
On-demand-fork: A Microsecond Fork for
Memory-Intensive and Latency-Sensitive Applications

Kaiyang Zhao
Purdue University

zhao776@purdue.edu

Sishuai Gong
Purdue University

sishuai@purdue.edu

Pedro Fonseca
Purdue University

pfonseca@purdue.edu

Abstract
Fork has long been the process creation system call for Unix.
At its inception, fork was hailed as an efficient system call
due to its use of copy-on-write on memory shared between
parent and child processes. However, application memory
demand has increased drastically since the early days and the
cost incurred by fork to simply set up virtual memory (e.g.,
copy page tables) is now a concern, even for applications
that only require hundreds of MBs of memory. In practice,
fork performance already holds back system efficiency and
latency across a range of uses cases that fork large processes,
such as fault-tolerant systems, serverless frameworks, and
testing frameworks.

This paper proposesOn-demand-fork, a fast implementa-
tion of the fork system call specifically designed for applica-
tions with large memory footprints.On-demand-fork relies
on the observation that copy-on-write can be generalized
to page tables, even on commodity hardware. On-demand-
fork executes faster than the traditional fork implemen-
tation by additionally sharing page tables between parent
and child at fork time and selectively copying page tables in
small chunks, on-demand, when handling page faults. On-
demand-fork is a drop-in replacement for fork that requires
no changes to applications or hardware.
We evaluated On-demand-fork on a range of micro-

benchmarks and real-world workloads. On-demand-fork
significantly reduces the fork invocation time and has im-
proved scalability. For processes with 1GB of allocatedmem-
ory, On-demand-fork has a 65× performance advantage
over Fork. We also evaluated On-demand-fork on test-
ing, fuzzing, and snapshotting workloads of well-known
applications, obtaining execution throughput improvements
between 59% and 226% and up to 99% invocation latency
reduction.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’21, April 26–28, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8334-9/21/04.
https://doi.org/10.1145/3447786.3456258

ACM Reference Format:
Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-demand-
fork: A Microsecond Fork for Memory-Intensive and Latency-
Sensitive Applications. In Sixteenth European Conference on Com-
puter Systems (EuroSys ’21), April 26–28, 2021, Online, United King-
dom. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3447786.3456258

1 Introduction
The fork system call has a long history [18, 55]. Fork was
originally introduced in Unix to create new processes and
was praised for its simplicity – the fork system call creates a
child process with an exact copy of the entire address space
of the parent process [63]. Since then the size of the mem-
ory used by applications and the cost of accessing memory
tremendously increased, straining fork performance. Even-
tually fork implementations adopted the copy-on-write tech-
nique, which copies page tables during the system call in-
vocation but defers the cost of (data) page copying to the
fault handlers [65]. The copy-on-write approach significantly
increased fork performance and kept fork practical for main-
stream applications.
Fork is not just used for process spawning from a shell –

fork is used in a wide range of situations, often to exploit
the benefits of the copy-on-write semantics. For instance,
key-value stores, such as Redis [60], use fork to get a consis-
tent snapshot of the store, when fault-tolerance is required,
while simultaneously serving client requests. Fuzzers and
testing frameworks often use fork to avoid initialization
overheads [8, 13, 31, 53]. More recently, serverless frame-
works have exploited fork to cache computations for fast
startup of short-lived lambda functions and to de-duplicate
data [14, 25, 68].
However, the implementation of the fork system call is

not simple and is no longer efficient given the demands of
modern memory-intensive applications [5, 6, 18, 20]. The
fork implementation requires duplicating nearly all process
kernel state, which includes virtual memory, scheduler pa-
rameters, file descriptors, permissions, namespaces, etc. Of
all kernel state components copied, the most concerning is
the virtual memory – fork becomes significantly slower as
the allocated memory of the application increases. Our mea-
surements show that a process using 128MB of memory
can spend more than 0.8ms executing the fork system call,
and a process using 1GB of memory can spend more than

https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

6ms. This cost increases linearly with the mapped memory
size and may not be acceptable for memory-intensive or
latency-sensitive applications.

Developers and system designers are taking notice of this
problem and resorting to alternative methods to address the
performance limitations of fork, one of which is to use huge
pages. Even though huge pages make fork faster, by having
less page table entries to copy on fork invocation, huge pages
are plagued by high latency variation and latency spikes,
high internal fragmentation, and inconvenient usage [42,
46, 57]. We analyze in more detail the limitations of huge
pages in §2. This work proposes a fork design to address
the emerging performance problems caused by the current
fork approach. Our approach specifically targets memory-
intensive and latency-sensitive applications and can coexist
with the original fork.

This paper proposes On-demand-fork1, a responsive and
efficient fork system call that is specifically designed for
memory-intensive and latency-sensitive applications. On-
demand-fork extends the copy-on-write technique to page
tables, by copying page tables in small chunks, as needed and
deferred from the fork invocation. In particular,On-demand-
fork ensures parent and child share the page tables at fork
time and only copies the page tables when handling page
faults. We implemented On-demand-fork on the Linux ker-
nel by modifying the virtual memory subsystem. Although
page tables are addressed by the CPU using physical ad-
dresses and faults are not permitted on page tables during
translation, because page tables are only modified by the
OS, our page table copy-on-write approach does not require
special hardware support or modifications to applications.
Hence, On-demand-fork is a drop-in replacement for the
traditional Fork having the exact same semantics, which
makes deployment practical.

Our experiments using micro-benchmarks show that On-
demand-fork significantly reduces the fork system call la-
tency, has reasonable page fault handling cost, and has lower
total cost under many memory access patterns. We further
evaluated On-demand-fork on real-world applications, in-
cluding SQLite, Redis and AFL, that have large memory foot-
prints and show that application end-to-end performance
benefits significantly from On-demand-fork. On-demand-
fork was able to achieve 226% improvements in execution
throughput of AFL, 99% shorter fork latency in running
SQLite unit tests, and 98% reduction in Redis snapshot block-
ing time.

This paper makes the following contributions:
• A detailed analysis of the performance characteristics
of the (traditional) Fork implementation.

• The design of a responsive and efficient fork system
call,On-demand-fork, that generalizes copy-on-write
to page tables.

1On-demand-fork source code: https://github.com/rssys/on-demand-fork

1 for (int i = 1; i <= 120; i++) {

2 size_t size = i * (1024 * 1024 * 512);

3 void *buffer = mmap(NULL , size , ...);

4 clock_gettime (..., &ts1);

5 pid=fork();

6 switch (pid) {

7 case 0: /* child */

8 return 0;

9 default: /* parent */

10 clock_gettime (..., &ts2);

11 print_cputime(ts1 , ts2 , size);

12 waitpid(-1, NULL , 0);

13 }

14 munmap(buffer , size);

15 }

Figure 1. Fork benchmark program.

• A Linux-based implementation of On-demand-fork
that runs on commodity hardware.

• An evaluation of On-demand-fork usingmicrobench-
marks and real-world applications, demonstrating the
high performance and applicability of On-demand-
fork.

2 The Case for a Microsecond Fork

This section analyzes the performance of the Fork system
call and makes the case for a responsive and efficient fork
design. Our results show that, contrary to the early days’
expectation, the current Fork design is no longer adequate
for a wide-range of use cases given the increasing size of
applications.

2.1 The Performance Status Quo of Fork

The Fork system call duplicates the kernel state of the parent
process, which requires copying the process page tables –
typically the largest process-specific kernel data structure.
Thus, wewould expect the execution time of the Fork system
call invocation to be proportional to the number of pages
mapped in the caller’s virtual address space.

Using various microbenchmarks, we analyzed the perfor-
mance of the Linux Fork system call to assess its impact on
several use cases. In particular, we focused on analyzing the
Fork scalability with increasing size of the parent process’s
virtual memory and the use of concurrent Fork calls.

Our benchmark program (Figure 1) consists of a loop that
allocates private anonymous memory in 512MB increments,
fills it with data, and then forks. The time it takes to fork
is measured by the parent using clock_gettime just before
and after Fork. The child process immediately exits. The
experiments ran on the same machine described in §5.1.

Figure 2 shows the results of our benchmark when config-
ured to allocate a memory buffer that ranges from 0.5GB to
50GB. The results confirm that when the size of the caller’s

https://github.com/rssys/on-demand-fork

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

virtual memory is sufficiently large, the cost of the fork in-
vocation grows roughly linear with the size of the caller’s
allocated memory. They also show that the fork latency en-
ters the millisecond range (i.e., > 1ms) even for modestly
sized applications with just 176MB of allocated memory.
Additionally, we observed that the performance of fork

degrades when called in parallel, even when the cores are
not saturated. When only one instance of the benchmark
is running on the testing machine with 16 physical cores,
forking a process with 1GB of allocated memory takes on
average 6.5ms and a minimum of 5.4ms; when three con-
current benchmark instances fork a process with 1GB of
allocated memory, it takes on average 22.4ms and a mini-
mum of 21.3ms. The results show that even if applications
were to exploit concurrency, the standard fork throughput
would still be very limited and the latency of each fork call
would deteriorate. Fork’s lack of scalability in multi-core
systems is likely caused by atomic instructions that lock the
system bus on the code path that reference counts physical
pages.
The low performance of Fork is harmful for many ap-

plications. Some applications, such as Redis [60], use Fork
on the critical path to perform online snapshots but also
require very low request handling latency throughout the
entire execution. In these cases, reducing the latency of the
Fork invocation is particularly important, especially consid-
ering that in datacenters, latency can accumulate with long
pipelines of services and other latency sources (e.g., inter-
rupts, swap, garbage collectors) [38, 51]. Tail latencies fill up
queues and degrade quality of service, thus, it is important
to ensure that kernel services, including fork invocations,
execute fast. Other applications that leverage Fork, such
as testing frameworks, make Fork calls at a high rate and
only expect the child process to access a tiny fraction of the
memory allocated before exiting. In these cases, setting up
page tables on-demand would prevent wasting time (and
memory), hence improve the overall system efficiency.
It is worth noting that even 1GB of memory is by no

means large by today’s standards. Databases and key-value
stores, for instance, often use hundreds of gigabytes of mem-
ory [56]. However, our experiments have shown that when
applications reach even just 50GB of allocated memory,
the average time to invoke fork reaches 253.9ms and the
minimum time reaches 252.3ms, which is prohibitive for
many use cases. Hence, having a faster and more responsive
fork is especially important for current and future memory-
intensive and latency-sensitive applications.

2.2 Bottleneck Analysis

To further understand the Fork cost for processes with large
memory footprints, we used the perf-events toolkit [2] to
analyze the Linux Fork implementation. For this analysis
we modified our benchmark application to allocate memory

0.5 1 2 4 8 16 32 50
Size (GB)

4

8

16

32

64

128

256

512

Ti
m

e
(m

s)

Sequential
Concurrent (3x)

Figure 2. Fork execution time with different memory allocation
sizes. Results include measurements with sequential executions
and concurrent executions (with 3 concurrent instances of the
benchmark). Tests ran on a 16-core machine and were repeated 5
times. Each run allocated a memory buffer that varied from 512MB
to 50GB in 512MB increments.

only once and fork repeatedly thereafter. Our profile results
are shown in Figure 3. There are two hot spots in the virtual
memory setup path of fork. The first is in compound_head(),
which detects and resolves a compound page. A compound
page is a grouping of multiple physically contiguous pages
that can be treated as a single unit [1]. Compound pages
are, among other purposes, used to implement huge pages
in Linux. The high cost of compound_head() results from
cache misses when accessing for the first time the struct
page that stores the information. The second hot spot is in
page_ref_inc(), which increments the reference counter of a
physical page. For every physical page referenced in the last-
level page tables, the kernel locates its corresponding struct
page and increments the page reference counter atomically.

Although none of these functions operate on the same data
when multiple instances of our benchmark run concurrently
(i.e., each benchmark instance forks its own process), the ad-
ditional slowdown observed is caused by memory and cache
line contention when accessing struct page data structures
that describe every physical page.
Both hot spot functions are in the kernel code that pro-

cesses the last-level page tables, given that regular pages
(4 kB) were used. The code handling the upper-level page
tables merely traverses the page table hierarchies and has
significantly lower execution cost. This observation moti-
vates our design choice to copy the last-level page tables
on-demand but still copy all upper-level tables at process
creation time.

2.3 What About Huge Pages?

A straight-forward approach to mitigate the poor perfor-
mance of Fork formemory-intensive applications is to switch

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

1 copy_one_pte ():

2 0.00% | mov %r12 ,%rdx

3 0.57% | callq vm_normal_page

4 0.22% | test %rax ,%rax

5 0.00% | je 307

6 __read_once_size ():

7 0.01% | mov 0x8(%rax),%rcx

8 compound_head ():

9 63.38%| lea -0x1(%rcx),%rdx

10 0.07% | and $0x1 ,%ecx

11 0.42% | cmove %rax ,%rdx

12 arch_atomic_inc ():

13 0.57% | lock incl 0x34(%rdx)

14 13.88%| lock incl 0x30(%rax)

15 __read_once_size ():

16 15.27%| mov 0x8(%rax),%rdx

Figure 3. Profiling results using perf-events when the benchmark
program is running. The left column shows the percentage of time
spent on the instruction during copy_one_pte().

0.5 1 2 4 8 16 32 50
Size (GB)

0.1

0.2

0.5

1

2

4

Ti
m

e
(m

s)

Figure 4. Time to fork vs. size of memory allocated with huge pages.
Size is in 512MB increments. Only 1 instance of the benchmark
program ran. Tests ran on a 16-core machine and were repeated 5
times.

to huge pages. Most kernels, including Linux, provide an in-
terface for applications to use different page sizes, depending
on architectural support [12]. On x86, most CPUs can sup-
port 2MB pages besides the standard 4 kB pages. Allocating
the same amount of memory backed with huge pages needs
fewer number of pages, which translates into fewer page
table entries that need to be copied during Fork.
We ran the benchmark using huge pages (2MB pages)

and the results are shown in Figure 4. Our results show that
forking a process with 1GB of allocated memory with huge
pages takes about 0.17ms, which is over 50 times better than
with regular 4 kB pages.

However, huge pages have serious drawbacks due to their
coarser granularity and are not suitable for many appli-
cations. First, huge pages increase internal fragmentation,

hence waste memory. Second, huge pages reduce the oppor-
tunities for parent and child to share memory, hence more
memory will need to be duplicated during page faults caused
by writes. Third, and perhaps more importantly, the time
needed to handle write page faults increases approximately
proportionally with the size of the page copied, hence huge
page faults can take 512x longer to to handle than regu-
lar 4KB pages – this can be very detrimental to application
performance [7, 61]. In particular, huge pages increase copy-
on-write latency which can increases the application end-to-
end tail latency in very significant and unpredictable ways.
Hence, a common advise to improve application performance
is to disable huge pages [23, 52].
Given these limitations, the application source code of-

ten has to be changed significantly to effectively use huge
pages [59], creating a burden for developers; huge pages
also have to be reserved before any allocation, creating a
hassle for sysadmins. Transparent Huge Pages (THP) make
huge pages more practical by obviating the requirement
to reserve huge pages and modify application code. THP
works by scanning memory pages in the background and
finds opportunities to promote contiguous 4 kB pages to a
2MB page [24]. However, THP is known to further increase
CPU usage and cause long system-wide pauses [42, 57]. It is
also widely acknowledged as especially harmful to database
workloads [23, 52], as these workloads tend to have random
rather than contiguous memory access patterns. In fact, THP
setting defaults to madvise opt-in in popular Linux distribu-
tions, such as Ubuntu. We compare On-demand-fork with
huge pages in §5.

2.4 Applications Benefit from a Fast Fork

Based on the observation that fork is inefficient for memory-
intensive applications, this sectionmake the case that a faster
microsecond fork for regular 4KB pages would be very benefi-
cial to various applications and enable novel system designs.

2.4.1 Snapshotting The fork system call is commonly
used as a snapshot mechanism for high-performance in-
memory databases [40, 45, 60]; these databases commonly
use snapshots for persistence, query execution, and backup
and recovery. However, as Fork does not scalewell, databases
with large memory footprint suffer from long fork invoca-
tion latency and could fail to serve user requests during the
fork call [61]. A fast fork with high scalability would speed
up snapshotting significantly for such memory-intensive
applications, and fulfill the low-latency performance require-
ments of these applications.

2.4.2 Testing In software development, Fork is widely
used to increase testing performance. As most test inputs
cause short-lived executions, the cost of initializing the tar-
get application typically dominates the cost of software test-
ing. To mitigate this problem, state-of-the-art testing frame-
works [8, 13, 31, 53], including fuzzers, usually initialize the

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

target application only once and then leverage Fork to re-
peatedly duplicate the process at a properly initialized state.
Although the traditional Fork is useful, it is still a major per-
formance bottleneck especially when the application uses a
large amount of memory or when the testing framework has
to call Fork concurrently [5, 20, 69]. A fast Forkwith a much
shorter invocation time and higher efficiency is expected to
significantly improve testing.

2.4.3 ServerlessComputing Fork and related techniques
are also used in serverless computing to optimize the startup
time of lambda functions, which is crucial for serverless ap-
plications due to their short-lived execution. A large body of
prior work [14, 25, 68] focuses on reducing lambda startup
time by exploiting fork or similar techniques to implement
lambda function caching, cloning, and de-duplication. A fast
and efficient fork would provide a simple and general mech-
anism to improve significantly the performance of emerging
serverless frameworks.

3 On-demand-fork

We address the limitations of fork with On-demand-fork,
a redesign of the standard fork implementation that exe-
cutes within the microsecond range without using huge
pages.On-demand-fork reduces the cost of process creation
by employing copy-on-write on the kernel virtual memory
structures.

The profiling results in Figure 3 show that, when the size of
the allocated virtual memory is large, most of the cost of fork
comes from reference counting physical pages that back vir-
tual memory. This process occurs when the kernel analyzes
and copies the last-level page tables of the parent process
during the fork invocation. On-demand-fork ensures that
when the child process is created, it shares the page tables
with its parent process, as shown in Figure 5. Hence, the bulk
of the work of copying the virtual memory structures from
the parent to the child is deferred to the page fault handler,
and is performed selectively and on-demand according to
copy-on-write semantics. Consequently, On-demand-fork
significantly improves the kernel responsiveness when ap-
plications have moderate or large virtual memory spaces.
Furthermore, On-demand-fork improves the overall kernel
efficiency when applications only write to a small fraction of
pages after process creation. Figure 6 shows the main events
of On-demand-fork during application execution.

3.1 Overview

Paging Structure. Modern computer architectures fea-
ture MMUs that support hierarchical paging data structures.
Linux supports up to 5 levels of page tables [35], namely Page
Global Directory (PGD), P4D (if 5-level paging is enabled),

Page Upper Directory (PUD), Page Middle Directory (PMD),
and Page Table Entry Table (PTE table).
Last-level Page Table Sharing. On-demand-fork reduces
the fork cost by making the parent and the child share last-
level page tables. On-demand-fork adds reference counters
to shared last-level page tables and modifies several kernel
functions that touch them, including functions invoked by
the page fault handler and the On-demand-fork, munmap,
and mremap system calls. Shared last-level page tables may
survive beyond the creating process lifetime to remain valid
for other processes in the child-parent lineage tree.

During the system call invocation,On-demand-fork copies
the top 4 levels of page tables of the parent and assigns them
to the child. The write permission of all pages controlled
by the shared tables is disabled by clearing the writable bit
in the PMD entry of each shared last-level page table. Dis-
abling the write permission ensures that the kernel page fault
handler will capture subsequent write attempts to memory
to implement copy-on-write. On-demand-fork then incre-
ments the reference counter of the PTE tables of the parent
and has the child’s PMD entries point to them. We chose
not to share page tables at all levels in our current imple-
mentation because page tables are structured as a tree (with
a 512 branching factor for 4 kB pages), so there are many
more last-level page tables (leaf nodes) than upper-level page
tables (non-leaf nodes) and we do not expect significant per-
formance gains for most use cases to justify a more complex
design.
HandlingWritesOn-demand. When a processwith shared
page tables attempts to write to memory mapped by a shared
page table, a page fault is raised. The page fault handler rec-
ognizes that the page table is shared by reading its reference
counter. On a page fault, the kernel allocates a dedicated
PTE table for the faulting process and copies the shared PTE
table entries. This operation only happens once per process
and per last-level page table, which represents a 2MB range
(i.e., only the first write access to such a range incurs an
increased cost). Although in general, copying page tables
all at once may be good for throughput, by coping lazily,
On-demand-fork gives applications much shorter fork in-
vocation latency. This improved responsiveness applies even
to write-intensive applications. Furthermore, this design in-
creases overall system efficiencywhen processes do not write
to subsets of the memory address space.

3.2 Challenges

Writable regions in the parent have to be write-protected be-
fore page tables can be safely shared, but changing each last-
level page table entry would be slow. Hence, On-demand-
fork must employ an efficient method to disable the write
permission of all pages mapped by a shared last-level page.
On-demand-fork leverages the fact that page tables are hier-
archical data structures and that attributes in the upper-level

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

Parent

Child

1st level
page table

PGD

2nd level
page table

PUD

3rd level
page table

PMD

4th level
page table

PTE

copy tables

fork on-demand-fork

Ref
counter

= 1

copy tables

Ref
counter

= 2

share PTE tables

Physical
page

writable = 0

1st level
page table

PGD

2nd level
page table

PUD

3rd level
page table

PMD

4th level
page table

PTE
Physical

page

writable = 0

writable = 0

Ref
counter

= 1
writable = 0

Second-to-last page table Last-level page tableUpper-level page table

Figure 5. Fork and On-demand-fork page table management comparison. Unlike Fork, On-demand-fork shares the last level page tables
across processes, which represent the vast majority of the page table structure.

Parent/Child on-demand-fork events

Page fault (§3.4)

Remap memory (§3.3)

1. buffer = mmap(NULL,10000,PROT_READ|
PROT_WRITE,MAP_PRIVATE,-1,0);

2. pid = fork();
3. switch (pid) {
4. case 0:
5. t = buffer[1000];
6. buffer[2000] = 'y';
7. mremap(buffer, 10000, 7000,..);
8. return 0;
9. default:
10. waitpid(pid, NULL, 0);
11. return 0;
12. }

Unmap memory (§3.3)

Fast read (§3.4)

on-demand-fork (§3.1)

Figure 6. Main events when using On-demand-fork in a sample
program fragment.

page table override attributes in the lower levels – “hier-
archical attributes” capability [36] are supported by most
mainstream architectures. In particular, On-demand-fork
uses the capability to control the write permission of the
entire region mapped by a last-level page table by modifying
a single entry in upper-level page tables.

Page table entries include “accessed” and “dirty” bits that
are modified by the CPU. The “accessed” bit is used, most
importantly, for picking a page to evict under high-memory
pressure; underOn-demand-fork the CPU still marks pages
mapped by a shared page table as “accessed”, as normal. Dur-
ing page faults On-demand-fork duplicates the “accessed”
bit value when copying shared page tables. The “dirty” bit
will never be set while page tables are shared because the
write permission is always disabled for shared pages.

3.3 Unmapping or Remapping VMAs

When unmapping or remapping (i.e., moving) a memory re-
gion, the kernel has to clear the corresponding page table en-
tries to prevent the process from accessing the unmapped or
remapped memory regions. Hence, On-demand-fork needs
to change the system calls that perform these operations. For
shared last-level page tables (PTE tables), the kernel can clear
the reference to PTE tables in PMD entries and preserve the
values of shared page table entries. But if multiple virtual
memory areas (VMA) are mapped by the same shared PTE

table, the kernel has to copy the shared page table before un-
mapping or remapping the region since other active VMAs
of this process still need their corresponding PTE entries.
In essence, On-demand-fork performs copy-on-write on
these operations if the PTE tables are shared.

3.4 Subsequent Memory Access

After a call to On-demand-fork, both the parent and the
child process share the PTE tables, with write permission
disabled. Since there is no distinction between the parent
and the child process, this approach allows for unlimited
processes sharing a page table due to multiple On-demand-
fork invocations. If a process reads from a memory address
mapped by a shared page table, virtual memory translation
is done normally without triggering page faults (Fast Read in
Figure 6). However, if a process writes to memory mapped
by a shared page table, a page fault is raised. In this case,
the page fault handler, in addition to copying the page, will
copy the shared last-level page table, i.e., it will perform
copy-on-write on the page table.
In practice, On-demand-fork first checks whether the

PTE table is shared by reading its reference counter. If the
page table is shared, the kernel makes a copy of the shared
PTE table for the faulting process and then decrements the
shared last-level page table’s reference counter. The new
page table will no longer be shared, hence, subsequent writes
to any addresses mapped by the page table, in the 2MB
region, will not trigger additional page table copies. If the
counter of the previously shared last-level page table reaches
the value one after the decrement operation, then both the
previously shared table and the new table become dedicated
(i.e. not shared).

To enable the new last-level page table, the corresponding
entry in the PMD table of the faulting process will be changed
to point to the new dedicated PTE table. In addition, the write
permission bit in the PMD entry will be turned on to allow
entries in the PTE table to determine the write permission
of individual pages. Finally, as in regular Fork, the page

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

fault handler copies the (data) pages as needed and ensures
that the new PTE table uses the new page copy (while still
sharing the other pages).

On-demand-fork relies on the observation that page ta-
bles are data structures read by software and hardware, but
onlywritten by the kernel (with the exception of the accessed
and dirty bits). This is distinct from pages, which are writ-
ten by applications (i.e, the child/parent process). Thus, the
kernel is always in control when page tables are modified
and can copy page tables as needed before it modifies any.
Hence, a copy-on-write approach on user data pages requires
hardware support to trigger faults when pages are modified,
but copy-on-write on page tables can be implemented by
just modifying the kernel.

3.5 Last-Level Page Table Lifecycle

Every last-level page table has its reference counter, which is
initialized to one in the last-level page table constructor. The
count always matches the number of processes that share
the page table. Last-level page tables are copied during page
faults when a process that makes a write to pages mapped
by shared page tables. The faulting process gets its own copy
of the table (with the reference counter set to one) and the
old table, which might still be shared by multiple processes,
will have its counter decremented.

During the On-demand-fork system call invocation, the
reference counter of every last-level page table in the pag-
ing structure of the process is incremented, indicating an
additional user of the tables and preventing their premature
deallocation. Write permission is disabled for all writable
memory regions controlled by the table. This process is il-
lustrated in Figure 5. During unmapping and remapping,
the reference counters of last-level page tables mapping the
respective memory regions are decremented, indicating one
fewer user of the tables. If any page table reaches a zero
reference count, its destructor is called.

3.6 Physical Pages Accounting

Anonymous mappings are backed by physical pages, which
are also reference counted. The kernel uses this reference
count to decide whether a page can be freed. Because On-
demand-fork defers processing PTE tables, which includes
incrementing the page reference counter, it must prevent
pages from being prematurely freed when (a) a page fault
gets a new page for copy-on-write and (b) thememory region
gets unmapped or remapped.

On-demand-fork does not attempt to accurately track the
usage of every page. Rather, it leverages the reference count
of the last-level page table (PTE table) to decide whether the
page is free or in-use. If the page in question is mapped by a
PTE table that has a reference count greater than one, then
the page cannot be safely freed.

3.7 File-backed Mappings

File-backed mappings are important and frequently used
because the executable files of programs are mapped us-
ing file-backed mapping. In addition, many application use
file-backed mapping to conveniently perform file I/O. On-
demand-fork provides full support for file-backed memory
mappings. Every file-backed mapping has an operating func-
tion structure pointing to functions that handle the construc-
tion, destruction, and faulting of the region, which forward
the events to the page cache and filesystem subsystems of
the kernel. On-demand-fork identifies file-backed regions
and, similarly to Fork, leaves the work of managing physical
memory pages to those functions.

4 Implementation

We implemented On-demand-fork on Linux kernel ver-
sion 5.6.19. We added 1108 lines of code (LoC), modified 23
LoC, and removed 40 LoC of the mainline code. Most of the
changes were done to the memory subsystem.
Memory Usage. We deliberately avoided adding new fields
to the Linux data structure struct page, which describes the
physical pages for both general memory and page tables.
Because every physical page has a corresponding struct page,
any increase in its size would be magnified by the amount of
RAM installed in the machine and consume a large amount
of memory. Hence, our implementation stores the reference
counters of shared page tables in a union inside the struct
page structure that is unused for last-level page tables. In
essence, we exploited the free space in existing kernel data
structures.
Robustness. PTE tables may need to be allocated in the
page fault handler. Under low memory conditions, the fault-
ing process is put to sleep, and the kernel takes appropriate
action to free more pages (e.g., flush buffered pages, swap out
pages, or invoke the OOM killer). We tested our implementa-
tion with an assortment of correctness unit tests that create,
change, and destroy mappings under different scenarios. Our
implementation passed all functional tests conducted.
Flexibility. Different applications have different perfor-
mance requirements. For some applications it may be better
to pay the cost of process creation upfront and have a lower
runtime latency due to page faults; others may write to a
substantial portion of the memory after process creation, not
conforming to the design assumptions of On-demand-fork.
Hence, we implemented On-demand-fork, a new system
call, as an opt-in alternative for Fork. On-demand-fork
is designed as a drop-in replacement for fork, so the only
change needed in the application source code is replacing
fork calls with On-demand-fork calls in suitable places. We
also implemented a process-specific configuration through

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

procfs to provide full application transparency while al-
lowing users to choose the fork implementation, hence On-
demand-fork requires no changes to the application code.
Thread Safety. On-demand-fork protects the integrity of
paging structures under concurrency. Whenever page table
entries are changed, locks are acquired in accordance with
the kernel locking protocol. Because multiple processes can
share page tables, it is important that they are safe from
corruption or incorrect reference counting. Since we treat
shared tables as read-only, the contents of them are safe.
The reference counters of PTE tables are always modified
using test-and-set atomic instructions when one is being
dereferenced and potentially freed.
Huge Page Support. The On-demand-fork implementa-
tion only supports 4 kB pages. However, its design is gener-
alizable to support larger page sizes (e.g., 2MB and 1GB on
x86). For example, on x86, the Linux kernel creates a 2MB
huge page by describing a page directly in a PMD entry
instead of pointing to a PTE table; On-demand-fork can
support 2MB pages by sharing PMD tables describing them.
This would offer to applications already using huge pages
the advantages of On-demand-fork, although as discussed
in §3, the benefits would be limited because of the smaller
number of upper-level page tables.
Portability. Although we chose to implement On-demand-
fork in x86, our design is general and should be easy to port
to other architectures that support hierarchical attributes in
page tables (e.g., ARMv8 [15]). The only architecture-specific
code in On-demand-fork is for handling hardware-defined
page table structures, and we expect porting to ARMv8, for
instance, mostly involves adding code for page table entry
manipulation. However, there are two features of ARMv8
that might increase porting complexity. Armv8-A has three
different translation block sizes ("translation granules" [47]),
4 kB, 16 kB, and 64 kB, that provide more flexibility for the
kernel to configure the system with different page sizes and
different page table sizes; supporting this function would
likely require adding more code to the page table entry ma-
nipulation. In addition, ARMv8 provides a contiguous bit in
page table entries that Linux uses to provide alternative huge
page sizes (e.g., 64 kB and 32MB huge pages under 4 kB
granule) [66]; such huge pages are not created by reducing
the depth of page tables and may also require additional page
table handling logic.

5 Evaluation

5.1 Setup

We ran all experiments on a machine with a 16-core AMD
EPYC 7302P CPU and 256GB memory. In all our experi-
ments we compare the original fork system call (Fork) in the
unmodified 5.6.19 Linux kernel with our fork implementa-
tion (On-demand-fork) in the modified kernel. We use the

unmodified kernel as the baseline to measure the original
fork performance because our page fault handler modifica-
tions could affect its performance. For all experiments, swap
space is disabled to avoid a detrimental performance impact.
Huge pages are disabled except when they are an evaluation
target in specific experiments.

5.2 Microbenchmarks

5.2.1 Methodology This section evaluates On-demand-
fork through a set of microbenchmarks. In particular, it
addresses the following questions:

1. How fast is On-demand-fork compared with Fork
(with and without huge pages)?

2. What are the overheads introduced by On-demand-
fork when handling page faults?

3. How is memory access performance afterOn-demand-
fork call?

Unless otherwise specified, the following configuration
is used by microbenchmark programs: the read and written
memory is private anonymous mappings allocated by mmap,
backed by 4 kB pages. Huge pages are 2MB and are always
tested with the original fork. The memory is initialized (writ-
ten to) before any measurement to ensure that every page is
backed by a physical page. Time duration is measured using
clock_gettime() with a CLOCK_MONOTONIC clock.
The fault handling measurement code makes the parent

wait for the child exit before starting the next iteration
because tearing down the child virtual memory has non-
negligible costs that would add measurement noise.

5.2.2 System Call Latency We measure the time it takes
to call Fork and On-demand-fork for a process with differ-
ent allocated memory sizes. Time is measured by the parent
just before calling the system call and immediately after it
returns to the parent.

As shown in Figure 7, On-demand-fork has significantly
better scalability and lower overhead than Fork, specially
when the application allocates a large amount of memory.
In particular, On-demand-fork takes 0.10ms with 1GB
of memory and 0.94ms with 50GB of memory. Fork, on
the other hand, clearly shows a very significant latency in-
crease over the range of allocatedmemory considered, taking
6.54mswith 1GB of memory and 253.94mswith 50GB of
memory. The performance of On-demand-fork over Fork
at 1GB of memory is 65× better and grows to 270× better
at 50GB.
On-demand-fork is also slightly faster than huge pages

combined with Fork for two reasons: (i) On-demand-fork
does not allocate memory for new page tables during system
call invocation, and (ii) On-demand-fork does not acquire
the spin lock of PMD entries, which is necessary for huge
pages to prevent concurrent conversions by THP between
normal pages and huge pages.

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

0.5 1 2 4 8 16 32 50
Memory allocated (GB)

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

Ti
m

e
(m

s)

fork
fork w/ huge pages
on-demand-fork

Figure 7. Fork and On-demand-fork invocation latency as the
size of allocated memory by the process increases. Experiments
were conducted in 512MB increments and averaged over 5 runs.

Type Avg. time (ms)
Fork 0.0023
Fork w/ huge pages 0.1984
On-demand-fork 0.0122

Table 1. Worst-case cost to handle a page fault using Fork, with
regular and huge pages, and On-demand-fork. The results are the
average of 10 runs.

5.2.3 Page Fault Handling This section evaluates the
cost of page fault handling caused by the additional oper-
ations on the page fault handler, which is expected to be
higher when the faulting address is mapped by a shared
last-level page table. For this experiment, the benchmark
program writes one byte to the middle of a 1GB memory
region using the child process in order to trigger a page
fault. Starting at the middle of the memory region ensures
On-demand-fork will copy a page table during the page
fault, which is the worst case for On-demand-fork. This
worst case can only occur once, per process, for every 2MB
memory region mapped by a shared page table (see §3.4).
The timestamp measurements are taken just before and after
the write.
Table 1 shows the fault handling measurement results.

The results show that On-demand-fork takes on average
5.3x longer than Fork with regular pages to handle a page
fault in the worst case scenario. This is expected because
the page fault handler additionally has to copy a page table
in this scenario, which is significantly more work than just
performing a copy-on-write of one (data) page. As expected,
Fork with huge pages is very slow at handling faults that re-
quire a copy-on-write because it needs to copy a 2MB page,
as opposed to a 4 kB page. The results show that the fault
handling latency of On-demand-fork is 16× lower than

0% 20% 40% 60% 80% 100%
Memory Accessed

0%

20%

40%

60%

80%

100%

Ti
m

e
re

du
ct

io
n

0% Read
25% Read
50% Read
75% Read
100% Read

Figure 8. Total cost to create process and access a portion of the
allocated memory. The different lines represent different mixtures
of read and write accesses. For example, "25% Read" implies 75%
write. The values are the average of 10 experiment runs.

Fork with huge pages. This latency difference is particularly
important when the application cannot tolerate well high
latencies or when the process is not expected to modify a
significant fraction of the address space, in which case some
of the work copying larger pages would be unnecessary and
hence wasteful.

5.2.4 Overall Performance Because with On-demand-
fork processes pay the deferred cost of copying page tables
when write-accesses occur in the parent or child process, it is
important to understand On-demand-fork’s overall perfor-
mance regarding process creation and subsequent memory
accesses, as compared with Fork.

We measure the percentage difference in the time it takes
to fork and access a fraction of the memory by the parent
process, using different read/write mixes. The benchmark
program first allocates a 50GB memory region. The time
is recorded before the parent invokes the fork system call
and after memory accesses have completed. The program
accesses sequentially the first X percent of memory after the
system call, in the following 5 mixes of read versus write
accesses: 100%-0%, 75%-25%, 50%-50%, 25%-75%, and 0%-100%.
The program performs the memory accesses using memcpy()
from the target memory region to a 32MB buffer in the case
of reads, or from the buffer to the target memory region in
the case of writes.

The result is shown in Figure 8.On-demand-fork reduces
the execution time by as much as 99% when no access to the
memory region is made after fork. This is because while Fork
spends a significant amount of time on the fork invocation
(hundreds of milliseconds), On-demand-fork spends far
less time on it (hundreds of microseconds). As expected, this
advantage shrinks as the fraction of memory accessed, and
overall program execution time, increases. This is consistent
with the fact that as more memory is accessed, the cost of
accessing memory starts to dominate execution time, and the

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

difference in fork invocation time is increasingly amortized.
Among the different access mixtures evaluated, the 100% read
mixture consistently has the largest time reduction when
using On-demand-fork, while 75% read, 50% read, 25% read,
0% read get progressively diminished reduction benefits, in
this order. This is caused by an increasing number of page
tables that have to be copied under On-demand-fork when
the number of written pages increases.
When all memory is accessed (x-axis at 100%), the 100%

read mixture has a time reduction of 8%, and the 0% read
mix has a time reduction of 4%. Other mixes have values in-
between. AlthoughOn-demand-fork eventually has to copy
the same number of page tables as Fork for the write-only
workload (“0% Read”) at 100% accessed, the time reduction
of On-demand-fork is still positive because (i) shared last-
level page tables are more likely to stay in the complex CPU
cache hierarchy, and (ii) fewer page table and page metadata
operations during process creation increase the opportuni-
ties for user data caching. Hence, an additional benefit of
On-demand-fork is that it exploits more effectively caching
opportunities provided by modern CPUs [17, 39].

5.3 Real-world Applications

This section discusses several concrete use cases for On-
demand-fork and evaluates the cost-benefit of using On-
demand-fork as opposed to Fork.

5.3.1 Fuzzing: AFL American Fuzzy Lop (AFL) is a popu-
lar and highly-effective coverage-guided fuzzer [8] that has
found thousands of security vulnerabilities [32]. AFL uses
a “fork server” approach that allows it to efficiently run the
same application with different inputs. As a first step, AFL
runs an instance of the target program to initialize it by call-
ing execve(), dynamically linking it, and initializing libc.
After initializing the application once, AFL forks multiple
instances of the target program to avoid initializing each
instance individually. The performance of fork is crucial to
the fuzzing throughput of AFL, especially when considering
that the input size is recommended to be kept small and
most target applications are not computation-intensive so
most executions are very short-lived (and typically test error-
paths due to malformed inputs). In fact, AFL documentation
explicitly suggests the use of smaller and simpler targets [7],
which we presume to be partly due to the high cost of Fork.

We investigated whether the cost of the original fork is
hindering the performance of AFL, and whether using On-
demand-fork can open up additional fuzzing approaches.
To this end, we built on AFL version 2.57b in “LLVM deferred
fork server” mode. The deferred fork server mode allows the
fork server to start after a customizable point in the code
of the target, allowing more costly initialization steps to be
finished and shared through fork [30]. Our only modification
to AFL is to add an option to AFL’s LLVM instrumentation
module to switch between fork and On-demand-fork. We

0 50 100 150 200 250 300 350
Time Elapsed (s)

0

50

100

150

200

T
hr

ou
gh

pu
t

(E
xe

cu
ti

on
s

/
s)

fork

on-demand-fork

Figure 9. Execution throughput of AFL on SQLite over the duration
of a test campaign. Results show the throughput with Fork and
On-demand-fork.

take measurements of fuzzing throughput by measuring the
target application executions (i.e., tested inputs) per second
using the AFL counters.

Our evaluation used SQLite as the target application. Our
testing harness adapted the official fuzzer shell [3] to sup-
port loading an initial database with an in-memory size of
1078MB (1001MBs on-disk). The database contains inte-
ger and string-typed columns and foreign key constraints
between columns. A dictionary including the names of the ta-
bles and columns in the initial database is passed to AFL. Hav-
ing a large and complex database loaded allows the fuzzer to
reach complex states inside SQLite faster, especially given
the complex structures and optimizations of database en-
gines, but would have a prohibitive cost with the original
Fork. To the best of our knowledge, this is the first attempt
to systematically fuzz database engines on large databases.
All databases, including the initial one, are in-memory to
avoid confounding factors caused by disk I/O.

Figure 9 shows the AFL performance when testing SQLite
using Fork and On-demand-fork. The performance under
Fork and On-demand-fork is mostly stable. The occasional
performance dips are caused by special events (e.g., long
execution paths, hangs, and crashes) and are normal during
fuzzing. The average throughput while fuzzing SQLite us-
ing AFL is 63 executions/s and 206 executions/s with Fork
and On-demand-fork respectively. The 2.26x throughput
increase over Fork shows that On-demand-fork provides
significant efficiency gains when testing applications with
large memory footprints.

5.3.2 Unit Testing: SQLite SQLite includes its own test
suites, similarly to other systems that are well maintained.
To implement fine-grained testing, unit tests generally only
test a tiny part of the functionality of the system. Because
many systems need to go through an initialization phase
(e.g., reading configuration files or loading an initial data set),
short-lived test executions are prime targets forOn-demand-
fork. A fast fork implementation can be used to implement
an efficient snapshot-mechanism, which initializes only one

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Phase Avg. time (ms) Relative
Initialization 24189.36 99.94%
Forking 13.15 0.05%
Testing 0.18 0.01%
Total 24202.69 100%

Table 2. Average and relative time to initialize (i.e., load the initial
database) and run a SQLite test case. Tests execute sequentially.
Test initialization dominates the total execution time.

Phase Fork On-demand-fork
Forking 13.15 (98.6%) 0.12 (36.4%)
Testing 0.18 (1.4%) 0.21 (63.6%)
Total 13.33 0.33

Table 3. The time in milliseconds taken to run SQLite test cases in
a child process, using Fork vs. On-demand-fork. The results are
the average of 10 runs.

instance and repeatedly calls On-demand-fork to run unit
tests on the child process from the post-initialization state.
Always starting tests from a clean and identical state leads
to better debuggability and reproducibility compared to exe-
cuting all inputs sequentially.
Our test harness loads the same large initial database as

in §5.3.1, which we expect will increase the chances of the
unit tests exposing corner case bugs compared with starting
from an empty database. The test harness then creates a child
process to run each unit test. We use three unit tests that
test: (1) SELECT when filtering rows, (2) row deletion that
satisfies a condition on record values, and (3) row update
that satisfies a condition on record values. The relative sizes
of the dataset in comparison with the test operations make
initialization take far longer than the operation execution.
The test harness measures the time spent on process creation
and test operation execution.
Table 2 shows the breakdown of the time spent sequen-

tially running the test cases when running the initialization
for each test. In this experiment Fork was called between
initialization and the actual test to measure the relative time
Fork takes. The results show that the average time spent
on initializing the database is far higher (99.94%) than the
average time spent on actually running a test (0.01%), and
initialization reaches more than 24 s. Conducting unit tests
without forking would not amortize the initialization cost
and would be too slow to be practical; hence developers of-
ten opt for not loading a large, realistic database for testing,
which reduces testing coverage.

To assess the benefit of a fork-based unit testing approach,
we ran each unit test in a child process and compare the
performance when using Fork and On-demand-fork for
process creation. Table 3 shows the results of this experiment.

When using Fork, it takes on average 13.15ms to fork and
0.18ms to run the actual tests; when using On-demand-
fork, it takes on average 0.12ms to fork and 0.21ms to
run tests. This difference shows that Fork is very inefficient
since it takes a high fraction of the total running time (98.6%)
and significantly reduces the overall testing performance.
The average time to fork under On-demand-fork is 99.1%
shorter than that of Fork, enabling the actual tests to take
the bulk of the execution time. These results confirm that
implementing test suites with On-demand-fork and shared
initialization across tests significantly improves performance.
Moreover, when multiple instances of the test harness are
launched in parallel, a Fork-based approach would suffer
from further and significant performance degradation as
discussed in §2.1, unlike On-demand-fork.

5.3.3 Snapshot: Redis Redis is a popular in-memory key-
value store that is widely used to store critical data [60]. Since
Redis is an in-memory key-value store, it is recommended
to frequently save snapshots to disk for fault-tolerance. The
Redis default setting is to take one snapshot per 60 seconds if
at least 10000 keys changed. Redis achieves this by writing a
consistent snapshot representation of the entire in-memory
data to a file. During the snapshot process, Redis creates a
child process so that the child can perform I/O in parallel
while the parent continues to handle client requests. How-
ever, despite this optimization, during the Fork system call
invocation, the parent process is unable to serve any requests.
This causes latency spikes that may be unacceptable when
latency and, in particular, tail-latency are important [67].

We analyzed the latency introduced by the snapshot pro-
cess when Redis uses Fork and On-demand-fork. We used
Redis 6.0.6 and added a configuration option to switch be-
tween Fork and On-demand-fork. Redis is configured to
take a snapshot when at least 10000 keys have changed; this
is to compare Fork and On-demand-fork fairly when an
equal amount of data is written between fork calls. To simu-
late production conditions, we populate Redis with 996MB
of data before the experiment starts.
We first measure the end-to-end latency experienced

by the client. We use the traffic generator memtier_
benchmark [62], with 3 concurrent connections and a
pipeline depth of 2000.
Table 4 shows the comparison of the Redis request-

response latency when configured to use Fork and On-
demand-fork. As expected, the request latency with On-
demand-fork is similar to the latency observed when using
Fork for most requests. However, the tail latency is signif-
icantly lower when using On-demand-fork: 99.9% of the
requests take less than 6.335ms with Fork and 4.799ms
with On-demand-fork (24.25% reduction) and the 99.99%
percentile request shows 65.95% lower latency with On-
demand-fork than Fork (16.255ms vs 5.535ms). This
shows that usingOn-demand-fork reduces the performance

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

Percentile Latency (ms) Reduction
Fork On-demand-fork

≥50% 4.319 3.871 10.37%
≥90% 5.247 4.159 20.74%
≥95% 5.343 4.255 20.36%
≥99% 5.695 4.575 19.67%

≥99.9% 6.335 4.799 24.25%
≥99.99% 16.255 5.535 65.95%

Table 4. Redis request-response percentile latency when configured
to take snapshots with Fork and On-demand-fork. The bench-
mark ran for 135 seconds, averaging over 1.5 million requests per
second. The latency values are the average of 5 repeated runs.

Type Fork On-demand-fork Reduction
Mean (ms) 7.40 0.12 98.38%
Std. Dev. (ms) 0.42 0.007 98.33%

Table 5. The time Redis takes to fork when taking snapshots, using
Fork vs. On-demand-fork. The results are the average of 5 issued
snapshot commands.

impact of snapshots, lowers the chance that requests hit the
unresponsive server while the process is forking, and is ben-
eficial to the overall performance of Redis.

To better understand how On-demand-fork helps Redis
take snapshots faster, we examine the time Redis spends on
the fork call. The experiment is done under the same setup
where 996MB of data is loaded. The time to fork is measured
using the latest_fork_usec Redis metric. Table 5 shows the
comparison of the time Redis takes to fork when taking
snapshots under Fork or On-demand-fork. The results
show that On-demand-fork delivers 98.38% reduction in
the time to fork and has a much lower standard deviation
(0.007ms vs 0.42ms).

5.3.4 TriforceAFL: VM Cloning Virtual machines (VMs)
usually take up significantly more memory than individual
applications and for some use cases they need to be cloned
in rapid succession. Therefore, VM cloning systems are good
candidates for On-demand-fork. VM cloning is useful in
serverless computing [14, 25, 68], where lambdas run in vir-
tual machines and a hot start requires cloning VMs, and in
operating system kernel testing, which have to run in virtual
machines [27, 29, 41]

TriforceAFL [4] is a modified version of AFL that supports
fuzzing operating system kernels using QEMU’s full system
emulation [9]. It relies on a modified version of QEMU to
support fork and uses AFL’s fork server model.
We extended TriforceAFL to support switching between

Fork and On-demand-fork. We measure the fuzzing
throughput using the internal statistics provided by Tri-
forceAFL. The fuzzing driver that runs inside the VM is

provided by TriforceAFL. It executes as the init process in
the guest VM and fuzzes system calls with inputs sent from
TriforceAFL. During the fuzzing session, we observed that
the QEMU process in this setup typically only takes 188MB
of memory, in part because it runs on a trimmed down VM
and the QEMU emulator includes optimizations to allocate
memory on-demand.

0 50 100 150 200 250 300
Time Elapsed (s)

0

50

100

150

T
hr

ou
gh

pu
t

(E
xe

cu
ti

on
s

/
s)

fork

on-demand-fork

Figure 10. TriforceAFL execution throughput using Fork and On-
demand-fork. The dips are due to inputs that cause long system
calls.

Figure 10 shows the result of our experiment. The average
numbers of executions per second is 91 executions/s and 145
executions/s for Fork and On-demand-fork respectively.
Hence, On-demand-fork provides 59.3% higher throughput
even with a small sized VM. In other use cases where VMs
are much larger – even lambdas can take up to 10GB of
RAM [16] – we expect even more significant improvements
when cloning VMs with On-demand-fork.

5.3.5 Apache HTTP Server The Apache HTTP Server is
an open-source web server, and has been the most popular
web server on the Internet for decades [10]. Apache has
many Multi-Processing Modules (MPM), one of which is
the prefork module [11]. In this operating mode, Apache
launches a single control process that reads the configuration,
and spawns, using fork, and manages worker processes that
listen for HTTP connections. It is considered the best MPM
for isolating requests so that a problem with a single request
does not affect others [11].

We evaluated Apache using Fork and On-demand-fork,
and used wrk [28] to measure the end-to-end request latency
experienced by clients. After starting Apache, we execute
wrk to run a benchmark session of 1 second. Because Apache
neither maps a large amount of virtual memory (only maps
7MB of virtual memory before fork), nor creates processes
frequently (at most creates 256 worker processes by default),
we expect it to get little to no benefit from usingOn-demand-
fork.

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Fork On-demand-fork Difference
Mean (𝜇s) 34.3 33.7 -1.75%
Max (𝜇s) 285.2 304.0 +6.59%

Table 6. Response latency of Apache HTTP Server immediately
after it is started. The latency values are the average of 5 experiment
runs.

Percentile Latency (𝜇s) Difference
Fork On-demand-fork

≥50% 35.0 32.4 -7.4%
≥75% 36.5 36.4 -0.3%
≥90% 38.0 39.8 +4.7%
≥99% 51.8 53.6 +3.5%

Table 7. Response latency distribution of Apache HTTP Server
immediately after it is started. The latency values are the average
of 5 experiment runs.

Table 6 shows that when usingOn-demand-fork, Apache
does not get significant benefits in terms of mean and max
latency compared to that under Fork. Differences in mean
and max latency between On-demand-fork and Fork are
lower than the standard deviation of mean or max for either
Fork or On-demand-fork. Similarly, Table 7 shows that
there are nomeaningful changes in request latency at various
percentiles. This demonstrates that not all workloads benefit
from On-demand-fork.

6 Related Work

This section discusses related work on improving fork and
related mechanisms, applications that leverage fork, and
optimizations to the kernel memory subsystem.

6.1 Fork Performance

Fork Alternatives. The Linux kernel has other system calls
for creating a process that avoid page table copies but have
different semantics that are incompatible with the use cases
explored in this work. For instance, vfork does not copy page
tables but also does not allow processes to run concurrently
and has no copy-on-write semantics. clone can be called
with the CLONE_VM flag to prevent page table copying but
changes the semantics such that the pages of child and parent
become shared (i.e., no copy-on-write). posix_spawn pro-
vides the combined functionality of clone and exec, which
is incompatible with our use cases evaluated since, inter-
nally, posix_spawn passes the CLONE_VM flag to clone to
avoid copying page tables. On-demand-fork uses the exact

same semantics of the standard fork, which is crucial for our
use cases, and drastically improves its performance.
Fork-like OS Primitives. Xu et al. [69] designed a fast
fork-like OS snapshot/restore primitive that strips some un-
necessary operations done by fork. During the snapshotting
phase, it sets up copy-on-write for pages in writable VMAs,
records the brk value, and saves the status of file descriptors.
On recovery, it restores the saved states. The primitive reuses
the calling process instead of creating any new process. This
work applied the restore approach to fuzzers and showed
improved scalability on multi-core machines. However, it is
not clear whether it can be safely applied to broader types
of workloads because some applications may have kernel
states that are not covered by its snapshot/restore operation.
Shared Page Tables. Dave McCracken tried 14 years ago
to introduce patches to the Linux kernel to support shared
page tables [50]. However, his design only supports page
tables of memory areas marked as MAP_SHARED (i.e., areas
that remain shared across processes even on writes) [49]
and only supports file-backed mappings. The design goal
was to reduce page table memory consumption when a large
number of processes explicitly share memory regions, i.e.,
without copy-on-write, and speeding up fork is not their
main objective. Consequently, his design does not imple-
ment the crucial copy-on-write semantics, where each child
process gets a conceptually private copy of the pages and
page table, and does not support anonymous mappings that
all our evaluated use cases require. This approach was not
adopted by kernel developers at the time because of its inabil-
ity to deliver significant performance boost and also a lack of
applications that would benefit from it. Fourteen years later,
the need for a fast fork has become more pressing; in addi-
tion, On-demand-fork has none of these limitations and
yields significant performance benefits across a wide-range
of realistic scenarios.

The Corey [19] operating system, which increases the ker-
nel scalability on multi-core systems, introduced page table
sharing support for shared memory regions (i.e., memory
regions through which processes can communicate) that
are explicitly marked by the caller of cfork; such shared
regions do not have copy-on-write semantics in Corey. In
contrast, On-demand-fork preserves the copy-on-write se-
mantics specified by POSIX while sharing page tables, which
is important for all use cases we considered.
Write-protected Page Tables. Similar to EPTI [33] and
LVD [54], On-demand-fork leverages the upper-level page
table to write-protect lower-level page tables. However, un-
like EPTI and LVD, On-demand-fork uses this mechanism
to efficiently write-protect userspace pages (not kernel page
tables).

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

6.2 Fork Applications

There is a wide range of applications for the fork system
call. This section provides an overview of related work that
exploits fork to improve application performance.
Testing and Fuzzing. Testing is computationally inten-
sive and often leads to redundant operations. For example,
Pike [26] runs multiple executions of an application to ex-
plore different thread interleavings when testing applications
for semantic concurrency bugs. Hence, testing frameworks,
particularly fuzzers, have numerous optimizations to speed
up execution. AFL [7] has a fork server to avoid the cost of
loading the target and initializing libc. HonggFuzz [31] and
kAFL [64] collect hardware-assisted coverage feedback to
increase fuzzing performance, making use of hardware fea-
tures such as Intel PT [34] and BTS [48]. Other testing tools
include algorithmic optimizations [44, 58]; FuZZan [37] in-
cludes more efficient metadata structures for sanitizers used
in fuzzing and automatically selects the optimal structure.
On-demand-fork can be used in conjunction with these
optimizations as demonstrated in §5.
Virtual Machine Cloning. SnowFlock [43] implements
efficient cloning of VMs in the cloud by designing a new VM
fork abstraction. It instantiates a child VMwith a VMDescrip-
tor, the minimal set of metadata needed to start execution on
a remote site; it then provides Memory-On-Demand, where
accessed memory is fetched from the parent. Because it forks
heavyweight virtual machines, it still has startup latency in
the order of seconds. SKI [27] uses a a multi-threaded forking
mechanism to explore different interleavings and different
inputs from a single OS snapshot, amortizing the cost of
resuming from a VM snapshot. HyperFork [22] reduces the
time to boot a virtual machine by fast cloning a pre-booted
VM. It overcomes the high cost of fork from user-space by
deregistering the memory regions backing guest physical
memory prior to forking and re-registering it in the parent
after the clone.

6.3 Kernel Memory Subsystem Efficiency

RadixVM [21] employs a scalable reference counter, Ref-
cache, to lower the cost of reference counting on multi-core
systems, and builds a new virtual memory system that sup-
ports fully concurrent operations on virtual memory areas.
OpLog [20] is a library formaintaining scalable update-heavy
data structures. It is shown to increase the performance of
various kernel operations, including fork. On-demand-fork
addresses the inefficiency of fork for some use cases and is
orthogonal to work that makes virtual memory operations
more scalable.

7 Conclusion
This paper presents On-demand-fork, a new fork system
call design that provides fast process creation by sharing
page tables at fork time and copying page tables in small

chunks as needed. We implemented On-demand-fork on
Linux. Our evaluation shows that On-demand-fork can be
applied to a wide range of use cases and can significantly
improve the throughput, latency, and efficiency of memory-
intensive applications.

Acknowledgment
We are thankful for the insightful feedback provided by the
anonymous reviewers and our shepherd Haibo Chen, whose
input significantly improved our paper.

References
[1] 2014. An introduction to compound pages [LWN.net]. https://lwn.net/

Articles/619514/

[2] 2015. Linux kernel profiling with perf. https://perf.wiki.kernel.org/

index.php/Tutorial

[3] 2015. SQLite: fuzzershell.c at [6bf67376]. https://www.sqlite.org/src/

file?name=tool/fuzzershell.c&ci=6bf673767b8e5ced

[4] 2016. Project Triforce: Run AFL on Everything! https://www.nccgroup.

com/us/about-us/newsroom-and-events/blog/2016/june/project-

triforce-run-afl-on-everything/

[5] 2017. spawn() is not asynchronous, blocks event loop for 2-3 seconds · Issue
#14917 · nodejs/node. https://github.com/nodejs/node/issues/14917

[6] 2018. 819228 - Consider using posix_spawn() on Linux - chromium.
https://bugs.chromium.org/p/chromium/issues/detail?id=819228

[7] 2019. AFL - Tips for performance optimization. https://github.com/

google/AFL/blob/master/docs/perf_tips.txt

[8] 2019. American Fuzzy Lop. https://github.com/google/AFL

[9] 2020. QEMU System Emulation User’s Guide. https://www.qemu.org/

docs/master/system/index.html

[10] 2021. The Apache HTTP Server Project. https://httpd.apache.org/

[11] 2021. prefork - Apache HTTP Server Version 2.4. https://httpd.apache.

org/docs/2.4/mod/prefork.html

[12] Online. Huge Pages - The Linux Kernel Archives. https://www.kernel.

org/doc/Documentation/vm/hugetlbpage.txt

[13] Online. libFuzzer: a library for coverage-guided fuzz test-
ing. https://llvm.org/docs/LibFuzzer.html#libfuzzer-a-library-for-

coverage-guided-fuzz-testing

[14] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (2018). 923–935. https://www.usenix.org/

conference/atc18/presentation/akkus

[15] ARM Limited. 2017. ARMv8-A Address translation.
https://static.docs.arm.com/100940/0100/armv8_a_address%

20translation_100940_0100_en.pdf

[16] AWS. 2020. AWS Lambda quotas. https://docs.aws.amazon.com/

lambda/latest/dg/gettingstarted-limits.html

[17] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation
caching: skip, don’t walk (the page table). 38, 3 (2010), 48–59. https:

//doi.org/10.1145/1816038.1815970

[18] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy
Roscoe. 2019. A fork() in the road. In Proceedings of the Workshop
on Hot Topics in Operating Systems (New York, NY, USA) (HotOS ’19).
Association for Computing Machinery, 14–22. https://doi.org/10.1145/

3317550.3321435

[19] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: an operating
system for many cores. In Proceedings of the 8th USENIX conference
on Operating systems design and implementation (USA, 2008-12-08)
(OSDI’08). USENIX Association, 43–57.

https://lwn.net/Articles/619514/
https://lwn.net/Articles/619514/
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://www.sqlite.org/src/file?name=tool/fuzzershell.c&ci=6bf673767b8e5ced
https://www.sqlite.org/src/file?name=tool/fuzzershell.c&ci=6bf673767b8e5ced
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://github.com/nodejs/node/issues/14917
https://bugs.chromium.org/p/chromium/issues/detail?id=819228
https://github.com/google/AFL/blob/master/docs/perf_tips.txt
https://github.com/google/AFL/blob/master/docs/perf_tips.txt
https://github.com/google/AFL
https://www.qemu.org/docs/master/system/index.html
https://www.qemu.org/docs/master/system/index.html
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/mod/prefork.html
https://httpd.apache.org/docs/2.4/mod/prefork.html
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://llvm.org/docs/LibFuzzer.html#libfuzzer-a-library-for-coverage-guided-fuzz-testing
https://llvm.org/docs/LibFuzzer.html#libfuzzer-a-library-for-coverage-guided-fuzz-testing
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf
https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://doi.org/10.1145/1816038.1815970
https://doi.org/10.1145/1816038.1815970
https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435

On-demand-fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications EuroSys ’21, April 26–28, 2021, Online, United Kingdom

[20] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nicko-
lai Zeldovich. 2014. OpLog: a library for scaling update-heavy data
structures. (2014). https://dspace.mit.edu/handle/1721.1/89653

[21] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013.
RadixVM: scalable address spaces for multithreaded applications. In
Proceedings of the 8th ACM European Conference on Computer Sys-
tems (Prague, Czech Republic, 2013-04-15) (EuroSys ’13). Association
for Computing Machinery, 211–224. https://doi.org/10.1145/2465351.

2465373

[22] Michael James Colavita. 2020. HyperFork: Improving Serverless La-
tency and Throughput Through Virtual Machine Flash-Cloning. (2020).
https://dash.harvard.edu/handle/1/37364698

[23] Couchbase. 2020. Disabling Transparent Huge Pages (THP) | Couchbase
Docs. https://docs.couchbase.com/server/current/install/thp-disable.

html

[24] Linux Kernel Documents. Online. Transparent Hugepage Support. https:
//www.kernel.org/doc/Documentation/vm/transhuge.txt

[25] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2020-03-09) (ASPLOS ’20). Association for Computing
Machinery, 467–481. https://doi.org/10.1145/3373376.3378512

[26] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding com-
plex concurrency bugs in large multi-threaded applications. In Pro-
ceedings of the sixth conference on Computer systems (New York, NY,
USA, 2011-04-10) (EuroSys ’11). Association for Computing Machinery,
215–228. https://doi.org/10.1145/1966445.1966465

[27] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014.
SKI: exposing kernel concurrency bugs through systematic schedule
exploration. In Proceedings of the 11th USENIX conference on Operat-
ing Systems Design and Implementation (Broomfield, CO, 2014-10-06)
(OSDI’14). USENIX Association, 415–431.

[28] Will Glozer. 2021. wg/wrk. https://github.com/wg/wrk

[29] Google. 2015. google/syzkaller. https://github.com/google/syzkaller

[30] Google. 2019. Fast LLVM-based instrumentation for afl-fuzz. https:

//github.com/google/AFL

[31] Google. 2020. honggfuzz. https://github.com/google/honggfuzz

[32] Google. Online. OSS-Fuzz: Continuous Fuzzing for Open Source Soft-
ware.

[33] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. 2018.
EPTI: Efficient Defence against Meltdown Attack for Unpatched VMs.
255–266. https://www.usenix.org/conference/atc18/presentation/hua

[34] Intel. 2013. libipt. https://github.com/intel/libipt

[35] Intel. 2017. 5-Level Paging and 5-Level EPT. https://software.intel.com/

sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf

[36] Intel. 2020. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3A: System Programming Guide, Part 1.
https://www.intel.com/content/www/us/en/develop/download/intel-

64-and-ia-32-architectures-sdm-volume-3a-system-programming-

guide-part-1.html

[37] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer.
2020. FuZZan: Efficient Sanitizer Metadata Design for Fuzzing. 249–
263. https://www.usenix.org/conference/atc20/presentation/jeon

[38] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker,
and Amin Vahdat. 2012. Chronos: predictable low latency for data
center applications. In Proceedings of the Third ACM Symposium on
Cloud Computing (New York, NY, USA, 2012-10-14) (SoCC ’12). As-
sociation for Computing Machinery, 1–14. https://doi.org/10.1145/

2391229.2391238

[39] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, andM. Swift. 2014.
Performance analysis of the memory management unit under scale-
out workloads. In 2014 IEEE International Symposium on Workload

Characterization (IISWC) (2014-10). 1–12. https://doi.org/10.1109/

IISWC.2014.6983034

[40] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP
OLAP main memory database system based on virtual memory snap-
shots. In 2011 IEEE 27th International Conference on Data Engineering
(2011-04). 195–206. https://doi.org/10.1109/ICDE.2011.5767867

[41] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux
Kernel. In Proceedings 2020 Network and Distributed System Security
Symposium (San Diego, CA, 2020). Internet Society. https://doi.org/

10.14722/ndss.2020.24018

[42] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and efficient huge page man-
agement with ingens. In Proceedings of the 12th USENIX conference
on Operating Systems Design and Implementation (USA, 2016-11-02)
(OSDI’16). USENIX Association, 705–721.

[43] Horacio Andrés Lagar-Cavilla, JosephAndrewWhitney, AdinMatthew
Scannell, Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael
Brudno, and Mahadev Satyanarayanan. 2009. SnowFlock: rapid vir-
tual machine cloning for cloud computing. In Proceedings of the 4th
ACM European conference on Computer systems (Nuremberg, Germany,
2009-04-01) (EuroSys ’09). Association for Computing Machinery, 1–12.
https://doi.org/10.1145/1519065.1519067

[44] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targetedmutation
strategy for increasing greybox fuzz testing coverage. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (New York, NY, USA, 2018-09-03) (ASE 2018). Association
for Computing Machinery, 475–485. https://doi.org/10.1145/3238147.

3238176

[45] Liang Li, Guoren Wang, Gang Wu, and Ye Yuan. 2018. Consistent
Snapshot Algorithms for In-Memory Database Systems: Experiments
and Analysis. In 2018 IEEE 34th International Conference on Data En-
gineering (ICDE) (2018-04). 1284–1287. https://doi.org/10.1109/ICDE.

2018.00131

[46] Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, and Jiefan Qiu. 2019. Think-
ing about A New Mechanism for Huge Page Management. In Pro-
ceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on Systems
(Hangzhou, China) (APSys ’19). Association for Computing Machinery,
New York, NY, USA, 40–46. https://doi.org/10.1145/3343737.3343745

[47] ARM Limited. 2021. Arm Architecture Reference Manual Armv8,
for Armv8-A architecture profile. https://developer.arm.com/

documentation/ddi0487/latest/

[48] Linus Torvalds. 2015. Intel Branch Trace Store. https://github.com/

torvalds/linux/blob/master/tools/perf/Documentation/intel-bts.txt

[49] Linux manual page. Online. mmap(2) - Linux manual page. https:

//man7.org/linux/man-pages/man2/mmap.2.html

[50] Dave McCracken. 2003. Shared Page Tables Redux. https://www.kernel.
org/doc/ols/2006/ols2006v2-pages-125-130.pdf

[51] Pulkit A. Misra, María F. Borge, Íñigo Goiri, Alvin R. Lebeck, Willy
Zwaenepoel, and Ricardo Bianchini. 2019. Managing Tail Latency
in Datacenter-Scale File Systems Under Production Constraints. In
Proceedings of the Fourteenth EuroSys Conference 2019 (New York, NY,
USA, 2019-03-25) (EuroSys ’19). Association for Computing Machinery,
1–15. https://doi.org/10.1145/3302424.3303973

[52] MongoDB. 2020. Disable Transparent Huge Pages (THP) — MongoDB
Manual. https://docs.mongodb.com/manual/tutorial/transparent-

huge-pages

[53] S. Nagy and M. Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium
on Security and Privacy (SP). 787–802. https://doi.org/10.1109/SP.2019.

00069

[54] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. 2020. Lightweight kernel isolation with virtualization
and VM functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS

https://dspace.mit.edu/handle/1721.1/89653
https://doi.org/10.1145/2465351.2465373
https://doi.org/10.1145/2465351.2465373
https://dash.harvard.edu/handle/1/37364698
https://docs.couchbase.com/server/current/install/thp-disable.html
https://docs.couchbase.com/server/current/install/thp-disable.html
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/1966445.1966465
https://github.com/wg/wrk
https://github.com/google/syzkaller
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/honggfuzz
https://www.usenix.org/conference/atc18/presentation/hua
https://github.com/intel/libipt
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://www.usenix.org/conference/atc20/presentation/jeon
https://doi.org/10.1145/2391229.2391238
https://doi.org/10.1145/2391229.2391238
https://doi.org/10.1109/IISWC.2014.6983034
https://doi.org/10.1109/IISWC.2014.6983034
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.1145/1519065.1519067
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/ICDE.2018.00131
https://doi.org/10.1109/ICDE.2018.00131
https://doi.org/10.1145/3343737.3343745
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-bts.txt
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-bts.txt
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-125-130.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-125-130.pdf
https://doi.org/10.1145/3302424.3303973
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP.2019.00069

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca

International Conference on Virtual Execution Environments (New York,
NY, USA, 2020-03-17) (VEE ’20). Association for Computing Machinery,
157–171. https://doi.org/10.1145/3381052.3381328

[55] Linus Nyman and Mikael Laakso. 2016. Notes on the History of Fork
and Join. 38, 3 (2016), 84–87. https://doi.org/10.1109/MAHC.2016.34

[56] Oracle. Online. Managing Memory. https://docs.oracle.com/database/

121/ADMIN/memory.htm

[57] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2018-03-19) (ASPLOS ’18).
Association for Computing Machinery, 679–692. https://doi.org/10.

1145/3173162.3173203

[58] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote,
David Warren, Gustavo Grieco, and David Brumley. 2014. Optimiz-
ing Seed Selection for Fuzzing. 861–875. https://www.usenix.org/

conference/usenixsecurity14/technical-sessions/presentation/rebert

[59] RedHat. 2020. 5.2. Huge Pages and Transparent Huge Pages Red Hat
Enterprise Linux 6. https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-

memory-transhuge

[60] RedisLab. Online. Redis. https://redis.io/

[61] RedisLab. Online. Redis latency monitoring framework – Redis. https:

//redis.io/topics/latency-monitor

[62] RedisLabs. 2013. RedisLabs/memtier_benchmark. https://github.com/

RedisLabs/memtier_benchmark

[63] Dennis M. Ritchie and Ken Thompson. 1974. The UNIX time-sharing
system. 17, 7 (1974), 365–375. https://doi.org/10.1145/361011.361061

[64] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX
Security 17) (2017). 167–182. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/schumilo

[65] Jonathan M Smith and Gerald Q Maguire. 1988. Effects of copy-on-
write memory management on the response time of UNIX fork opera-
tions. (1988), 10.

[66] The kernel development community. 2021. HugeTLBpage on ARM64 —
The Linux Kernel documentation. https://www.kernel.org/doc/html/

latest/arm64/hugetlbpage.html

[67] Trivago technology. 2017. Learn Redis the hard way (in produc-
tion). https://tech.trivago.com/2017/01/25/learn-redis-the-hard-way-

in-production/

[68] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable
Execution Optimized for Page Sharing for a Managed Runtime En-
vironment. In Proceedings of the Fourteenth EuroSys Conference 2019
(Dresden, Germany, 2019). ACM Press, 1–16. https://doi.org/10.1145/

3302424.3303978

[69] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017.
Designing New Operating Primitives to Improve Fuzzing Performance.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (Dallas, Texas, USA, 2017-10-30) (CCS ’17).
Association for Computing Machinery, 2313–2328. https://doi.org/10.

1145/3133956.3134046

https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1109/MAHC.2016.34
https://docs.oracle.com/database/121/ADMIN/memory.htm
https://docs.oracle.com/database/121/ADMIN/memory.htm
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://redis.io/
https://redis.io/topics/latency-monitor
https://redis.io/topics/latency-monitor
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://doi.org/10.1145/361011.361061
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.kernel.org/doc/html/latest/arm64/hugetlbpage.html
https://www.kernel.org/doc/html/latest/arm64/hugetlbpage.html
https://tech.trivago.com/2017/01/25/learn-redis-the-hard-way-in-production/
https://tech.trivago.com/2017/01/25/learn-redis-the-hard-way-in-production/
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046

	Abstract
	1 Introduction
	2 The Case for a Microsecond Fork
	2.1 The Performance Status Quo of Fork
	2.2 Bottleneck Analysis
	2.3 What About Huge Pages?
	2.4 Applications Benefit from a Fast Fork

	3 On-demand-fork
	3.1 Overview
	3.2 Challenges
	3.3 Unmapping or Remapping VMAs
	3.4 Subsequent Memory Access
	3.5 Last-Level Page Table Lifecycle
	3.6 Physical Pages Accounting
	3.7 File-backed Mappings

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Microbenchmarks
	5.3 Real-world Applications

	6 Related Work
	6.1 Fork Performance
	6.2 Fork Applications
	6.3 Kernel Memory Subsystem Efficiency

	7 Conclusion
	References

