ser-

vices [12, 31, 34]. These services run in independent pro-

cesses, containers, or VMs within and across nodes, and

communicate extensively with each other via standardized

protocols [34] (e.g., HTTP or gRPC). In contrast to traditional

monolithic applications, architectures based on loosely cou-

pled services help developers build modular, scalable, and

fault-tolerant applications and have been adopted by major

data center operators, including Google [36] and Meta [61].

The benefits of breaking applications into multiple ser-

vices come at a cost: the fine-grained communication be-

tween services, including local communication that happens

within a node, and remote communication that happens across
nodes, causes significant application overhead. Profiling in

data centers by Google [36] shows that up to 27% of cycles

are spent on communication in user space such as serial-

ization and data copy, and nearly another 20% of cycles are

spent in the kernel, many of which are I/O-related.

Kernel-bypass techniques allow applications to directly

access the network hardware, making them an effective tech-

nique to reduce the remote communication overhead. The

significant overhead caused by the kernel network stack has

motivated a thriving line of work on kernel-bypass network-

ing libraries and operating systems that generally rely on

custom APIs [6, 20, 21, 53, 69, 78].

An alternative approach co-locates applications on the

same node, making communication that would otherwise

be remote local. When co-location is possible, this approach

offers the advantage of bypassing the network entirely and

allows fast local communication mechanisms like shared

memory [35, 43, 79]. As many communication patterns are

360

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

https://doi.org/10.1145/3689031.3696083
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3696083&domain=pdf&date_stamp=2025-03-30

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

synchronous, such as remote procedure calls (RPC), these

fast local communication mechanisms usually require pro-

cess coordination. For example, shared memory is often used

with futexes in Linux for coordination, which can be ex-

pensive. Our experiment (Table 1) shows that it can take

1.37 𝜇s to wake up a thread using a futex. Prior work [43]

also shows similar latency – e.g., more than 2.8 𝜇s for a pro-

cess wakeup, which is even significantly higher than the

latency of a network RDMA operation (1.6 𝜇s), thus prohibi-

tive for applications that are I/O intensive.

To minimize the overhead of thread coordination, recent

works [9, 22, 42, 65] implement microservice runtimes that

support running multiple services written in specific lan-

guages such as Golang and Python in the same process, so

that they can achieve fast user-space scheduling and synchro-

nization without using slow OS mechanisms. However, these

systems are language-specific and do not support general,

unmodified applications.

Although both kernel bypass and co-location can effec-

tively reduce communication overhead, the existing frame-

works have important limitations that hinder their practi-

cal deployment in real-world applications. First, existing

frameworks typically have limited compatibility with ex-

isting cloud infrastructure and applications. In particular,

they do not support the dominant interfaces of real-world

deployments, such as the POSIX API, and some require sig-

nificant code changes and application refactoring [21, 78]

or are limited to certain languages [22, 42]. Second, existing

systems do not provide a unified interface for both local

and remote communication. As a result, developers have to

decide which interface to use for each pair of interacting

services. This forces developers to consider the deployment

and orchestration of the services during application devel-

opment and limits how the services are scheduled on the

nodes as the services that use the interface specific to local

communication must be co-located on the same node.

We argue that addressing the challenges posed by current

and emerging data center paradigms requires a practical and
unified approach for fast I/O. In particular, addressing the

performance challenges of emerging applications requires (a)

transparently supporting current data center deployments

and (b) removing the kernel from the critical path for both

local and remote communication.

Our approach co-locates and fuses multiple Linux pro-

cesses into the same address space. This approach is particu-

larly suited for symbiotic processes, which are increasingly

prevalent in data center workloads. A group of processes

is symbiotic if the processes (1) extensively and frequently

communicate with each other and (2) are part of the same

application. As an example, symbiotic processes are inherent

to the widely used service mesh architecture [4] where a

process known as a sidecar proxy is attached to each ser-

vice process to transparently implement advanced features,

such as security- and logging-related features. For such sym-

biotic processes, our approach co-locates and fuses them

when possible, to leverage optimized local fast path, and
applies kernel-bypass networking for remote communica-

tion made by these processes. While bypassing the kernel

with optimized fast paths, our approach ensures that this

is transparent to applications by maintaining compatibility

with existing interfaces.

Several challenges need to be addressed to realize this

approach. First, we need to transparently virtualize process

resources, despite the large and complex Linux interface, so

that multiple programs correctly execute while co-existing in

the same Linux process. Second, we need to ensure isolation

between symbiotic processes to preserve logical indepen-

dence so that failures do not propagate across them. Finally,

we need to introduce minimal overhead and significantly

improve applications’ performance.

To fulfill this vision, we built Pegasus, a local and remote

kernel-bypass system that supports real-world applications

without modifications. Pegasus implements a protected user

space monitor that transparently loads and runs multiple ap-

plications in a single Linux process and implements process-

and I/O-related OS services, including scheduling and net-

working, in user space so that applications can communicate

without kernel invocations. Pegasus supports existing appli-

cations without modifications by operating at the Linux ABI

level. Furthermore, Pegasus implements efficient in-process

isolation, leveraging Intel
®
MPK-based memory isolation

and fast implicit kernel context switches [56], to maintain

functional isolation. Hence, despite running several appli-

cations in the same address space, Pegasus ensures that a

faulty application does not affect others. Using this approach,

Pegasus optimizes both local and remote communication us-

ing a practical and unified approach that bypasses the kernel

network stack.

Pegasus is designed to be compatible with complex real-

world applications and deployable with zero effort, support-

ing existing Linux applications at the binary level. Further-

more, Pegasus supports the Open Container Initiative (OCI)

runtime specification [70] for the integration with existing

container management and orchestration platforms, such

as Docker and Kubernetes. To the best of our knowledge,

Pegasus is the first kernel-bypass framework to optimize

both local and remote communication efficiently, securely,

and practically.

Our evaluation shows that Pegasus can significantly im-

prove application performance for widely-used, complex ap-

plications, including Redis, Nginx, Memcached, Nodejs, En-

voy, and Caddy, without any application modification. Com-

pared with Linux, Pegasus achieves throughput improve-

ment that ranges from 19% to 33% for local communication

and 178% to 442% for remote communication. Furthermore,

Pegasus achieves 222% higher throughput than Linux for

the proxied Web server that requires both local and remote

361

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

communication, with both fast paths contributing significant

improvement. Pegasus has comparable or better performance

than existing kernel-bypass networking systems that require

application changes. For example, when applied to Redis, the

throughput with Pegasus is 153% higher than Demikernel

and only 1.5% lower than F-Stack, both of which require

significant application changes.

2 Emerging Communication Paradigms
The kernel has long been identified as a communication bot-

tleneck [6, 21, 43, 53, 78], especially in the context of remote

communication across different nodes over fast NICs. Re-

cently, due to the rise of communication paradigms such

as the service mesh, a new manifestation of this problem

has arisen. Emerging communication paradigms, such as

the service mesh and the actor model, intensively use local

communication using traditional kernel primitives, such as

pipes and local sockets, where the peer process is located in

the same pod or host. The communication overhead between

such symbiotic processes – i.e., processes that are physically

co-located and frequently communicate with each other –

is substantially affected by the overhead introduced by the

kernel. As shown in SocketDirect [43], Linux IPC mecha-

nisms, such as pipes and sockets cause 8 to 11 𝜇s round-trip

latency, which introduces significant overhead to symbi-

otic processes. Such latency results from the complex kernel

components, such as the network stack and the scheduler,

as well as hardware overhead, such as ring changes, page

table switches, and increased TLB and other cache misses.

Existing research [9, 22, 25, 32, 35, 42, 43, 61, 65, 66, 79] pro-

poses techniques to accelerate the communication between

symbiotic processes running on the same host. They typi-

cally use fast local communication mechanisms that bypass

the slow kernel network stack. We discuss the benefits and

limitations of these mechanisms in the following paragraph.

2.1 Removing the Kernel from the Critical Path
Achieving fast local and remote communication requires re-

moving the kernel from the critical path. In the case of local

communication, this is typically achieved by using shared

memory primitives. However, this is far from a complete

solution. While this optimizes the data path, the control path

still poses a challenge. Shared memory abstractions require

synchronization between the communicating applications,

which requires using kernel synchronization primitives, such

as futexes. Therefore, this approach does not completely elim-

inate the kernel from the critical path—the kernel overheads

of scheduling and waking up a task are still present. In fact,

as we show in §6.2, it takes 1.37 𝜇s to wake up a thread using

a futex, and can potentially negate much of the benefits of

using shared memory primitives. To address the problem of

slow thread coordination, recent works [9, 22, 42, 65] propose

to apply user-space scheduling and synchronization to mi-

croservice runtimes that support running multiple services

in the same process, so as to avoid slow OS mechanisms.

However, they are language-specific and do not apply to

general, unmodified applications.

In the case of kernel bypass for remote communication,

most existing solutions [21, 33, 53, 69, 78] require the pro-

gram to be rewritten using custom APIs that differ from

traditional POSIX APIs. This is necessary because traditional

POSIX APIs do not provide support for the optimizations nec-

essary to fully benefit from kernel bypass, such as zero-copy

transfers and lightweight user-space threading. To this end,

Demikernel [78] proposes the PDPIX API, and Shenango [53]

and Caladan [21] provide a custom threading and network-

ing API. To further improve performance, Cornflakes [58] re-

moves serialization buffers and communicates with the NIC

with zero copy. However, such approaches require the devel-

opers to rewrite the programs and this is a significant obsta-

cle in the wide adoption of such kernel-bypass techniques.

For example, rewriting the Redis server to use Demikernel

required the addition of 2478 lines of code, which involved a

significant effort.

A few systems, such as libVMA [48] and TAS [37], use

LD_PRELOAD to intercept the C library calls to support un-

modified binaries. However, this approach has several limi-

tations. First, LD_PRELOAD cannot guarantee full coverage of

the system call interception because applications may invoke

system calls directly, such as the Golang programs do. Sec-

ond, and more importantly, it is challenging for such systems

to implement correct semantics of system calls efficiently

without user-space scheduling, in particular, when handling

blocking system calls. For example, libVMA only allows one

epoll file per process and cannot support applications that

use accept() and connect() at the same time, which signif-

icantly limits its compatibility with real-world applications,

such as proxy servers. A concurrent work, Junction [20],

also recently proposed achieving Linux ABI compatibility

for kernel-bypass networking. However, Junction lacks in-

process isolation, which is a critical prerequisite for securely

fusing symbiotic processes. Also, to maximize the perfor-

mance, Junction does not protect the library OS, allowing

the applications to directly access the NICs, which increases

the attack surfaces (e.g., a faulty application can sniff and

send raw packets). Finally, Junction has limited support for

some kernel functions such as file systems.

2.2 Practical, Unified Kernel Bypass
The dual challenge of seamlessly adopting kernel-bypass

techniques for remote communication, and the necessity of

adopting kernel bypass for local communication for symbi-

otic processes leads us to propose a unified and transparent
kernel-bypass mechanism for all communication, local or

remote. To this end, we propose Pegasus, a kernel-bypass

mechanism for providing a fast path for both local and re-

mote communication, which retains full Linux ABI compati-

bility to support unmodified applications.

362

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

NIC NIC

NIC

Host

Pegasus Monitor

vProcess
Process

Kernel
NIC

Host

Pegasus Monitor

vProcess
Process

Kernel

vProcess vProcess

Kernel

Host

Process

Kernel

...

Host

Scheduler

Scheduler

Scheduler

... ...

Kernel local/remote data path

Pegasus local/remote data path

Local Comm.

Remote Comm.
Sched/Yield

ProcessProcessProcess

Figure 1. Pegasus architecture of local and remote data paths

compared to the Linux kernel.

Inspired by ServiceWeaver [22] which decouples service

physical boundaries from their logical boundaries by run-

ning multiple Golang microservices in the same process, we

extend the idea to fusing multiple Linux processes into the

same address space. Pegasus fuses symbiotic programs into

the same address space and uses a local ring buffer for com-

munication. To prevent the need for any kernel involvement,

Pegasus implements critical OS functions, such as scheduling

and memory management, in user space. Effectively, Pega-

sus implements virtual processes in user space. With such

optimization, the complex kernel network stack is replaced

with a simple user-space fast path, and context switches can

be eliminated during communication with the help of user-

space scheduling. For remote communication, Pegasus uses

DPDK to directly access NICs. To achieve Linux ABI compat-

ibility, Pegasus intercepts system calls made from programs,

delegating them to fast paths if they are communication-

related. Performing scheduling in user space allows Pegasus

to transparently implement features essential for kernel by-

pass, such as lightweight threading, without requiring any

modifications to the programs.

While fusing programs to optimize local communication

can lead to performance improvements, this performance

improvement should not come at the cost of reduced fault

tolerance and isolation guarantees. To provide isolation guar-

antees, Pegasus relies on Intel
®
MPK to isolate the memory

of different programs in the same address space. To prevent a

single program from crashing the process, Pegasus intercepts

and gracefully handles critical signals, such as SIGSEGV. A
fault in one program only affects itself.

3 Pegasus Design
Pegasus’s goal is to provide a transparent approach that

allows fast local and remote communication. Achieving the

dual goals of both transparency and performance requires

Pegasus to assume control of the OS functions that are critical

to communication and implement them in user space.

3.1 System Model and Threat Model
System Model. In Pegasus, a process and its virtual address

space are split into multiple unprivileged program domains

and a privileged monitor intercepting interactions with the

host kernel, such as signals or memory management. Pega-

sus assumes an oracle (e.g., the user or a framework) that

specifies which applications are symbiotic, and should be

loaded into the same process.

Each loaded program is represented as a vProcess. A
vProcess consists of one or more vThreads, each represent-

ing a thread of the process, that is mapped to a user-space

task managed by Pegasus’s scheduler. A vProcess can ac-

cess OS functions through the Linux ABI (e.g., system calls).

A subset of the OS functions is directly handled by the OS

kernel and the remaining are intercepted by Pegasus to the

monitor for safety and handled in the monitor by different

backends to improve performance. Pegasus controls the pro-

cess management, scheduling, program loading, memory

management, signal handling, and network I/O. Figure 1

shows the architecture of Pegasus.

Threat Model. Pegasus assumes that the monitor, the un-

derlying Linux kernel, and the hardware are trusted, while

the loaded programs may contain bugs or vulnerabilities.

Hence, programs may contain bugs that lead to arbitrary

memory access, control flow hijacking [55], and arbitrary

system call invocations [1]. Pegasus ensures that such bugs

in one vProcess will not affect other vProcesses [46].

To prevent fault propagation between programs, their

memory and kernel context are isolated from each other.

We apply memory protection with Intel
®
MPK and kernel

context isolation [56], and enforce control flow integrity

between the monitor and each vProcess with protected

mode switch gates, which are the only way a vProcess can

invoke the monitor. Thus, Pegasus does not assume fine-

grained control flow integrity for applications [55]. Pegasus

follows the techniques from prior works [26, 56, 71], such

as binary inspection and secure switch gates, to securely

apply Intel
®
MPK, and shares similar limitations, including

a maximum of 16 memory isolation domains.

Each program can only access its own resources, i.e., mem-

ory and kernel context such as files and namespaces, while

the monitor can access the resources of all the programs.

Intel
®
MPK ensures that unauthorized memory accesses by

programs will cause page faults, which can be caught by

the Pegasus monitor by handling SIGSEGV signals. For fault

isolation, Pegasus guarantees that if a program crashes due

to signals such as SIGSEGV, the monitor and other programs

will not be affected. While Pegasus considers fault isolation,

our current prototype is mostly focused on functional isola-

tion, not performance isolation. Finally, we assume Pegasus

fuses programs from the same tenant, as its in-process isola-

tion design is not resistant to side-channel attacks, and we

consider side-channel attack protection out of scope. This

assumption generally holds true for popular paradigms of

symbiotic processes, such as the service mesh. Furthermore,

363

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

existing techniques for side-channel protection can be ap-

plied or generalized to the Pegasus context [3].

Programs Assumptions. Pegasus makes the following as-

sumptions about the loaded programs:

• the program is compiled and linked into a position-

independent executable (PIE);

• the program does not need to allocate pages at hard-

coded/fixed addresses;

• the program does not need to duplicate its address space

(e.g., by forking).

These assumptions typically hold for networked programs

like web servers, databases, or high-level language runtimes

like Python. For example, PIE is often used as a security

enhancement feature since it is a prerequisite to harden

programs with ASLR. Some Linux distributions (e.g., De-

bian [14]) have enabled PIE for system packages by default.

Furthermore, the few programs that use fork in this context,

can typically be configured to not use it (§5.3,§6.1).

3.2 Process Management and Scheduling
To achieve faster communication, which consists of syn-

chronization in addition to data copy, efficient scheduling is

critical. To support fast context switches between programs

in the same address space, Pegasus implements core process

management and scheduling mechanisms in user space. By

performing context switches in user space updating only a

few registers, a Pegasus context switch is faster compared

to a kernel context switch, which may involve saving and

restoring all registers and switching the page table.

VThread and VProcess Creation. To facilitate the creation

of the vProcess and its main vThread, Pegasus implements

its own ELF loader in user space. We discuss the details in

§3.3. Symbiotic processes can create additional vProcesses
and vThreads by using the clone system call.

User-Space Scheduler. The vThreads spawned by the

vProcess’s are scheduled using a user-space scheduler run-

ning in the Pegasus domain. Pegasus keeps one worker

thread for each logical CPU core and pins it to the core. Any

runnable vThread can be scheduled on a worker thread. Pe-

gasus dynamicallymigrates vThread betweenworker threads
to balance the load [19].

Pegasus maintains a run queue for each worker thread,

which consists of active tasks on that worker thread. Pegasus

also provides wait queues that store the tasks that are waiting

for I/O, futex, or any other events to occur. A task will be

detached from the run queue and put into a wait queue

when it turns to the sleeping state. Then, when the task

becomes runnable again, it is added back to the run queue

and scheduled to run.

Privilege Modes. To provide fault isolation among the mon-

itor and different applications, Pegasus supports two priv-

ilege modes, a privileged monitor mode where the monitor

executes, and an unprivileged application mode where ap-
plications execute. During execution, each worker thread

can be in either mode. The transitions in and out of monitor

mode are guarded by mode switch gates. Applications can
only invoke the monitor through these protected gates. All

communication between applications is handled through the

monitor, and direct invocations between applications are not

allowed. The details on mode switch gates are discussed in

§4.

Cooperative and Preemptive Scheduling. Pegasus is op-
timized to handle symbiotic processes that synchronously

communicate with each other. However, it does not require

the applications to always communicate synchronously with

each other and proactively yield to the monitor (for example,

by making a system call). Therefore, Pegasus supports both

cooperative and preemptive scheduling. To achieve fairness

and good performance, our implementation uses a Com-

pletely Fair Scheduler [54] algorithm, the details of which

are discussed in §5.1.

To implement cooperative scheduling, the privilegedmoni-

tor intercepts all system calls such as futex, read, and clone,
which may wait for events or wake other tasks up. Every

time these scheduling points are executed, the context of

the currently executing task is saved and the scheduler is

invoked. As this context includes only the task stack and a

few registers, this process is fast and efficient. To implement

preemptive scheduling, Pegasus sets a timer for each worker

thread that periodically generates SIGALARM signals to force

the tasks to switch to the monitor mode and yield to the

scheduler. These signals also trigger load balancing between

the worker threads. For cross-CPU preemption, the SIGURG
signals are delivered through tgkill to interrupt the worker
threads in the application mode.

3.3 Binary Loader and Memory Management
Loading multiple programs in the same address space allows

Pegasus to schedule these programs from user space, thus

eliminating expensive transitions to kernel space. However,

in order to load the programs in the same address space,

Pegasus must also handle memory management operations

associated with launching a new vProcess or vThread. Sim-

ilarly, to provide reliable isolation between different pro-

grams, Pegasus must apply the correct memory protections

to the memory regions associated with different programs.

ELF Loader. Pegasus provides a user-space ELF file loader
to load different programs to the same address space. When

Pegasus starts a program, this ELF loader first creates a

vProcess and its main vThread, then loads its binary. Any

dynamic linker specified in its ELF header is also loaded to

the memory of that program domain. Then, Pegasus sets

up the stack for the program and retrieves the entry point

from the ELF header, which is used to launch the program

later. The ELF loader depends on the memory management

subsystem to allocate memory and set the correct memory

364

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

protections for each allocated page for the ELF binary’s code,

data, and stack regions. The ELF loader then creates a task

that starts the execution in the application mode from the

entry point, and wakes up the task to let it be scheduled to

run by the user-space scheduler (§3.2). The ELF loader re-

quires the binaries to be position-independent as the address

range of the program domain is not fixed.

MPK-Based Isolation. Pegasus uses Intel® MPK [11] to iso-

late efficiently the monitor and different program domains,

running in the same address space. The privileged monitor

intercepts all system calls related to memory management,

such as mmap, brk, and munmap, and handles them in the

monitor. During initialization, for each program domain, the

monitor reserves a large contiguousmemory area using mmap
with the PROT_NONE protection flag. When the program re-

quests a memory region, the monitor computes the required

number of memory pages and sets their MPK domain as

well as the requested permissions (R/W/X) for the pages.

Moreover, only the monitor domain is permitted to perform

certain system calls that are essential for fault isolation. The

details of the system call interception are in §3.4.

To maintain the correct memory permission semantics,

and maintain compatibility with the Linux kernel’s memory

management system, the monitor must maintain the permis-

sions (R/W/X) and attributes (anonymous/private/etc.) of all

the pages allocated by the program domains. To achieve that,

Pegasus records the information of all the virtual memory

areas and synchronizes it with the host kernel via system

calls. As a result, the memory view is consistent between the

monitor and the kernel. The monitor uses this information

for multiple operations, including checking the permission

of a memory region or finding empty gaps between VMAs

to allocate unused regions.

3.4 Monitoring Interactions Between VProcesses and
the Kernel

3.4.1 System Call Interception
Pegasus applies per-domain Seccomp filters to intercept the

scheduling, memory management, and networking system

calls. The Seccomp filter of each program domain allows

only a small number of system calls. If the program invokes

a system call that is not on the allowlist, it raises a SIGSYS sig-
nal. The monitor domain registers a handler for the SIGSYS
signal, and can thus handle the system call and provide

the requested functionality to the program domain. Rais-

ing a signal every time a system call is executed is expensive.

Therefore, Pegasus optimizes signal interception by using

LD_PRELOAD hooks and binary rewriting whenever possible.

The details of this optimization are in §4.

3.4.2 Signal Handling and Fault Isolation
Pegasus distinguishes between real signals and virtual sig-

nals, depending on whether they originate from within Pe-

gasus or from the underlying operating system.

Virtual Signals. Virtual signals are either raised by com-

municating vProcesses and vThreads, or by the Pegasus

monitor for timers and other operations that can raise signals

according to the POSIX standard. Virtual signals are deliv-

ered to the tasks. Each vThread and each vProcess has its
own signal queue. The signals to be delivered are appended

into these queues, and every time the task returns to the

application mode, it will poll the queues to find any pending

signals, and invoke the corresponding signal handlers in the

application mode.

Real Signals. Real signals are raised by the Linux kernel,

including the ones caused by hardware exceptions such as

page faults, the signals from the kernel, such as SIGSYS sig-

nals generated by the Seccomp filter, and the ones from other

threads through the kill or tgkill system calls. Pegasus

achieves fault isolation by handling all real signals in the priv-

ileged monitor. This ensures that the signals and exceptions

by one program will not crash the whole process.

The monitor handles the following real signals transpar-

ently without informing the programs: the SIGSYS signals
which are used for intercepting system calls, the SIGALRM
and SIGURG signals which are used for preemptive schedul-

ing, and the SIGTRAP signals which are used for breakpoint

handling. The monitor is also capable of passing them to

the programs. For example, when the monitor fails to trans-

parently handle the SIGSEGV signals, it will either enter the

application mode to invoke the signal handler registered by

the program or terminate the program if no handler is regis-

tered. The monitor and other programs in the same process

will not be affected.

3.4.3 Kernel Managed Functions
Pegasus also delegates many OS functions that are not re-

lated to communication optimization, such as disk I/O, to

the underlying Linux kernel. To delegate a function to the

Linux kernel, Pegasus simply passes them through to the

host kernel. For example, each program has its own file de-

scriptor table and mount namespace, which is achieved by

µSwitch [56]. Thus, most of the kernel functions that use a

file interface, such as disk I/O, timerfd, and eventfd, are auto-

matically virtualized and isolated by the kernel. We directly

delegate these functions to the kernel as the kernel-managed

components. Pegasus still needs to intercept the system calls

that are both related to sockets and other files, such as read
or write, and multiplex them according to the file descrip-

tor. If the file descriptor is a socket, the system call will be

handled by the monitor according to the selected network

backend. Otherwise, it will be passed through the kernel.

Delegating functions to the underlying Linux kernel is

slower than handling them in user space. Therefore, in our

current prototype, we delegate only the slower components

to the Linux kernel. For example, we fall back to the Linux

kernel when handling disk I/O. This has a negligible perfor-

mance impact, as none of our use cases are disk I/O intensive.

365

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Similarly, functionalities that are used less frequently and

are thus not critical to performance, such as eventfd and

timerfd, are also delegated to Linux.

3.5 Io_uring-Based Event Polling
Pegasus uses io_uring to handle blocking system calls, in-

cluding the ones related to files (such as sockets or pipes),

timeout, and I/O multiplexing, such as read, nanosleep, and
epoll_wait. For such calls, Pegasus polls events such as a

file getting readable or a timeout happening, using io_uring,

and wakes up the task waiting for the event to the worker

threads accordingly. Io_uring is also used as a default net-

work backend if kernel-bypass networking is not available.

Io_uring uses two ring buffers, a submission queue and a

completion queue, for submitting the operations to the ker-

nel and retrieving its results. This allows Pegasus to check

the completion queue every time the scheduler is invoked

with very low overhead. When the worker thread becomes

idle, that is, there is no runnable task, it either goes to sleep

with io_uring_enter system call and waits for ready I/O

events in the sleeping mode, or uses busy-waiting to repeat-

edly check for ready events or any runnable tasks in the

polling mode. The polling mode avoids the overhead caused

by worker threads’ sleeping and waking up but consumes

more CPU. Therefore, by default, the sleeping mode is en-

abled for CPU efficiency but the polling mode can optionally

be used if performance is critical, for example, in our evalua-

tion for remote communication optimization.

3.6 TCP Fast Path for Local Communication
To improve the performance of local communication, Pe-

gasus provides a local TCP fast path for communications

between symbiotic processes. Since symbiotic processes are

fused into a single OS process running inside Pegasus, any

TCP connection uses a fast path via Pegasus’s shared ring

buffers instead of invoking system calls and context switch-

ing into the OS. When a process tries to connect to a lo-

cal TCP IP, Pegasus transparently switches from the OS-

provided network stack to Pegasus’s fast path. As a result,

such TCP connections convert sending a message into copy-

ing to a shared memory buffer. To further improve the per-

formance, Pegasus controls the task scheduling in user space.

In particular, it controls the sleeping and blocking of tasks

until the arrival of the data and the waking up of the sleeping

tasks. This allows Pegasus to immediately switch the execut-

ing process when a network message is sent to a symbiotic

process running in the same Pegasus instance. Thus, the

execution follows the critical path of a message. Without the

scheduler implemented in user space, Pegasus would need to

rely on slow kernel synchronization techniques (e.g., futex).

3.7 Kernel Bypass for Remote Communication
To improve the performance of remote communication, Pe-

gasus supports running unmodified Linux binaries with

kernel-bypass network mechanisms. Traditionally, when us-

ing kernel-bypass systems such as Shenango, Demikernel,

and F-Stack, programs must be rewritten to use custom APIs

for threading and socket operations, to achieve microsecond-

scale scheduling and maximize performance. Instead, Pega-

sus intercepts the regular socket system calls to transparently

forward them to the kernel-bypass backend.

Pegasus, furthermore, virtualizes the kernel-bypass net-

work interface across all symbiotic processes, allowing all

of them to use the interface. To avoid coherence and syn-

chronization issues, Pegasus relies on fast synchronization

between processes when multiple processes send and receive

messages at the same time.

4 Secure User-Space Process Virtualization
As discussed in §3.4, Pegasus uses Seccomp filters to intercept

disallowed system calls invoked by the program domains.

These system calls must then be delegated to the monitor,

which quickly and securely emulates them on behalf of the

program domain. Pegasus bases the required memory and

kernel resource isolation using implicit context switching to

avoid expensive transitions to the kernel [56]. This consists

of splitting a process into multiple domains, each of which

contains isolated resources, such as an Intel
®
MPK memory

domain and a set of kernel resources (e.g., files, namespaces,

and Seccomp filters). Pegasus provides a shared-descriptor

for each thread that specifies the currently active domain

for that thread, in the shared memory between kernel and

user space. The thread can then select the kernel resources

of a specific domain to use for system calls by writing to

the shared-descriptor. Then, at the entry point of the next

system call the thread invokes, the kernel will update the

kernel resources according to the domain specified by the

shared-descriptor if it has changed since last invocation. Pe-

gasus uses this mechanism to access kernel resources of

different vProcesses from the same worker thread. Unlike

µSwitch [56], which is designed for library isolation, Pega-

sus supports complete programs and a privileged monitor

domain.

MemoryVirtualization. Pegasus reserves Intel® MPKmem-

ory domain 0 for its monitor and creates one domain for

each vProcess. Also, Pegasus reserves domain 1 to store

the data that is writable by the monitor but read-only by

vProcesses. When switching between the monitor mode

and the application mode at mode switch gates, a worker

thread sets the PKRU register, which controls the memory

read and write permissions, according to the current domain.

For the monitor domain, PKRU is set to 0 which grants access

to all the memory domains. For other domains, PKRU is set

to only granting access to the memory of the domain itself

and read-only access to domain 1.

Fast System Call Interception. Disabled system calls raise

a SIGSYS signal in the program domain, since the Seccomp

filter disallows it. To avoid raising a signal for every system

call invocation, Pegasus redirects and rewrites system call

invocations using twomethods. First, for the system calls that

366

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

are performed via Libc wrappers (for example, using the Libc

function read to invoke the system call SYS_read), Pegasus
uses LD_PRELOAD to hook and redirect these function calls

directly to the monitor. Second, for the system calls in the

executable binary using a syscall assembly instruction,

Pegasus rewrites the binary on the first execution of the

syscall instruction. The first time the syscall instruction

is invoked, it triggers the SIGSYS signal and invokes the

signal handler registered by the monitor. When triggered,

the signal handler can retrieve the address of the syscall
instruction that triggered the SIGSYS signal by inspecting

the signal frame. This allows Pegasus to correctly identify

the instruction boundary of the syscall instruction, which

is otherwise difficult to determine in x86-64 binaries through

static analysis.

File Descriptors. Pegasus maintains a user file descriptor

table for each vProcess. The user file descriptor table maps

file descriptors to the corresponding Pegasus file objects, and

is synchronized with the kernel file descriptor table in the

domain of the vProcess. Pegasus updates both file descriptor
tables when handling the system calls that open or close files.

For a file object that does not have a corresponding kernel

file descriptor such as a local fast path socket file, Pegasus

allocates a placeholder kernel file descriptor by duplicating

an opened null device file.

System Call Delegation. The Pegasus monitor performs

all security-critical system calls on behalf of the program

domain. For example, if a program requests file-backed mem-

ory, by invoking the mmap system call with a file descriptor,

the monitor must allocate memory and map it to the appli-

cation’s requested file descriptor. µSwitch does not support

calling system calls on behalf of another domain. We extend

µSwitch to allow the monitor to perform system calls on

behalf of vProcess’s. Pegasus modifies µSwitch, adding a

seccomp-descriptor shared variable to the µSwitch kernel

structure, to allow executing a system call in the program

domain’s context but with the monitor domain’s Seccomp

context that does not block any system call. Using this shared

variable, the monitor can temporarily relax the program do-

main’s Seccomp profile, switch to the program domain, and

invoke the system call with the correct kernel context. To

safely perform these steps, the shared variable is protected

by Intel
®
MPK to ensure that only the monitor can access it.

Mode Switch Gates. The entry/exit points into and out of

the monitor are guarded by mode switch gates. These gates

control the switching between the monitor mode and appli-

cation mode (§3.2) and have a similar design to µSwitch’s

privcall and sandboxcall. The mode switch gates update the

PKRU register, the program and signal stack, and the shared-

descriptor, to switch the memory and kernel context domain.

The mode switch gates use the WRPKRU instructions to up-

date the PKRU register. To prevent a vThread from directly

jumping to a WRPKRU instruction to tamper with the PKRU

register and escaping isolation, the WRPKRU instruction is

always followed by a piece of assembly code that ensures the

current PKRU register is expected or terminates the vThread
otherwise.

In the gates switching from the monitor mode to the appli-

cation mode, we compare PKRU to the expected value stored

at per-worker-thread %GS:0 in memory domain 1, which is

read-only in the application mode. Also, the state of the mon-

itor, including the instruction pointer, the stack pointer, and

other registers, is saved to the protected memory in memory

domain 0 before jumping to the application mode. The saved

state is also per worker thread addressed relative to the GS
segment. To prevent a vThread from tampering with the

base address of the GS segment by using a WRGSBASE instruc-
tion, we apply binary inspection to avoid the occurrences

of WRGSBASE in the executable memory, which is similar

to µSwitch’s approach to eliminate WRPKRU and WRFSBASE.
Also, in our implementation of the arch_prctl system call,

applications are not allowed to use ARCH_SET_GS to set the

base address of the GS segment.

In the gates that switch from the application mode to the

monitor mode, we simply check that PKRU is 0 by a TEST
instruction followed by the code that loads the saved state

of the monitor from the protected memory and jumps to the

saved instruction pointer. Thus, we ensure that if the worker

thread reaches the WRPKRU instruction, it must execute the

tamper-proof code to enter the monitor with the correct state

and resume the execution in the monitor mode.

In this way, Pegasus’s mode switch gates ensure that the

unprivileged programs cannot escape isolation.

5 Implementation
Pegasus is implemented with 25,946 lines of C++ and x86

assembly code, which covers the core components discussed

in §3, including the local TCP fast path (1,826 LoC) and

the kernel-bypass networking stack (1,985 LoC). In addition,

Pegasus uses several libraries: Intel
®
XED [68] for breakpoint

handling, libseccomp [44] for setting Seccomp filters, maple-

tree from the Linux kernel for memory management, and

DPDK [69] for kernel-bypass networking. In this section, we

discuss the Pegasus implementation.

5.1 Process Management and Scheduling
vProcess and vThread Creation. A program running in

Pegasus can use the clone system call to create a vProcess
or vThread. Pegasus supports the commonly used flags of the

clone system call. In particular, we support the flags used by

the pthread library. This lets Pegasus transparently support

binaries that use the pthread library. Pegasus also supports

the flags used for vfork. A program can also use vfork,
followed by an exec, to dynamically load new binaries into

the same address space without program changes.

367

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Scheduler Internals. Pegasus uses a simplified version of

Linux Completely Fair Scheduler (CFS). To avoid CPU star-

vation or overloading, Pegasus performs periodic load bal-

ancing between the worker threads, at an interval of 10

millisecond. Load balancing is also automatically triggered

when a worker becomes idle. Preemptive scheduling is im-

plemented via a timer that raises the SIGALRM signal at a

frequency of 100 Hz. The SIGALRM signal handler forces the

current task to yield to the scheduler. Similarly, SIGURG is

used for cross-CPU preemption, which may occur when a

task is scheduled to run on another core and preempts the

core’s currently active task. To avoid the high overhead of

signals, Pegasus additionally supports a high-performance

polling mode, allowing the users to optimize for CPU effi-

ciency or high performance.

5.2 Signal Handling
Pegasus carefully handles signals (§3.4.2) to prevent the pro-

grams from escaping isolation. When a real signal occurs,

the kernel writes the signal frame to the signal stack and re-

turns to user space to a signal handler registered by Pegasus,

which will check the current mode of the worker thread. If

it is in monitor mode, the monitor handles the signal and

returns from the handler to resume execution. If it is in the

application mode, the execution will be forced to enter the

monitor mode to let the monitor handle the signal. Finally,

Pegasus will copy the signal frame to protected memory,

validate it, and invoke rt_sigreturn to resume from it.

When a virtual signal (§3.4.2) occurs, Pegasus will write a

virtual signal frame that is compatible with the kernel and

enter the application mode to invoke the signal handler regis-

tered by the program. Then, Pegasus uses rt_sigreturn to

resume from the virtual signal frame after validation, which

is similar to real signals.

5.3 Platform Integration
Docker and Kubernetes. To integrate with container man-

agement platforms such as Docker, we implement a container

runtime CLI program, runpc, following the Open Container

Initiative (OCI) runtime specification. runpc accepts a con-
tainer bundle directory including the configuration file and

the root file system, and dynamically launches the container

in a Pegasus instance. runpc is compatible with the default

Docker runtime, runc. As a result, we use Docker for manag-

ing the images and containers when deploying Pegasus. In

Kubernetes, all containers in the same pod are always colo-

cated and typically host inter-dependent programs. There-

fore, when being used with Kubernetes, runpc will automat-

ically create a new instance for each Kubernetes pod, and

run all containers of this pod in the same Pegasus instance.

Kernel-Bypass Networking. We integrate Pegasus with F-

Stack [67], a robust and production-ready DPDK-based [69]

user-space network stack library, into Pegasus with less than

2,000 lines of (application-agnostic) code. Compared with

prior works [6, 21, 53, 78], Pegasus supports kernel-bypass

networkingwith unmodified Linux binaries, which simplifies

deployment significantly.

F-Stack uses a main loop that interacts with the DPDK

poll mode driver and handles sending and receiving packets.

To integrate with F-Stack, Pegasus creates a dedicated thread

that runs the F-Stack main loop. This thread polls all the

sockets for the socket events and wakes up the tasks wait-

ing for them. As Pegasus implements the scheduler in user

space, it wakes up efficiently the tasks, which is important

to achieve low latency and high throughput for network-

intensive applications.

Currently, some features in Linux, such as netlink, net-

filter, and virtual network interfaces, are not supported by

F-Stack. Thus, as Pegasus depends on F-Stack for kernel-

bypass networking, some network management tools, such

as iproute2 and iptables, cannot be used with Pegasus when

kernel-bypass networking is enabled due to F-Stack’s lack of

the required features. Support for such tools can be achieved

by switching to other kernel-bypass network stacks that

support more Linux features. Pegasus’s contributions are

orthogonal to the kernel bypass network stack used.

Application Support. As discussed in §3.1, Pegasus makes

some assumptions about applications. Thus, applications

that need certain features, including mapping pages at static

addresses or forking, are not supported by our implementa-

tion. While our evaluation experiments show that Pegasus

supports many real-world applications, some applications,

such as Apache or Bash that heavily depend on fork(), are
not supported for this reason. Support for fork() may be

addressed by extending Pegasus to multiple coordinated pro-

cesses, as a fallback, to support clones of address spaces. This

process can be significantly accelerated using fast fork im-

plementation, such as on-demand fork [80], which applies

copy-on-write to page tables and application pages. We leave

these improvements for future work.

6 Evaluation
In this section, we evaluate Pegasus on its performance ben-

efits to local and remote communication as well as its ease

of deployment, using microbenchmarks and real-world ap-

plications without any code modification.

6.1 Setup
Testbed.We ran all the experiments on two r6525 servers

from Cloudlab [16], each with two 2.8 GHz AMD EPYC 7543

CPUs, 256 GiB RAM, and a Mellanox ConnextX-6 100 Gbps

NIC, running Ubuntu 22.04.

Applications and Benchmarks. We use the following ver-

sions of applications: Redis 6.2.6, Nginx 1.16.1, Memcached

1.6.22, Caddy 1.2.6, Istio 1.20.0, and Node.js 18.13.0. The

Demikernel Redis port is based on Redis version 4.0.9. We do

not change the source code of any application. For Golang

programs, we build them with the option “-buildmode=pie”
to generate PIEs (position-independent executables). We use

368

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

Table 1. Latency of synchronization primitives and protocol

operations between two applications.

Operation Baseline Pegasus Reduction
(𝜇s) (𝜇s)

Futex Wake Up 1.37 0.49 64%

Condition Variable Wake Up 1.51 0.56 63%

TCP Echo 7.8 1.2 85%

Redis Set 11.0 4.8 56%

Memcached Set 10.3 3.7 64%

HTTP Echo 45.8 36.7 20%

the default configurations for all applications except for the

following changes: for Nginx, daemonizing and worker pro-

cess spawning are disabled because Pegasus does not support

fork, as discussed in §5.3; for Redis, background persistence

is disabled for the same reason. For each data point, we exe-

cute 10 runs and report the median.

6.2 Local Communication
We first evaluate the performance provided by Pegasus’s lo-

cal communication optimization. For the experiments in this

section that require remote communication, we do not en-

able kernel-bypass networking, i.e., remote communication

is handled by the Linux kernel.

Microbenchmarks. We designed several microbenchmark

applications to evaluate the communication overhead re-

duction between two co-located applications running with

Pegasus. For each application, we measure the latency of

different synchronization primitives or protocol operations,

which are selected for their commonness in co-located ap-

plications. The results are shown in Table 1.

Linux Synchronization. We first evaluate how Pegasus im-

proves the latency of Linux synchronization primitives to

show that user-space scheduling is necessary. We create two

threads that are pinned on the same core. Thread 1 sleeps

with the FUTEX_WAIT operation of the futex system call

while thread 2 uses FUTEX_WAKE to wake up thread 1. We

repeat that 1,000,000 times and measure the average latency

between thread 1 invoking FUTEX_WAKE and thread 2 wak-

ing from FUTEX_WAIT. Pegasus achieves an average latency

of 0.49 𝜇s, which is 64% lower than the baseline. Similarly,

conducting the same experiment with a pthread condition

variable shows that Pegasus achieves 63% lower latency com-

pared to the baseline.

Protocol Operations. We then evaluate how Pegasus im-

proves the latency for different network protocols. We use

four applications of different protocols, including a TCP echo

server, a Redis server, a Memcached sever, and an HTTP echo

server. For each protocol, we use a client to send the requests

to the server 1,000,000 times and report the average latency.

The results show that Pegasus achieves latency improve-

ments ranging from 20% to 85%.

Web Application. We evaluate the performance benefits of

fusing symbiotic processes in web application deployments.

0 2 4 6 8
Throughput (KQPS)

0
1
2
3
4
5
6
7
8

Av
er

ea
ge

 L
at

en
cy

 (m
s) Baseline

Pegasus

(a) Web application.

0 10 20 30 40
Throughput (KQPS)

0

2

4

6

8

Av
er

ea
ge

 L
at

en
cy

 (m
s) Baseline

Pegasus

(b) Istio service mesh.

Figure 2. Web application and HTTP API with the Istio

service mesh latency and throughput.

0 25 50 75 100
Percentage of Proxied Requests

0

10

20

30

40

Th
ro

ug
hp

ut
 (K

Q
PS

)

Baseline
Pegasus

Figure 3. Throughput of the HTTP server with different

percentages of proxied requests.

Our setup consists of a Nodejs backend server, a Redis data-

base and a Nginx reverse proxy with TLS encryption enabled.

This web application implements a simple pastebin, which

saves the user input to the Redis database, and provides a

URL to retrieve it. We run all three programs in the same

Pegasus instance and use the bombardier HTTP benchmark

tool to measure the throughput and average latency from an-

other machine with a different number of concurrent clients

from 1 to 50 to vary the server load. Figure 2a shows how

the latency and throughput change as we increase server

load. Pegasus increases the maximum throughput by 19%

compared with the Linux baseline, reflecting the increased

efficiency using kernel bypass on the local data path. Further-

more, Pegasus significantly decreases the average latency

when the system is loaded (e.g., throughput higher than

4 KQPS), and achieves comparable latency to the baseline

under low load scenarios.

Service Mesh Proxy. Pegasus also reduces the overhead

caused by proxies in a service mesh. In this experiment, we

deploy an OpenResty echo HTTP API, with an Istio service

mesh to evaluate how Pegasus can make the service mesh

approach more efficient and faster. The OpenResty container

and the Envoy sidecar container run in the same Kubernetes

pod, with Envoy forwarding requests to OpenResty. For Pe-

gasus, the two containers in the pod run in the same Pegasus

instance. We use another machine to measure the through-

put and latency with different concurrent connections to

369

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Application porting effort for different systems.

Inserted lines(+)/deleted lines(-)/changed files.

Demikernel F-Stack Junction Pegasus

Redis 2478+/549-/19 715+/20-/12 0+/0-/0 0+/0-/0

Nginx N/A 1943+/124-/55 0+/0-/0 0+/0-/0

Memcached N/A N/A 0+/0-/0 0+/0-/0

vary server load. We compare it to the baseline without Pe-

gasus. The results are shown in Figure 2b. Pegasus achieves

33% higher throughput for the HTTP API and improves la-

tency when the server is loaded while keeping the latency

comparable to the baseline at a lower load.

Reverse Proxy. Pegasus intercepts and monitors system

calls, which introduces overhead. We evaluate this overhead

and in what cases the data-path optimization provided by

Pegasus compensates that overhead. We run an experiment

with two HTTP servers, Caddy and Nginx, each serving a 4

KiB static file. At the same time, the Nginx server also serves

as a reverse proxy for the Caddy server at a different URL

path, so the client can choose whether a request is handled

directly or via the reverse proxy by accessing different URL

paths of the Nginx server. We vary the percentage of the

requests that are handled by the reverse proxy and measure

the throughput. The results are shown in Figure 3. Pegasus

increases the throughput if more than 20% of the requests

go through the proxy, peaking at a 74% throughput increase

(from 14.3 KQPS to 24.8 KQPS) when all requests are handled

through the proxy. As expected, if fewer requests go through

the proxy, since our overheads are fixed, the throughput de-

creases. In this experiment, the decrease can reach 13% (from

34.5 KQPS to 30.1 KQPS). This shows that without remote

communication optimization, Pegasus should primarily be

used when the local communication is high.

6.3 Remote Communication
In this section, we evaluate Pegasus against three network

kernel-bypass systems and the Linux baseline to assess how

Pegasus can transparently accelerate the remote communica-

tion for unmodified applications with comparable or better

performance than prior approaches.

To reduce latency, similar to other kernel-bypass network-

ing systems, we enable polling for Pegasus in which the

worker thread continuously polls for the runnable tasks in-

stead of sleeping. For Memcached, which is multi-threaded,

we use two Pegasus worker threads. For other applications

that are single-threaded, we use one worker thread. For all

the experiments, we use one thread for polling the NIC and

disable the local communication optimization.

Application Support. Demikernel and F-Stack support the

Redis server through system-specific modifications. F-Stack

also supports the Nginx server through custommodifications.

As shown in Table 2, both Demikernel and F-Stack require

extensive application changes, ranging from 735 to 3027 lines

of source code across 12 to 55 files. We do not port other

Table 3. TCP echo server latency in microseconds.

Linux Demikernel F-Stack Junction Pegasus

27.78 11.08 11.97 10.55 13.88

0 2 4 6 8 10 12 14
Latency (μs)

read

write Mode Switch
Network Stack

Scheduler
NIC+Peer

Figure 4. Latency composition of TCP echo server with

Pegasus

applications to these two frameworks due to the significant

effort required. However, we further demonstrate Pegasus’s

compatibility by also benchmarking Memcached, which is

not supported by either Demikernel or F-Stack. Junction also

supports all three applications without code modification

in this experiment. However, as discussed in §6.4, Junction

does not work with Nginx if used as a TLS proxy because

Junction lacks support for socket functions required by the

application.

TCP Round-Trip Latency.We first use a TCP round-trip la-

tency experiment to analyze the performance improvement

and overhead of Pegasus for remote communication. We

send 1-byte data to a TCP echo server from a remote client

1,000,000 times and report the average latency in Table 3.

Pegasus reduces the request latency compared with Linux by

13.90 𝜇s. However, as expected, Pegasus introduces some ad-

ditional latency, 1.91 𝜇s, 2.80 𝜇s, and 3.33 𝜇s, compared with

F-Stack, Demikernel, and Junction, respectively. To analyze

the overhead of Pegasus, we measure the latency introduced

by each component. Figure 4 shows the latency composi-

tion for read and write respectively. It shows that mode

switches and scheduler overhead introduced by Pegasus ac-

count for the 1.91 𝜇s difference from F-Stack. In practice,

this benchmark is particularly demanding for Pegasus be-

cause the messages have the smallest possible size, which

shows the worst-case latency overhead for Pegasus. With

larger message sizes, the Pegasus overhead can be consider-

ably amortized as the following experiments on commonly

deployed applications show.

Real-World Applications.We evaluate Pegasus on three

real-world applications, Nginx, Redis, andMemcached, against

three kernel-bypass networking systems as well as the Linux

baseline.

For Redis andMemcached, we use thememtier_benchmark

tool [59] to measure the request performance from a remote

machine. We vary the number of concurrent connections,

ranging from 1 to 64, and measure the throughput, the av-

erage latency, and the 99% tail latency. Then, we plot these

results to show how average latency and 99% tail latency

relate to the different throughput achieved as we vary the

370

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

0 250 500 750
Throughput (KQPS)

0

25

50

75

100

125

150

Av
er

ea
ge

 L
at

en
cy

 (μ
s)

Baseline
Pegasus
F-stack
Demikernel
Junction

0 250 500 750
Throughput (KQPS)

0

25

50

75

100

125

150

99
\%

 T
ai

l L
at

en
cy

 (μ
s)

Figure 5. Latency and throughput of Redis.

0 200 400
Throughput (KQPS)

0

50

100

150

200

250

300

Av
er

ea
ge

 L
at

en
cy

 (μ
s)

Baseline
Pegasus
F-stack
Junction

0 200 400
Throughput (KQPS)

0

50

100

150

200

250

300

99
\%

 T
ai

l L
at

en
cy

 (μ
s)

Figure 6. Latency and throughput of Nginx.

0 500 1000
Throughput (KQPS)

0

20

40

60

80

100

Av
er

ea
ge

 L
at

en
cy

 (μ
s)

Baseline
Pegasus
Junction

0 500 1000
Throughput (KQPS)

0

20

40

60

80

100

99
\%

 T
ai

l L
at

en
cy

 (μ
s)

Figure 7. Latency and throughput of Memcached.

load (i.e., number of concurrent client connections). For Ng-

inx, we use the bombardier tool with the same methodology,

ranging from 1 to 48 connections.

Figure 5 shows the Redis performance results. Pegasus

achieves the maximum throughput of 801 KQPS, which is

323% higher than the Linux baseline’s 189 KQPS. For compari-

son, Demikernel, F-Stack, and Junction achieve themaximum

throughput of 317 KQPS, 813 KQPS, and 874 KQPS, respec-

tively. Pegasus decreases the throughput by 1.5% compared

with F-Stack, which is a modest reduction given that it trans-

parently supports unmodified applications. The through-

put of Junction is 9.1% higher than Pegasus. Considering

that Junction’s throughput exceeds the one of F-Stack by

7.5%, the performance gap between Junction and Pegasus is

attributable to Junction’s stack improvement over F-Stack,

which Pegasus leverages to implement the remote fast path

and is orthogonal to Pegasus’s design. Interestingly, Pegasus

achieves 153% higher throughput than Demikernel, despite

its uses of a custom API and significant porting effort re-

quirements. This performance difference is primarily caused

by the API of Demikernel which requires polling the clients

linearly, limiting its scalability at high concurrency. Similarly,

Figure 6 and Figure 7 show the performance of Nginx and

Memcached, respectively. Without any code modification,

Pegasus achieves 178% and 442% higher throughput than the

Linux baseline respectively, and has similar performance to

Junction and F-Stack.

6.4 Mixed Communication
In this section, we evaluate how Pegasus improves perfor-

mance for applications that use both local and remote com-

munication: a Caddy HTTP server that servers a 4 KiB static

file with a Nginx TLS reverse proxy. This pattern of co-

located reverse proxy is common in web applications, as

the proxy can provide functions such as encryption [51]

without changing the proxied application itself.

In addition to the Linux baseline, we run three configu-

rations of Pegasus with different features enabled: (1) both

local and remote optimizations (Pegasus), (2) only local op-

timization (Pegasus w/o Remote Opt.), and (3) only remote

optimization (Pegasus w/o Local Opt.). These three configu-

rations show how each fast path of Pegasus contributes to

performance improvement and the benefits of unifying them.

For all configurations, we use five Pegasus worker threads in

the sleeping mode and one thread for polling the NIC. To run

as a TLS proxy, Nginx requires support for the getsockopt
system call and the MSG_PEEK flag in the recvfrom system
call, both of which Junction does not support. Fixing the

compatibility issues of Junction would require substantial

refactoring in either Junction’s network stack or Nginx’s

source code. Thus, we do not evaluate it.

We use the bombardier HTTP benchmark tool [10] to mea-

sure the performance of the proxied server from a remote

machine. We vary the number of concurrent connections,

ranging from 1 to 48, and measure the throughput, the av-

erage latency, and the 99% tail latency. We plot how the

average latency and the 99% tail latency relate to the differ-

ent throughputs achieved as we vary the load.

Figure 8 shows Pegasus achieves 39.0 KQPS throughput,

which means it takes 25.6 𝜇s to process one request on av-

erage. For comparison, the Linux baseline achieves 12.1 KQPS

(82.6 𝜇s).When only one fast path is enabled, Pegasus achieves

16.8 KQPS (59.5 𝜇s) with only remote optimization and 20.4

KQPS (49.0 𝜇s) with only local optimizations. Thus, the lo-

cal and remote optimizations reduce the average request

processing time by 33.5 𝜇s and 23.1 𝜇s, respectively. When

combined, these optimizations result in a total time reduc-

tion of 57.0 𝜇s and a throughput increase of 222%, showing

that the two optimizations reduce the latency independently.

371

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 20 40
Throughput (KQPS)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ea
ge

 L
at

en
cy

 (μ
s)

Baseline
Pegasus
Pegasus w/o
Remote Opt.
Pegasus w/o
Local Opt.

0 20 40
Throughput (KQPS)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

99
\%

 T
ai

l L
at

en
cy

 (μ
s)

Figure 8. Latency and throughput of Caddy + Nginx.

Table 4. Latency of system calls with kernel involvement.

System Call Baseline (𝜇s) Pegasus (𝜇s) Overhead

write 1 B 0.55 0.79 44%

write 64 KiB 5.88 6.22 6%

mprotect 0.09 0.25 178%

fstat 0.50 0.61 22%

getuid 0.058 0.080 38%

6.5 In-Process Virtualization
In this section, we evaluate the performance of Pegasus’s

in-process virtualization and assess the overhead introduced

by Pegasus’s vProcess and vThread abstractions.

System Call Overhead. In Pegasus, not all system calls

are handled in user space. Some OS functions that are not

related to communication, such as disk I/O, are still handled

by the kernel. When delegating these OS functions to the

kernel, Pegasus introduces overhead for in-process virtual-

ization. System calls delegated to the kernel are handled in

two different ways. Some system calls are intercepted by

the Pegasus monitor and forwarded to the kernel followed

by handling in user space. For example, when handling the

write system call, the monitor needs to look up in the file

descriptor table and handle it depending on the file type,

for example, forwarding the write operation to the kernel

for disk files. The additional latency for these system calls

is incurred by mode switch gates, user-space handling, and

kernel overhead from Seccomp filters and µSwitch. Other

system calls are directly handled by the kernel with Seccomp

filters set to allow them, resulting in only kernel overhead.

We evaluate the overhead for both types of system calls.

We use four system calls of these two types to evalu-

ate such overhead by measuring their average latency of

1,000,000 invocations. The results are shown in Table 4.

Firstly, we use write to write to a file on disk with the buffer

size of 1 B and 64 KiB respectively, and use mprotect to set

a page to readwrite. The write and mprotect system calls

require user-space handling in the monitor and thus belong

to the first type. Pegasus introduces a latency of 0.24 𝜇s for 1

B write, 0.34 𝜇s for 64 KiB write, and 0.16 𝜇s for mprotect,
respectively. Then, we use fstat to get the information of a

file, and use getuid to get the current user id. Both system

calls are directly handled by the kernel and thus belong to

0 50 100
Number of Connections

0

200

400

600

Th
ro

ug
hp

ut
 (K

Q
PS

)

Baseline
Pegasus

Figure 9. Throughput of the multi-threaded Web server

under different concurrency.

the second type. Pegasus introduces a latency of 0.11 𝜇s for

fstat and 0.022 𝜇s for getuid. This shows that currently,
Pegasus introduces moderate overhead for the OS functions

that are handled by the kernel. By further moving these OS

functions to user space, e.g., with kernel-bypass storage, Pe-

gasus can be extended to eliminate such overhead, which we

leave as future work.

vThread Performance. To evaluate Pegasus on the perfor-

mance of multi-threaded applications, we wrote aWeb server

that serves each connection with one thread using blocking

I/O. We run the Web server on one machine and measure

its throughput from another machine with varied numbers

of connections. We use four Pegasus worker threads in the

polling mode and one thread for polling the NIC, For com-

parison, for the Linux baseline, we set the core affinity of

the server process to five cores. The results are shown in

Figure 9. Pegasus achieves higher throughput than the Linux

baseline. Furthermore, Pegasus scales better than the Linux

baseline, whose throughput decreases as the number of con-

nections increases after it reaches 50. This means Pegasus’s

in-process virtualization, including the user-space scheduler

and virtualized vThreads, is scalable.

7 Related Work
Kernel-Bypass Networking. Existing kernel-bypass net-
working systems mainly focus on different aspects of remote

communication optimization. IX [6] uses virtualization to

protect direct hardware access. Demikernel [78] defines a

flexible architecture and a new API for heterogeneous data

paths. Shenango [53] provides high CPU-sharing efficiency

for applications that use kernel-bypass networking. How-

ever, these systems do not provide a Linux ABI-compatible

interface. While customized APIs offer potentially better

performance, they also increase porting efforts.

Some kernel-bypass networking systems, such as TAS [37]

and libVMA [48], provide user-space libraries that are com-

patible with the POSIX socket API. These systems usually

depend on LD_PRELOAD to intercept library calls from ap-

plications for transparency. However, system calls cannot

be reliably intercepted with LD_PRELOAD, e.g., when the ap-

plication is statically linked or performs direct system calls.

372

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

Recently, NetKernel [52] proposed using a modified guest

kernel in para-virtualized VMs to bypass the guest kernel

network stack. This ensures transparency for applications

but requires significant kernel modification and introduces

higher overhead than user-space libraries.

Furthermore, none of these systems optimizes local com-

munication, which is crucial for symbiotic processes. In con-

trast, Pegasus achieves transparent and unified kernel-bypass

networking for both local and remote communication.

Junction [20] is a concurrent work that, similar to Pegasus,

also aims at Linux ABI compatibility for practical kernel by-

pass and runs multiple programs in the same address space.

However, Junction adopts a fate-sharing approach, lacking

support for a protected monitor or isolated programs within

an instance. Also, Junction does not support important OS

functions, such as containers, and restricts file system op-

erations to read-only files and in-memory virtual files. In

contrast, Pegasus enforces isolation for the monitor and each

application, and comprehensively supports OS functions and

platform integration, including Docker and Kubernetes. Fur-

thermore, Junction uses a dedicated core for its centralized

scheduler, and forces all packets including the ones for lo-

cal communication, to be processed by the NIC. In contrast,

Pegasus uses a distributed scheduler that operates on ev-

ery worker thread, and supports a local TCP fast path that

operates inside a Pegasus instance in user space without

the involvement of the kernel or the NIC, thus avoiding a

centralized bottleneck that may impact scalability.

Control Plane Customization. Several techniques cus-
tomize the OS control plane to improve I/O performance.

eBPF [17] allows users to inject code into the kernel at run-

time for various applications [23, 28, 38, 49, 81]. For exam-

ple, XDP [28], which is based on eBPF, allows customized

fast-path packet handling that bypasses the regular kernel

network stack. However, eBPF is limited in flexibility and

expressiveness. Kernel-bypass I/O [60, 69, 75] and user-space

network stacks [33, 64, 67, 76] moves the networking control

plane to user space for fast data paths without kernel over-

head. Furthermore, a recent work, Wave [30], proposes to

offload the OS control plane, including scheduling, memory

management, and network stack, to SmartNICs for further

optimization. All these approaches to customization typi-

cally require significant changes to applications. In contrast,

Pegasus customizes the OS control plane by moving the re-

lated features such as scheduling and networking to user

space while maintaining Linux ABI compatibility.

Single Address Space Isolation. Memory isolation within

a single address space protects sensitive data from untrusted

components such as external libraries. Beyond traditional

SFI [18, 72, 77], hardware-assisted approaches [2, 5, 8, 13,

24, 26, 29, 39–42, 47, 50, 56, 57, 71] have been proposed to

achieve better performance or isolation guarantees. Other

works [45, 56, 74] isolate kernel resources within a single

process. Pegasus builds on top of such work, including Intel
®

MPK and µSwitch [56], to offer in-process virtualization

and isolation though the vProcesses and vThreads abstrac-
tions.

Fusing Symbiotic Applications. Hosting symbiotic pro-

grams in a single address space (similar to single address

space OSs[7, 27]) opens up opportunities for performance

optimization, such as the local IPC fast path provided by

Pegasus. IPC between sidecar and applications incurs high

overhead in service mesh [82]. Faasm [65] and Fastlane [42]

chain functions in a single address space to reduce commu-

nication costs. Similarly, recent work at Google suggests

fusing Go applications [22] for performance improvement.

Photons [15] co-locates the same functions to achieve a low

memory footprint. CAP-VMs [62] build sharedmemory inter-

faces between virtual machines to improve communication,

and ORC [63] allows object reuse to improve memory den-

sity and startup times. Xia et al. [73] suggest architectural

support to improve communication and synchronization

between frequently communicating processes. Pegasus pro-

vides a framework to fuse general processes independent of

the source language or runtime.

8 Conclusion
Modern architectures, such as the service mesh, require the

kernel even for communication with services on the same

host. Pegasus is a unified kernel bypass for local and remote

communication. By fusing symbiotic applications into the

same process, Pegasus eliminates expensive kernel transi-

tions. Moreover, by controlling the OS functionalities critical

for communication in user space, Pegasus can provide trans-

parent kernel bypass for both fused symbiotic processes

for local and remote communication using DPDK, for un-

modified Linux binaries. Our evaluation demonstrates that

Pegasus significantly optimizes local and remote communi-

cation workloads by improving the throughput by up to 33%

and 442% respectively, and 222% for workloads that use both.

Pegasus achieves these improvements without changing a

single line of application code.

Acknowledgments
We would like to express our sincere gratitude to the anony-

mous reviewers of this and the previous submissions, and

our shepherd Antoine Kaufmann, whose insightful feedback

greatly improved this work. We are also grateful to Cloudlab

for providing experimental machines. This work was funded

in part by gifts from Intel and the NSF awards CNS-2145888

and CNS-2140305. Furthermore, it was funded in part by

CNS-2127309 to the Computing Research Association for the

CIFellows Project.

References
[1] Abubakar, M., Ahmad, A., Fonseca, P., and Xu, D. SHARD: Fine-

grained kernel specialization with context-aware hardening. In Pro-
ceedings of the USENIX Conference on Security Symposium (USENIX
Security) (2021).

373

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[2] Ahmad, A., Kim, J., Seo, J., Shin, I., Fonseca, P., and Lee, B. CHAN-

CEL: Efficient multi-client isolation under adversarial programs. In

Proceedings of the Annual Network and Distributed System Security
Symposium (NDSS) (2021).

[3] Ahmad, A., Schultz, A., Lee, B., and Fonseca, P. An extensible

orchestration and protection framework for confidential cloud com-

puting. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2023).

[4] AWS. What is a service mesh. https://aws.amazon.com/what-is/
service-mesh/.

[5] Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazières, D., and

Kozyrakis, C. Dune: Safe user-level access to privileged CPU features.

In Proceedings of the USENIX Conference on Operating Systems Design
and Implementation (OSDI) (2012).

[6] Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C.,

and Bugnion, E. IX: A protected dataplane operating system for high

throughput and low latency. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (2014).

[7] Chase, J. S., Levy, H. M., Feeley, M. J., and Lazowska, E. D. Sharing

and protection in a single-address-space operating system. ACM Trans.
Comput. Syst. (1994).

[8] Chen, Y., Reymondjohnson, S., Sun, Z., and Lu, L. Shreds: Fine-

grained execution units with private memory. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P) (2016).

[9] Cloudflare. Cloudflare workers. https://workers.cloudflare.com/,
2021.

[10] codesenberg. Fast cross-platform http benchmarking tool written in

go, 2023. https://github.com/codesenberg/bombardier.
[11] Corbet, J. Memory protection keys, 2015. https://lwn.net/Articles/

643797/.
[12] Datadog. The state of serverless. https://www.datadoghq.com/state-

of-serverless/, 2023.
[13] Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., and Adve,

V. Nested Kernel: An operating system architecture for intra-kernel

privilege separation. SIGARCH Comput. Archit. News (2015).
[14] Debian. Hardening pie by default transition. https://wiki.debian.org/

Hardening/PIEByDefaultTransition.
[15] Dukic, V., Bruno, R., Singla, A., and Alonso, G. Photons: Lambdas

on a diet. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC) (2020).

[16] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E.,

Stoller, L., Hibler, M., Johnson, D., Webb, K., Akella, A., Wang,

K., Ricart, G., Landweber, L., Elliott, C., Zink, M., Cecchet, E.,

Kar, S., and Mishra, P. The design and operation of CloudLab. In

Proceedings of the USENIX Conference on USENIX Annual Technical
Conference (ATC) (2019).

[17] eBPF.io authors. ebpf - introduction, tutorials & community re-

sources, 2023. https://ebpf.io.
[18] Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., and Necula, G. C.

XFI: Software guards for system address spaces. In Proceedings of the
USENIX Conference on Operating Systems Design and Implementation
(OSDI) (2006).

[19] Ford, B., and Lepreau, J. Evolving mach 3.0 to a migrating thread

model. In USENIX Winter (1994).
[20] Fried, J., Chaudhry, G. I., Saurez, E., Choukse, E., Goiri, I., Elnikety,

S., Fonseca, R., and Belay, A. Making kernel bypass practical for

the cloud with junction. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2024), USENIX
Association.

[21] Fried, J., Ruan, Z., Ousterhout, A., and Belay, A. Caladan: Miti-

gating interference at microsecond timescales. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (2020).

[22] Ghemawat, S., Grandl, R., Petrovic, S., Whittaker, M., Patel, P.,

Posva, I., and Vahdat, A. Towards modern development of cloud

applications. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS) (2023).

[23] Ghigoff, Y., Sopena, J., Lazri, K., Blin, A., and Muller, G. BMC:

Accelerating memcached using safe in-kernel caching and pre-stack

processing. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2021).

[24] Ghosn, A., Kogias, M., Payer, M., Larus, J. R., and Bugnion, E. Enclo-

sure: Language-based restriction of untrusted libraries. In Proceedings
of the ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2021).

[25] Gu, J., Wu, X., Li, W., Liu, N., Mi, Z., Xia, Y., and Chen, H. Har-

monizing performance and isolation in microkernels with efficient

intra-kernel isolation and communication. In Proceedings of the USENIX
Conference on USENIX Annual Technical Conference (ATC) (2020).

[26] Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M. L.,

Shen, K., and Marty, M. Hodor: Intra-Process isolation for High-

Throughput data plane libraries. In Proceedings of the USENIX Confer-
ence on USENIX Annual Technical Conference (ATC) (2019).

[27] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., and Liedtke,

J. The mungi single-address-space operating system. Softw. Pract. Exp.
(1998).

[28] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J.,

Herbert, T., Ahern, D., and Miller, D. The express data path: Fast

programmable packet processing in the operating system kernel. In

Proceedings of the International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT) (2018).

[29] Hsu, T. C.-H., Hoffman, K., Eugster, P., and Payer, M. Enforcing least

privilege memory views for multithreaded applications. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2016).

[30] Humphries, J. T., Natu, N., Kaffes, K., Novaković, S., Turner, P.,

Levy, H., Culler, D., and Kozyrakis, C. Wave: A split os architecture

for application engines, 2024.

[31] IBM. Microservices in the enterprise, 2021: Real benefits, worth the

challenges. https://www.cncf.io/blog/2021/04/19/microservices-in-the-
enterprise-2021-real-benefits-worth-the-challenges/, 2021.

[32] Ivanenko, S., Stevanovic, J., Jovanovic, V., and Bruno, R. Hy-

dra: Virtualized multi-language runtime for high-density serverless

platforms. arXiv preprint arXiv:2212.10131 (2022).
[33] Jeong, E.,Wood, S., Jamshed,M., Jeong, H., Ihm, S., Han, D., and Park,

K. mTCP: a highly scalable user-level TCP stack for multicore systems.

In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2014).

[34] JetBrains: Developer Tools for Professionals and Teams.

Microservices - the state of developer ecosystem in 2022 infographic.

https://www.jetbrains.com/lp/devecosystem-2022/microservices/,
2022.

[35] Jia, Z., and Witchel, E. Nightcore: efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In Proceed-
ings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2021).

[36] Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley,

T., Wei, G.-Y., and Brooks, D. Profiling a warehouse-scale computer.

In Proceedings of the Annual International Symposium on Computer
Architecture (ISCA) (2015).

[37] Kaufmann, A., Stamler, T., Peter, S., Sharma, N. K., Krishna-

murthy, A., and Anderson, T. TAS: Tcp acceleration as an os service.

In Proceedings of the European Conference on Computer Systems (Eu-
roSys) (2019).

[38] kernel development community, T. Linux security module usage,

2023. https://www.kernel.org/doc/html/v6.1/admin-guide/LSM/index.
html.

[39] Kim, T., and Zeldovich, N. Practical and effective sandboxing for

374

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

https://aws.amazon.com/what-is/service-mesh/
https://aws.amazon.com/what-is/service-mesh/
https://workers.cloudflare.com/
https://github.com/codesenberg/bombardier
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://ebpf.io
https://www.cncf.io/blog/2021/04/19/microservices-in-the-enterprise-2021-real-benefits-worth-the-challenges/
https://www.cncf.io/blog/2021/04/19/microservices-in-the-enterprise-2021-real-benefits-worth-the-challenges/
https://www.jetbrains.com/lp/devecosystem-2022/microservices/
https://www.kernel.org/doc/html/v6.1/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v6.1/admin-guide/LSM/index.html

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

non-root users. In Proceedings of the USENIX Conference on USENIX
Annual Technical Conference (ATC) (2013).

[40] Kirth, P., Dickerson, M., Crane, S., Larsen, P., Dabrowski, A., Gens,

D., Volckaert, S., and Franz, M. PKRU-safe: Automatically locking

down the heap between safe and unsafe languages. In Proceedings of
the European Conference on Computer Systems (EuroSys) (2022).

[41] Koning, K., Chen, X., Bos, H., Giuffrida, C., and Athanasopoulos,

E. No need to hide: Protecting safe regions on commodity hardware. In

Proceedings of the European Conference on Computer Systems (EuroSys)
(2017).

[42] Kotni, S., Nayak, A., Ganapathy, V., and Basu, A. Faastlane: Acceler-

ating Function-as-a-Service workflows. In Proceedings of the USENIX
Conference on USENIX Annual Technical Conference (ATC) (2021).

[43] Li, B., Cui, T., Wang, Z., Bai, W., and Zhang, L. Socksdirect: Data-

center sockets can be fast and compatible. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM) (2019).

[44] Libsecommp Authors. Libsecommp. https://github.com/seccomp/
libseccomp, 2023.

[45] Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D., Bhat-

tacharjee, B., and Druschel, P. Light-Weight contexts: An OS ab-

straction for safety and performance. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation (OSDI)
(2016).

[46] Liu, C., Gong, S., and Fonseca, P. KIT: Testing OS-level virtualization

for functional interference bugs. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2023).

[47] Liu, Y., Zhou, T., Chen, K., Chen, H., and Xia, Y. Thwarting memory

disclosure with efficient hypervisor-enforced intra-domain isolation.

In Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2015).

[48] Mellanox. Linux user space library for network socket acceleration

based on rdma compatible network adaptors. https://github.com/
Mellanox/libvma.

[49] Meta. facebookincubator/katran: A high performance layer 4 load

balancer. https://github.com/facebookincubator/katran, 2023.
[50] Narayan, S., Garfinkel, T., Taram, M., Rudek, J., Moghimi, D., John-

son, E., Fallin, C., Vahldiek-Oberwagner, A., LeMay, M., Sahita, R.,

Tullsen, D., and Stefan, D. Going beyond the limits of sfi: Flexible

and secure hardware-assisted in-process isolation with HFI. In Pro-
ceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (2023).

[51] Nginx. Securing http traffic to upstream servers. https:
//docs.nginx.com/nginx/admin-guide/security-controls/securing-
http-traffic-upstream/, 2024.

[52] Niu, Z., Su, Q., Cheng, P., Xiong, Y., Han, D., Winstein, K., Xue, C. J.,

and Xu, H. NetKernel: Making network stack part of the virtualized

infrastructure. IEEE/ACM Trans. Netw. (2021).
[53] Ousterhout, A., Fried, J., Behrens, J., Belay, A., and Balakrishnan,

H. Shenango: Achieving high cpu efficiency for latency-sensitive

datacenter workloads. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2019).

[54] Pabla, C. S. Completely fair scheduler. Linux Journal 2009 (2009), 4.
[55] Palit, T., and Fonseca, P. Kaleidoscope: Precise invariant-guided

pointer analysis. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2024).

[56] Peng, D., Liu, C., Palit, T., Fonseca, P., Vahldiek-Oberwagner, A.,

and Vij, M. uSWITCH: Fast kernel context isolation with implicit

context switches. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P) (2023).

[57] Proskurin, S., Momeu, M., Ghavamnia, S., Kemerlis, V. P., and Poly-

chronakis, M. xMP: Selective memory protection for kernel and user

space. In Proceedings of the IEEE Symposium on Security and Privacy

(S&P) (2020).
[58] Raghavan, D., Ravi, S., Yuan, G., Thaker, P., Srivastava, S., Murray,

M., Penna, P. H., Ousterhout, A., Levis, P., Zaharia, M., et al.

Cornflakes: Zero-copy serialization for microsecond-scale networking.

In Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles (SOSP) (2023).

[59] Redis. memtier_benchmark: A high-throughput benchmarking tool

for redis & memcached. https://github.com/RedisLabs/memtier_
benchmark, 2023.

[60] Rizzo, L. netmap: A novel framework for fast packet I/O. In Proceedings
of the USENIX Conference on USENIXAnnual Technical Conference (ATC)
(2012).

[61] Saokar, H., Demetriou, S., Magerko, N., Kontorovich,M., Kirstein,

J., Leibold, M., Skarlatos, D., Khandelwal, H., and Tang, C. Ser-

viceRouter: Hyperscale and minimal cost service mesh at meta. In

Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2023).

[62] Sartakov, V. A., Vilanova, L., Eyers, D., Shinagawa, T., and Piet-

zuch, P. CAP-VMs: Capability-Based isolation and sharing in the

cloud. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2022).

[63] Sartakov, V. A., Vilanova, L., Geden, M., Eyers, D., Shinagawa, T.,

and Pietzuch, P. ORC: Increasing cloud memory density via object

reuse with capabilities. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2023).

[64] ScyllaDB authors. Seastar is an advanced, open-source C++ frame-

work for high-performance server applications on modern hardware.

https://seastar.io, 2023.
[65] Shillaker, S., and Pietzuch, P. Faasm: Lightweight isolation for

efficient stateful serverless computing. In Proceedings of the USENIX
Conference on USENIX Annual Technical Conference (ATC) (2020).

[66] Shillaker, S., Segarra, C., Mappoura, E., Fournial, M., Vilanova,

L., and Pietzuch, P. Faabric: Fine-grained distribution of scientific

workloads in the cloud. arXiv preprint arXiv:2302.11358 (2023).
[67] Tencent Cloud. Fstack | High Performance Network Framework

Based on DPDK. http://www.f-stack.org, 2023.
[68] The IntelXED Authors. Intel® x86 encoder decoder (intel® xed).

https://github.com/intelxed/xed, 2023.
[69] The Linux Foundation. Data plane development kit, 2023. https:

//www.dpdk.org.
[70] The Open Container Initiative Authors. Open container initiative

runtime specification. https://github.com/opencontainers/runtime-
spec/blob/main/spec.md, 2023.

[71] Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler,

M., Druschel, P., and Garg, D. ERIM: Secure, efficient in-process

isolation with protection keys (MPK). In Proceedings of the USENIX
Conference on Security Symposium (USENIX Security) (2019).

[72] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient

software-based fault isolation. SIGOPS Oper. Syst. Rev. (1993).
[73] Xia, Y., Du, D., Hua, Z., Zang, B., Chen, H., and Guan, H. Boosting

inter-process communication with architectural support. ACM Trans.
Comput. Syst. (2022).

[74] Yang, F., Im, B., Huang, W., Kaoudis, K., Vahldiek-Oberwagner,

A., che Tsai, C., and Dautenhahn, N. Endokernel: A thread safe

monitor for lightweight subprocess isolation. In Proceedings of the
USENIX Conference on Security Symposium (USENIX Security) (2024).

[75] Yang, Z., Harris, J. R., Walker, B., Verkamp, D., Liu, C., Chang, C.,

Cao, G., Stern, J., Verma, V., and Paul, L. E. Spdk: A development

kit to build high performance storage applications. In 2017 IEEE In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom) (2017).

[76] Yasukata, K., Honda, M., Santry, D., and Eggert, L. StackMap:

Low-Latency networking with the OS stack and dedicated NICs. In

Proceedings of the USENIX Conference on USENIX Annual Technical

375

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

https://github.com/seccomp/libseccomp
https://github.com/seccomp/libseccomp
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://github.com/facebookincubator/katran
https://docs.nginx.com/nginx/admin-guide/security-controls/securing-http-traffic-upstream/
https://docs.nginx.com/nginx/admin-guide/security-controls/securing-http-traffic-upstream/
https://docs.nginx.com/nginx/admin-guide/security-controls/securing-http-traffic-upstream/
 https://github.com/RedisLabs/memtier_benchmark
 https://github.com/RedisLabs/memtier_benchmark
https://seastar.io
http://www.f-stack.org
 https://github.com/intelxed/xed
https://www.dpdk.org
https://www.dpdk.org
 https://github.com/opencontainers/runtime-spec/blob/main/spec.md
 https://github.com/opencontainers/runtime-spec/blob/main/spec.md

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Conference (ATC) (2016).
[77] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T.,

Okasaka, S., Narula, N., and Fullagar, N. Native client: a sandbox

for portable, untrusted x86 native code. Commun. ACM (2010).

[78] Zhang, I., Raybuck, A., Patel, P., Olynyk, K., Nelson, J., Leija, O.

S. N., Martinez, A., Liu, J., Simpson, A. K., Jayakar, S., Penna, P. H.,

Demoulin, M., Choudhury, P., and Badam, A. The demikernel

datapath os architecture for microsecond-scale datacenter systems.

In Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles (SOSP) (2021).

[79] Zhang, Q., and Liu, L. Workload adaptive shared memory manage-

ment for high performance network i/o in virtualized cloud. IEEE
Trans. Comput. (2016).

[80] Zhao, K., Gong, S., and Fonseca, P. On-Demand-Fork: A microsec-

ond fork for memory-intensive and latency-sensitive applications. In

Proceedings of the European Conference on Computer Systems (EuroSys)
(2021).

[81] Zhong, Y., Li, H., Wu, Y. J., Zarkadas, I., Tao, J., Mesterhazy, E.,

Makris, M., Yang, J., Tai, A., Stutsman, R., and Cidon, A. XRP:

In-Kernel storage functions with eBPF. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI)
(2022).

[82] Zhu, X., She, G., Xue, B., Zhang, Y., Zhang, Y., Zou, X. K., Duan, X.,

He, P., Krishnamurthy, A., Lentz, M., Zhuo, D., and Mahajan, R.

Dissecting overheads of service mesh sidecars. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC) (2023).

376

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Peng et al.

A Artifact Appendix
A.1 Abstract
Pegasus is a framework for transparent kernel bypass for

local and remote communication.

A.2 Description & Requirements
A.2.1 How to access
The artifacts of Pegasus is published at

https://github.com/rssys/pegasus-artifact. It is also archived

at https://doi.org/10.5281/zenodo.13714712. The Cloudlab

profile for the artifacts is available at https://www.cloudlab.
us/p/6fa2ef5e5b44c20a2d45dd80e53aee0c5bd3103a.
A.2.2 Hardware dependencies
Two servers with the following hardware are required: CPU

with MPK support (Intel Xeon Skylake or later, AMD EPYC

Zen 3 or later), Mellanox Connext-X 5 or later, and 64 GiB or

more RAM. We recommend using the r6525 physical node

type on Cloudlab, as we used for all the experiments in

the paper. We refer the two servers as node0 and node1,

as created on Cloudlab.

A.2.3 Software dependencies
An environment created by the Cloudlab profile specified

in the artifact repository is required, which includes the

following major dependencies: DPDK, F-Stack, Docker, and

Kubernetes.

A.2.4 Benchmarks
The artifact repository contains all the benchmarks used in

the paper for the performance of local and remote commu-

nication.

A.3 Setup
It is required to set up the machines by instantiating the

Cloudlab profile specified in the artifact repository.

A.4 Evaluation workflow
A.4.1 Major Claims
The major claims are as follows:

• (C1): Pegasus transparently achieves better performance
than the Linux baseline for local communication.

• (C2): Pegasus achieves similar performance to other kernel-
bypass networking systems for remote communication
with transparent support for unmodified applications.

• (C3): Pegasus accelerates applications with both local
and remote communication, and both optimizations con-
tribute significantly.

A.4.2 Experiments
Experiment (E1): [5 human-minutes + 1 compute-hour]: la-
tency of synchronization primitives and protocol operations.

Run the scripts inside the following directory on node0 ac-

cording to the documentation:

• /data/experiments/microbenchmark/

The results will be generated as a CSV table (Table 1). In

this experiment, Pegasus shows significantly lower latency

than Linux for the synchronization primitives and protocol

operations shown in the table (C1).

Experiment (E2): [10 human-minutes + 5 compute-hours]:
local communication performance.

Run the scripts inside the following directories on node 1

according to the documentation:

• /data/experiments/local-proxy/
• /data/experiments/web/
• /data/experiments/servicemesh/
• /data/experiments/results/

The results will be generated as Figure 2 and Figure 3. In this

experiment, Pegasus shows significant better performance

than Linux for local communication in terms of latency

and throughput (C1). In Figure 2, Pegasus achieves higher

throughput and similar or lower latency than the Linux base-

line at all throughput. In Figure 3, Pegasus achieves better

throughput than the Linux baseline with enough proxied

requests, while showing overhead at lower percentage.

Experiment (E3): [10 human-minutes + 8 compute-hours]:
remote communication performance.

Run the scripts inside the following directories on node 1

according to the documentation:

• /data/experiments/redis/
• /data/experiments/nginx/
• /data/experiments/memcached/
• /data/experiments/tcp/
• /data/experiments/results/

The results will be generated as Figure 4, Figure 5, Figure 6,

Figure 7, and Table 3. In this experiment, Pegasus shows

similar performance to other kernel-bypass networking sys-

tems for remote communication with transparent support

for unmodified applications (C2). In Table 3 and Figure 4,

Pegasus shows similar TCP latency to other kernel-bypass

networking systems, which is significantly lower than the

Linux baseline. In Figure 5, Figure 6, and Figure 7, Pegasus

achieves similar throughput and latency to other kernel-

bypass networking systems, such as F-Stack and Junction,

and is significantly better than the Linux baseline and Demik-

ernel.

Experiment (E4): [5 human-minutes + 2 compute-hours]:
local and remote communication performance.

Run the scripts inside the following directories on node 1

according to the documentation:

• /data/experiments/proxy/
• /data/experiments/results/

377

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

https://github.com/rssys/pegasus-artifact
https://doi.org/10.5281/zenodo.13714712
https://www.cloudlab.us/p/6fa2ef5e5b44c20a2d45dd80e53aee0c5bd3103a
https://www.cloudlab.us/p/6fa2ef5e5b44c20a2d45dd80e53aee0c5bd3103a

Pegasus: Transparent and Unified Kernel-Bypass Networking for
Fast Local and Remote Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

In this experiment, Pegasus shows acceleration for both local

and remote communication with its unified kernel-bypass

networking (C3). The result will be generated as Figure 8.

We recommend using the following scripts on node1 ac-

cording to the documentation to automatically run all the

experiments for each system:

• /data/experiments/exp-baseline.sh
• /data/experiments/exp-pegasus.sh

• /data/experiments/exp-f-stack.sh
• /data/experiments/exp-demikernel.sh
• /data/experiments/exp-junction.sh

After running all the experiments, use the following script

to generate all the results:

• /data/experiments/results/generate.sh.

Please refer to the documentation included in the artifact

repository for more detailed information.

378

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by Purdue U
niversity on A

pril 9, 2025.

	Abstract
	1 Introduction
	2 Emerging Communication Paradigms
	2.1 Removing the Kernel from the Critical Path
	2.2 Practical, Unified Kernel Bypass

	3 Pegasus Design
	3.1 System Model and Threat Model
	3.2 Process Management and Scheduling
	3.3 Binary Loader and Memory Management
	3.4 Monitoring Interactions Between VProcesses and the Kernel
	3.5 Io_uring-Based Event Polling
	3.6 TCP Fast Path for Local Communication
	3.7 Kernel Bypass for Remote Communication

	4 Secure User-Space Process Virtualization
	5 Implementation
	5.1 Process Management and Scheduling
	5.2 Signal Handling
	5.3 Platform Integration

	6 Evaluation
	6.1 Setup
	6.2 Local Communication
	6.3 Remote Communication
	6.4 Mixed Communication
	6.5 In-Process Virtualization

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Setup
	A.4 Evaluation workflow

