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Abstract
Library OS (LibOS) architectures implement the OS person-
ality as a user-mode library, giving each application the flex-
ibility to choose its LibOS. This approach is appealing for
many reasons, not least the ability to extend or customise the
LibOS. Recent work with Drawbridge [29] showed that an
existing commodity OS (Windows 7) could be refactored to
produce a LibOS while retaining application compatibility.

This paper presents Bascule, an architecture for LibOS
extensions based on Drawbridge. Rather than relying on the
application developer to customise a LibOS, Bascule allows
OS-independent extensions to be attached at runtime. Exten-
sions interpose on a narrow binary interface of primitive OS
abstractions, such as files and virtual memory. Thus, they are
independent of both guest and host OS, and composable at
runtime. Since an extension runs in the same process as an
application and its LibOS, it is safe and efficient.

Bascule demonstrates extension reuse across diverse
guest LibOSes (Windows and Linux) and host OSes (Win-
dows and Barrelfish). Current extensions include file system
translation, checkpointing, and architecture adaptation.

1. Introduction
A library OS (LibOS) is a user-mode library that runs in the
same address space as an application and implements the OS
personality on which the application depends. A LibOS ar-
chitecture gives applications many useful abilities, e.g., to
use custom OS implementations [7], to exercise fine-grain
control over OS resource management [14], and to achieve
strong resource isolation [24]. Drawbridge is a recent LibOS
system providing secure isolation while maintaining strong
compatibility for existing Windows applications with low
overhead [29]. Our aim is to add extensibility to these prop-
erties.
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Figure 1. Bascule architecture, showing two extensions

Prior work showed how an application developer could
customise a LibOS for substantial increases in perfor-
mance [20]. However, modifying the LibOS precludes ap-
plying the OS vendor’s updates and patches, and thus com-
promises security and maintainability. We focus instead on
allowing an end user or system integrator to alter the run-
time behaviour of an application with one or more exten-
sions without modifying the LibOS. For example, a user may
give an application greater fault tolerance by using check-
points and migration, even though the OS does not include
these features.

Our goal is to enable extensions that are safe to admit
even if they may be buggy or insecure; composable so that
multiple extensions may be used together; independent of
the application, LibOS, and host platform; and efficient. The
key challenge in achieving this is a tension between ef-
ficiency, which leads us to run extensions in-process, and
composability of extensions sharing an address space.

To satisfy this goal, we built Bascule, a LibOS ex-
tension architecture derived from Drawbridge. It exploits
lightweight interposition [16, 19] on a small, complete, and
stable binary interface, as illustrated in Figure 1. This inter-
face, the Bascule ABI, consists of primitive OS abstractions
(e.g., threads, files, and virtual memory) and is explicitly de-
signed to be nestable, allowing us to achieve composability
and OS independence. As a result, a single extension binary
can support multiple host platforms, including Windows and
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Barrelfish, and multiple guest LibOS personalities, currently
Windows and Linux, with late-binding of extensions at ap-
plication startup time.

Bascule meets our safety and efficiency goals by running
extensions in the same process as the application and LibOS.
This protects the system and other applications from buggy
or malicious extensions, and allows low interposition over-
head by avoiding address space crossings. However, it re-
quires a careful ABI design to permit arbitrary nesting of
thread-local storage and exception handlers in the shared ad-
dress space, as well as a protocol for avoiding address con-
flicts between the application, LibOS, and extensions.

The contributions of this work are: (i) the Bascule ABI,
which permits arbitrary nesting of LibOS extensions in the
same process; (ii) the design and implementation of the
LibOSes and host platforms demonstrating the generality
of our approach; and (iii) an evaluation with extensions
including checkpointing, tracing and file system remapping
showing that Bascule meets our goal of supporting safe,
efficient, composable and independent extensions.

The rest of the paper is structured as follows. §2 further
motivates the need for OS extensions with some use case
examples, and describes the problems in achieving them
with today’s software stack. §3 presents Bascule’s architec-
ture. §4 describes our implementation of this architecture
and of several extensions leveraging it. These extensions en-
able checkpointing, architecture compatibility, and debug-
ging. §5 evaluates how Bascule meets our goals. Finally, §6–
§8 discuss future work and related work, and conclude.

2. Motivation and background
In this section, we first outline some motivating use cases
from the literature, some of which we have implemented
as Bascule extensions. We focus on general techniques that
offer additional functionality rather than just performance
increases. We then describe opportunities for implementing
such extensions in the commodity system software stack,
and identify their drawbacks.

2.1 Use cases for OS extensibility
Checkpointing The ability to checkpoint and restore the
complete execution context of an application and its operat-
ing environment enables many scenarios, including full per-
sistence in the case of hardware failure [10], migration be-
tween host machines [8], and application undo/roll-back.

Despite much research on application-level checkpoint-
ing and migration [26], today this functionality is almost ex-
clusively the domain of VMs. A significant reason for this
shift is the complexity and granularity of application-level
migration: Applications share a rich and complex interface
with the OS that tends to maintain implicit state both within
the OS and among applications. Migration at the VM level
more easily captures this state in a single mechanism.

As we describe in §4.2, Bascule supports checkpointing
by an extension since it similarly captures all application and
OS state within the user process.

Platform adaptation A widely-used feature is adapting
system interfaces for backwards compatibility. For example,
the 64-bit extension of the x86 architecture supports 32-bit
execution, and most 64-bit PC operating systems continue
to support 32-bit program binaries. Besides the architectural
support required to switch execution modes, this requires the
OS to translate system calls and their arguments between 32-
and 64-bit ABIs, at a cost of some added complexity in the
OS. Linux supports 32-bit system calls using in-kernel trans-
lation code, while Windows relies on a user-mode compat-
ibility layer [25] containing thunks that convert parameters
and that switch from 32-bit to 64-bit execution modes.

We implemented several Bascule extensions for architec-
ture adaptation, described in §4.2. These exploit the narrow
interface between LibOS and host to reduce the complexity
of such adaptation compared to alternative approaches.

Speculation Speculative execution involves predicting the
results of a long-running operation then continuing to exe-
cute while the operation completes. If the results of the oper-
ation were mispredicted, execution is rolled back to the state
just prior to speculation. OS-level speculation, where an ap-
plication speculates across long-running system calls, has
been shown to be highly effective at hiding latency for syn-
chronous I/O operations, such as network file systems [27]
and local disk writes [28].

An implementation must be able to checkpoint applica-
tion context at speculation time, and to later roll back execu-
tion to that point without visible side effects. This requires
complete control over an application’s interaction with the
outside world. This makes the implementation complex and
typically requires deep integration with the OS; for example,
the original Speculator system required 7,500 lines of code
changes to Linux 2.4 [27].

Bascule could support an extension for speculative exe-
cution, because it provides two key properties. First, Bascule
permits an extension complete control over the application’s
interaction with the outside world, allowing it to delay issu-
ing I/O calls while speculating. Second, as demonstrated by
the checkpointer, extensions have full visibility and control
of the application’s state. We note that applying speculation
at the level of a single application as in Bascule departs from
prior OS-level implementations; we would expect a reduc-
tion in complexity as a result of both this and the simpler
Bascule ABI.

Record and replay Application record and replay systems
have a wide variety of uses including debugging [22, 32],
fault tolerance [6], and determinism [9]. These systems in-
volve logging non-deterministic events when recording, then
reproducing the same events at replay time. This requires
control over all sources of non-determinism visible to the
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application under record or replay, and has been imple-
mented at both the OS [23] and VM [13] level. In both cases,
much like speculation, the implementation involves signif-
icant changes to an OS or VM monitor to log events and
checkpoint state. Bascule would support such functionality
through interposition on the ABI, which permits capturing
of non-deterministic inputs and checkpoint/rollback.

2.2 OS extension mechanisms in today’s stack
The primary mechanism for extensibility in today’s com-
modity operating systems is loadable kernel modules. Some
popular extensions implemented as modules include fast
web servers and network file servers. However, implement-
ing extensions in the kernel has several problems, not least
safety, since the code for a kernel module must be fully
trusted by all users and applications, and portability, since
modules are tightly coupled to the internal interfaces (and in
some cases even the specific version) of an OS. We therefore
seek a more flexible solution.

Some of the extensions enabled by Bascule, including
checkpointing and architecture adaptation, are provided by
virtual machines. However, as observed by others [29, 30],
virtual hardware makes a poor interface to what is essen-
tially another OS. This complicates the implementation of
many extensions, since low-level hardware interfaces such
as virtual disks and page tables lack much of the semantic
information present at the abstract level of files and memory
mappings. Moreover, compared to a virtual machine inter-
face, Bascule extensions need not concern themselves with
privileged instructions, additional processor context and data
structures (such as page tables), and virtual devices. This
leads to reduced complexity and resulting efficiency gains.
For example, Bascule checkpoints are substantially smaller
than a typical virtual machine checkpoint.

One attractive extension technique is interposition, which
involves capturing events crossing an interface, then mod-
ifying, dropping, or injecting those events before passing
them on to the underlying implementation. Past work has
argued the benefits of interposition as an extension mecha-
nism [16, 19, 33]. These benefits can include: (i) decoupling
of extensions from the host, since extension authors must
only handle the interface between applications and the host
rather than internal kernel interfaces; (ii) transparency, to
both applications and the host; and (iii) composability, since
extensions can be invoked in a chain for each event.

However, today’s commodity software stack (Figure 2)
lacks a stable “thin waist” interface at which extensions
can be implemented through interposition without depend-
ing heavily on the internal details of either an OS or VMM.
In each case of OS API, system call ABI, and virtual hard-
ware, the interface is under-specified, complex, and evolv-
ing. This motivates our use of a new interface designed for
interposition between LibOS and host, as we describe in the
following section.

VMM

OS kernel
Syscall ABI

Virtual HW

OS APIs
App libs

OS libs

App binary

Figure 2. Current system software stack

3. Bascule architecture
Two lessons from related work motivate our design. First,
like virtual machines, we admit a tight coupling between the
OS and application for the purposes of compatibility and
do not attempt to change this interface. However, by bas-
ing Bascule on Drawbridge [29], we enable the OS to run
as a library in the application’s address space. Second, past
work with Exokernels [20] showed that a user-mode library
OS permits application-specific OS extensibility, since the
LibOS is under the control of the application, and each appli-
cation can use its own LibOS. We exploit this property, but
do not require that the LibOS be modified or customised for
extensibility, since an unmodified LibOS can receive secu-
rity patches directly from the OS vendor. Instead, we enable
late-binding of extensions through use of interposition on a
stable and complete binary interface consisting of primitive
OS abstractions such as files and virtual memory.

This interface, the Bascule ABI shown as a dashed line
in Figure 1, is accessed through a table of function entry
points. It is ultimately provided by the platform abstraction
layer (PAL), a library of code injected by the host platform at
startup time. We typically refer to the host platform as an OS,
however it may also be a bare virtual machine [29]; the PAL
ultimately invokes the host through system calls or hyper-
calls, however it may also implement significant functional-
ity in-process. Between the PAL and LibOS are one or more
extensions chosen at load time. Since each extension both
provides and consumes the Bascule ABI but has no other
dependencies on its execution environment, extensions can
be stacked arbitrarily, composing functionality. Within this
stack of LibOS, extensions and PAL, each extension layer in-
teracts with its guest, which may be either another extension
or the LibOS, and its host, again either another extension, or
the PAL.

Since extensions run in the application address space, and
interpose on the ABI through a table of code pointers, they
are both lightweight and safe to the limits of the host’s con-
finement mechanism: an extension can do no more than the
application (or LibOS) itself. This restricts the functional-
ity that can be implemented; an extension cannot reliably
confine an application (since its execution could be compro-
mised by the application) nor directly coordinate the activ-
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ity of multiple applications. Nevertheless, interposition on
primitive abstractions between a LibOS and host platform
enables a wide range of functionality, including (we believe)
the motivating examples from §2.1.

In contrast to a typical OS process, Bascule loads sig-
nificantly more code (in the form of the LibOS, extensions
and PAL), much of it developed independently, into the
process address space. This is potentially problematic, be-
cause an address conflict between any of these components
would either prevent an application from running, or (worse)
lead to hard-to-diagnose memory corruption and crashes.
To address this, we define a protocol for managing use of
virtual address space by extensions and the PAL, and re-
strict fixed address allocations only to the application and its
LibOS – all extension code must be position-independent,
and all memory allocations made by extensions must re-
side in a region allocated to the extension at process startup.
Our experience is that these simple techniques, combined
with a large (64-bit architecture) virtual address space and
widespread adoption of address-space layout randomisation
techniques [5] (which require position-independent code to
be effective), have avoided any problems with virtual address
conflicts.

In the remainder of this section, we describe the Bascule
ABI in more detail, as well as the protocols for process
startup and initialisation of extensions.

3.1 ABI
Figure 3 summarises the Bascule ABI, which is derived from
the Drawbridge [29] ABI with key modifications we de-
scribe below. The Bascule ABI, like the Drawbridge ABI,
is based on a small set of primitive OS abstractions such as
threads, files, I/O streams, and virtual memory mappings.
These abstractions are chosen to have well-defined seman-
tics that are easily supported by a range of OS implemen-
tations, and permit the host to expose virtualised resources
to the LibOS with minimal duplication of effort. The simple
abstractional nature of this ABI makes it an effective plat-
form for implementing extensions. Furthermore, because the
set of abstractions was deliberately chosen to mimic those in
commodity OSes, we were able to construct a Linux LibOS
(described in §4.1) without duplicating functionality.

While our aims in designing the Bascule ABI were gener-
ality and nesting, we admitted some pragmatism for reasons
of performance and implementation expedience. Of partic-
ular concern was finding compromises between generality
and efficient implementations on existing host OSes such as
Windows in problematic areas including exception handling
and thread-local storage, as we discuss below. Further, while
our goal and expectation is for the Bascule ABI to remain
stable, it carries an explicit version number, permitting us
to add or extend functionality in the future if required, and
even support extensions or guests built for old versions of the
ABI through “version adapter” extensions that rewrite calls
to conform to the new ABI.

To enable its goals of OS independence and lightweight,
composable extensions, and in particular to support arbitrary
nesting of extensions, Bascule changes the following aspects
of the Drawbridge ABI:

Calling conventions and C ABI We codified the (previ-
ously implicit) calling convention for ABI calls, by specify-
ing the register allocation and stack frame layout for argu-
ments to mimic the ABI used by the Microsoft C compiler.
This specifies the exact registers and stack frame layout to be
used for passing and returning parameters from ABI calls,
and layout of shared in-memory data structures. It enables
the use of different compilers and runtimes for each layer in
the Bascule stack (application/LibOS, extensions and PAL)
with the use of small thunks for making or handling calls
across an ABI boundary.

Stack use across ABI calls Since compiler and OS be-
haviour differs widely in regards to a thread’s stack, we re-
strict a callee across the Bascule ABI boundary from making
any assumptions about the location, size, bounds or layout
of the caller’s stack. Instead, a caller’s stack is immutable to
the callee, who is responsible for allocating and switching
to a private stack if required. An opaque per-thread param-
eter, which is established at thread creation time and must
be explicitly passed on each ABI call may be used for this
purpose – typically the incoming call thunk will load a stack
from this parameter before calling into C code. The stack
pointer is also undefined for all three upcalls in the Bascule
ABI: process startup, thread startup, and exception delivery.
We designed these calls so that all arguments are passed in
registers only, permitting the callee to load their own stack
while avoiding the need for the caller to modify it.

Exception handling OS APIs differ on their behaviour in
response to exceptions, such as invalid instruction, memory
access fault, software breakpoint, divide by zero, etc. Draw-
bridge relies on a mechanism derived from Windows: upon
detecting an exception, the host OS writes a data structure
describing its cause and the full processor context at the
time of the exception onto the thread’s stack, then causes
the thread to jump to a user-mode upcall function, passing
the exception record as a parameter. The upcall function
is then free to attempt to ignore the exception by restoring
the context and resuming execution, or take other corrective
action, such as running an exception handler. This model
works well for Windows, but is problematic for a general
OS-independent ABI like Bascule, since it requires knowl-
edge of stack layout and bounds, and is likely to break other
platform ABIs that permit use of memory beyond the current
stack pointer. Furthermore, Bascule extensions (such as the
checkpointer we describe in §4.2) may wish to interpose on
exceptions before they are delivered to the application.

In Bascule, the exception record is saved (in a portable
format defined by the ABI) in a region of memory under the
control of the PAL, and an upcall is delivered to the next
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Downcalls:
VirtualMemoryAllocate(Addr, Size, Type, Prot) -> Addr

VirtualMemoryFree(Addr, Size, FreeType)

VirtualMemoryProtect(Addr, Size, Prot)

SemaphoreCreate(InitCount, MaxCount) -> SemaphoreHandle

SemaphoreRelease(SemaphoreHandle, ReleaseCount)

SemaphorePeek(SemaphoreHandle) -> Count

NotificationEventCreate(InitialState) -> EventHandle

SynchronizationEventCreate(InitialState) -> EventHandle

EventSet(EventHandle)

EventClear(EventHandle)

EventPeek(EventHandle) -> State

ObjectReference(Handle)

ObjectClose(Handle)

ObjectsWaitAny(Count, Handles, Timeout) -> Index

ThreadCreate(Routine, Arg, Stack, Params) -> ThreadHandle

ThreadExit()

ThreadYieldExecution()

ThreadRaiseException(ThreadHandle, OpaquePointer)

ProcessCreate(Parameters) -> ProcessHandle, ThreadHandle

ProcessExit(ExitCode)

ProcessGetExitCode(ProcessHandle) -> ExitCode

SystemTimeQuery() -> Time

StreamOpen(URI, DesiredAccess, ShareAccess,

OpenDisposition, Options) -> StreamHandle

StreamRead(StreamHandle, Off, Size, Buffer) -> AsyncHandle

StreamWrite(StreamHandle, Off, Size, Buffer) -> AsyncHandle

StreamSetLength(StreamHandle, Length)

StreamFlush(StreamHandle)

StreamDelete(StreamHandle)

StreamGetEvent(StreamHandle, EventId) -> EventHandle

StreamRename(StreamHandle, URI)

StreamAttributesQuery(URI) -> Attribs

StreamAttributesQueryByHandle(StreamHandle) -> Attribs

StreamMap(StreamHandle, Addr, Flags, Prot, Offset, Size)

StreamMapPeBinary(StreamHandle, Addr, Flags)

StreamUnmap(Addr)

StreamEnumerateChildren(StreamHandle, EnumHandle) -> Name

AsyncPoll(AsyncHandle) -> Results

AsyncCancel(AsyncHandle)

RandomBitsRead(Buffer, Size)

InstructionCacheFlush(Addr, Size)

Upcalls:
InitializeProcess(StartParams, InitData)

ThreadRoutine(StartParams, Arg)

ExceptionDispatch(ExceptionInfo, HWContext)

Figure 3. Functional summary of the Bascule ABI.

layer in the stack (extension or LibOS). Any subsequent ex-
ception may re-use this memory, so if the handler wishes
to support nested exception handling, it must first copy the
exception record to a stable location (for example, its own
stack) without raising a subsequent exception. This requires
careful defensive programming, akin to critical paths inside
an OS kernel that also cannot survive an exception. Each lay-
ered extension in the stack is responsible either for handling
its own exceptions or passing them on to the layer above,
thereby enabling full interposition on exception upcalls.

Thread-local storage Most OS platforms provide an effi-
cient mechanism for accessing thread-local data, and/or rely
on one for their own libraries, and for compatibility Bascule
must support this. Typically, this takes the form of a reserved
register which refers to a per-thread data structure.

As described, this is straightforward for Bascule to sup-
port: the thread registers would simply need to be preserved
across ABI calls, permitting each layer in the stack to choose
its own mechanisms for thread-local storage. However, the
x86 architecture adds a serious complication: for legacy rea-
sons, all OSes with which we are familiar (including Win-
dows and Linux) access thread-local state through a segment
register such as FS or GS. Unlike a general-purpose regis-
ter, x86 segment registers can only be loaded in one of two
ways: indirectly, by referring to a segment descriptor in a
kernel-controlled table (which also restricts the base address

to 32-bits) or directly by the kernel, using a privileged wrmsr
instruction.1

The practical upshot of this limitation is that a general
nestable ABI for thread-local storage is impossible on x86.
In the general case, it would require system calls to reload
FS/GS on each ABI crossing, however, even if we were will-
ing to pay the steep performance penalty this implies, those
system calls are host-specific and could only be reached
through ABI downcalls, leading to a chicken-and-egg prob-
lem. Instead, we settled on a compromise that supports all
the use-cases we have encountered to date: at thread creation
time, the guest may request FS and/or GS segments meeting
certain constraints (size, alignment, etc.). If the call succeeds
and the thread is created, its FS/GS segments will refer to
memory that is allocated by the host and exists for the life-
time of the thread. If any intermediate layer (i.e. extension
or PAL) uses them, it must either save and restore their con-
tents by copying, or else request a larger segment and use
only the space beyond that allocated by the guest LibOS.
Also, no thread may access another thread’s FS or GS seg-
ments, since their contents are not guaranteed to be stable
across ABI calls. Overall, this solution is functional for our
needs, but inefficient and potentially error-prone; however,
given the constraints of current architecture and compatibil-
ity, it appears to be the best compromise.

Other changes Finally, Bascule makes a number of func-
tional changes to the calls in the Drawbridge ABI. First,

1 Intel and AMD have recently (on processors first available in 2012) added
unprivileged instructions for manipulating FS and GS registers, however
these are not yet widely available and require kernel support to enable.

243



the ABI was simplified and generalised in a number of
ways compared to the previously-published version [29].
For example, all I/O is now asynchronous and only one
call (ObjectsWaitAny) blocks the calling thread while await-
ing an event notification. This simplifies the implementation
of extensions that control thread execution, including the
checkpointer which must interrupt blocking calls to achieve
quiescence. Second, explicit ABI calls for checkpointing are
removed; in Bascule, this is provided by an extension (de-
scribed in §4.2), and does not require specific ABI sup-
port. Third, a number of implicit Windows dependencies
that were discovered while testing the Barrelfish host and
Linux guest were resolved; for example, Windows assumes
that virtual memory mappings are aligned to 64kB granular-
ity, and Drawbridge silently enforced this requirement in its
VirtualMemoryAllocate and StreamMap ABIs. Finally, we
found that the socket interface between network stack and
applications is too rich and variable between OSes to be sup-
ported by a simple abstraction, and thus are in the process
of switching to a lower-level virtual network interface and
moving the network stack inside the LibOS for greater com-
patibility with existing applications.

3.2 Packaging and startup
Like Drawbridge, Bascule makes use of declarative mani-
fests that specify the application and library OS components
to be loaded, their dependencies, and the host services to
which they have access. Bascule also uses manifests to con-
figure extensions. An extension’s manifest identifies the bi-
nary module to be loaded for that extension, along with any
dependencies for the extension, and configuration meta-data,
such as virtual address space requirements.

Extensions are packaged as relocatable libraries in PE
format, however they have with no external dependencies,
nor import or export any symbols. This does not preclude the
use of further dynamic libraries nor the use of an alternative
executable format, however, since an extension is free to load
further images to which it has access at process startup time.

At startup time, the PAL is loaded in a platform-specific
manner. Thereafter, each layer (PAL, extension or LibOS)
in the stack is responsible for loading and initialising the
layer immediately above it using only the ABI; so, the PAL
loads the last extension and passes control to it, which in
turn loads the next extension, and so on until the library OS
is loaded, which ultimately loads and begins executing the
application. This ensures that of the entire stack, only the
PAL depends on the host OS, while extensions are free to use
the ABI for their own initialisation as they require, before
loading further layers. In order to load a layer, its module
file is first loaded into memory and relocated, then its an
upcall function (identified using the entry point field in the
PE header) is executed. This upcall takes as a parameter a
table of downcall function pointers implementing the ABI,
provided by the layer below, and is required to fill in a table
of upcall pointers. This permits each layer to selectively

interpose on various ABI calls, and make use of the ABI
implementation provided by the layer beneath it.

A binary blob is also passed to each extension’s startup
function; this contains parameters specific to that extension,
in a format defined for it. For example, the parameters to the
checkpoint extension are a trigger event to initiate check-
points and a storage path in which to save them, or a check-
point file to resume. Generating this data structure requires
a small amount of extension-specific logic; we could re-
move this requirement with a generic mechanism for parsing
and passing parameters, however we expect that most exten-
sions will require a user interface for configuration, and the
generic specification of these is out of scope for this paper.

To manage use of the shared virtual address space, and
avoid possible conflicts between the application, LibOS and
extensions, Bascule pre-reserves address space ranges for
each extension, which are passed to the extension’s startup
function. Extensions must be fully relocatable, and only al-
locate memory within their reserved regions. These are al-
ways high in the (64-bit) address space, to avoid any con-
flicts with fixed allocations that may be made by the appli-
cation. While this strategy is no guarantee of success, we
have not yet encountered an address conflict, and expect to
add further metadata to the application and LibOS manifests,
identifying known fixed address regions that may be used,
and which will then be avoided for loading extensions.

4. Implementation
This section describes the implementation of Bascule, start-
ing with the guest library OS environments, extensions we
have implemented to date, and finally describes the current
host platforms. Since one of our goals is OS version indepen-
dence, we have developed several host platforms and guest
LibOS personalities in addition to the core Windows plat-
form supported by Drawbridge. These show that using an
abstractional interface between the LibOS and host platform
does not necessarily limit the scope of OS personalities or
hosts for Bascule.

4.1 Implementing library OSes for Bascule
Windows We have reused the Windows LibOSes (for 32-
and 64-bit x86) created by the Drawbridge project, adapted
for the Bascule ABI. We also fixed a number of accidental
ABI violations that were discovered in the process of testing
the Barrelfish host described later in §4.3. These were pri-
marily cases where state was leaking into the picoprocess
from the host kernel: every NT process has a data struc-
ture (USER SHARED DATA) mapped at a fixed address, and the
Drawbridge LibOS was assuming the presence of this struc-
ture provided by the host; similarly, we updated the LibOS
to create and manage its own per-process and per-thread data
structures, rather than relying on those provided by the host
kernel. In other respects, the Windows LibOS is unchanged,
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and we refer the reader to the Drawbridge paper [29] for fur-
ther details on its implementation.

Linux To exercise the ABI with a non-Windows guest
and check that the abstract Bascule ABI does not restrict
the choice LibOS personality, we implemented a prototype
Linux-based LibOS. We set ourselves the initial goal of run-
ning Linux applications in a LibOS with no further changes
to the ABI. We found that by applying similar techniques
as used in the Drawbridge project, including reuse of code
where possible and pragmatic reimplementation elsewhere,
this was achievable: it took one of us only 12 weeks to con-
struct an initial prototype Linux LibOS; while it is far from
complete, it already has enough functionality to run major
applications, such as Firefox and Apache.

Our Linux LibOS supports 64-bit x86 binaries, and is
based on a modified libc (eglibc version 2.15) coupled with
a system call emulation layer. We lightly modified libc and
its related libraries including ld-linux and libpthreads, to
replace system call instructions with calls to our emulation
layer. This limits our current LibOS to applications that dy-
namically link a compatible version of libc, however we ex-
pect that these changes could also be performed dynamically
through trap reflection and/or binary rewriting. The bulk of
the new code resides in the system call emulation layer,
which emulates the Linux system call API by using the un-
derlying Bascule ABI. Our emulation layer performs a simi-
lar task to existing OS compatibility layers [11, 17, 34], how-
ever because it targets a common intermediate ABI rather
than a specific host OS API, the same LibOS binaries work
across all Bascule host platforms.

At process startup time, we use a simple ELF loader
which is packaged as a PE binary (as required by the Bas-
cule ABI) to load the emulation layer and the native Linux
loader ld-linux.so. This in turn then loads the application,
including its libraries and our modified libc, and starts its
execution. The emulation layer includes thunks for shuf-
fling register arguments as appropriate when issuing Bas-
cule ABI downcalls, but is otherwise compiled as a typical
Linux shared library. It presently implements 48 system calls
completely, and 33 only partially. While this is a fraction of
the total count of more than three hundred system calls, it is
enough to run real applications and exercise the ABI.

While we were able to meet our goal of no ABI changes,
several unanticipated quirks required workarounds. First, we
discovered that the standard Linux/ELF ABI for thread-local
storage uses negative (sign extended) offsets from the FS
segment. At present the Bascule ABI has no way to ex-
press this requirement, so we have made minor modifica-
tions to the host platforms to ensure it is met. Second, due to
a mismatch between alignment constraints in the Linux API
(4kB) and Windows kernel memory manager (64kB), we are
presently unable to implement a true mmap() on all host plat-
forms, and instead emulate it by allocating virtual memory
and performing stream I/O. We expect ultimately to make

some changes to the ABI to improve performance in these
areas.

We also intend to improve the compatibility of our
LibOS, implementing further system calls and porting rel-
evant code from the Linux kernel. Significant unsupported
functionality currently includes multiple address spaces and
fork, signals, and advanced networking APIs beyond ba-
sic TCP sockets. Of these features, only fork will require
ABI changes, as we discuss in §6. For GUI applications, we
presently assume the presence of an X server outside the
LibOS which is accessed through a socket, but also antici-
pate moving this in-process with the LibOS.

The emulation layer and loader stub presently account for
13.5k lines of C code, primarily new code in the emulation
layer. We also changed 2.8k lines of code in eglibc to redirect
system calls to our emulation layer. Our application binaries,
supporting libraries, and configuration files are all taken as-
is from an Ubuntu 12.04 installation image. To date we have
been forced to make only one change to an application, to
ignore a failing fork() call in Firefox during startup.

4.2 Extensions: using Bascule to extend LibOSes
We have implemented several Bascule extensions to date,
including call tracing, file system remapping, checkpointing,
and a number of extensions for architecture adaptation and
emulation, which we describe here.

Tracing
The tracing extension is a simple demonstration of extension
functionality, which also serves as a useful debugging tool. It
is implemented in approximately 1000 lines of C code, and
logs ABI calls, their parameters, and results, but makes no
other changes to the execution behaviour of the layers above
it. It can be configured to log all calls, specific functionality
(e.g. stream I/O), or only calls whose result code indicates a
failure. The log is either written to an I/O stream, or main-
tained in memory where it may be inspected by a debugger.

As with all other extensions, the tracer is packaged as a
self-contained dynamic library (DLL) with no external de-
pendencies. At process startup time, it is loaded and its entry
point is invoked by the layer (PAL or extension) beneath it
in the stack. The parameters passed to its entry point include
the ABI call table for the layer that loaded it, and a param-
eters structure which includes parameters to the extension
and also identifies the subsequent layers to be loaded. The
tracer fills out the upcall table from the layer below (pro-
viding a pointer to its exception handler), and initialises a
downcall table that it will provide to the layer above it. It
then loads this layer, using ABI calls such as StreamOpen
and StreamMapPeBinary, and runs its entry point passing the
appropriate arguments. Subsequent ABI calls from the lay-
ers above will pass through the tracer’s call handlers, which
issue the call to the layer beneath before logging the results.

To ease construction of extensions such as the tracer, we
make use of several libraries that are statically linked into the
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final extension DLL. These include some minimal C runtime
support, assembly thunks for wrapping ABI call handlers,
and a memory allocator for stacks. As required by the ABI,
a callee must not modify the caller’s stack, so each extension
typically interposes on ThreadCreate and ThreadExit to
allocate its own stack for that thread. This adds a small
memory overhead for each thread in each extension, but for
simple extensions such as tracing the stack space required
is extremely small. This could be avoided, with a significant
increase in complexity, either by dynamic reuse of stacks
between threads or an ABI-level protocol to negotiate use of
the caller’s stack. The assembly code used when switching
stacks contains sufficient debug information for a debugger
to display one unified stack backtrace for the thread.

File system remapping
This extension implements a translation layer between file
paths used by the application and LibOS and those provided
by the host system, and illustrates the use of Bascule to cor-
rect bugs or undesired behaviour in an application. For ex-
ample, the extension can be used as a workaround for hard-
coded file paths in the application, to give the application a
private (writable) copy of various system files, or to discard
writes to certain files (e.g., to quieten needless logging).

The extension works by interposing on the StreamOpen
and StreamRename ABI calls and rewriting file paths ac-
cording to the mappings specified in its configuration. The
restricted nature of the Bascule ABI makes this extension
straightforward to implement compared to a traditional OS,
which may have many different system call interfaces where
file paths are used or exposed, and additionally the same ex-
tension binary works across all Bascule host platforms.

Checkpointing
In Drawbridge, application checkpoint and restore function-
ality were implemented within the LibOS, with some sup-
port from the host [29]. However, there is no fundamental
reason for this functionality to be part of either the host or the
guest, so Bascule instead implements it as an extension in-
dependently of both. The checkpointer extension tracks the
use of the process’ virtual address space, and implements a
translation layer between resource handles provided by the
host and those visible to the guest. It also has two control
channels back to the host: an event is signalled to initiate a
checkpoint, and startup parameters indicate whether to start
the application from scratch or restore a checkpoint.

At checkpoint time, the checkpointer opens a file (using
the ABI) and serialises to it all regions of the address space
created by (allocated or mapped) the layers above it. This
includes both the guest LibOS and application, and any
extensions which may be loaded in the stack above the
checkpointer. It also serialises the metadata it is tracking for
each open handle, and thread contexts, including the stacks
of any threads presently executing inside the checkpointer. It
does not serialise other state in the process, such as the PAL

or extensions below it in the stack. This permits a guest to
be checkpointed and later restored, either on a different host
platform or with a different set of extensions loaded beneath
the checkpointer.

When starting, if the checkpointer has been requested
to resume a previous checkpoint, it opens the checkpoint
file, recreates the open handles by replaying relevant ABI
calls (such as StreamOpen) and updating its private handle
translation table, restores the address space mappings and
recreates and resumes the threads. In this way, other Bascule
layers can be and are completely unaware of checkpoint
functionality, and the same checkpoint layer binary works
equivalently for Linux and Windows guests, and Windows
and Barrelfish hosts.

The checkpointer extension consists of 14.5k lines of C
and assembly code. Beyond one-shot checkpoint and restore,
we are also investigating continuous incremental check-
pointing in support of a replication mechanism in the style
of Remus [10], but do not discuss it further here.

In contrast to a VM-based approach, the advantage of
performing checkpointing at the Bascule level is simplicity,
and resulting efficiency gains. In Bascule, the guest consists
solely of user-mode code, and interacts with the host only
through the Bascule ABI. Compared to a hardware VM
interface, this excludes privileged instructions, additional
processor context and data structures (such as page tables),
and virtual devices, along with the guest OS code required
to support them. As a result, Bascule processes have much
smaller memory footprint and checkpoints than a typical
hardware VM [29].

Architecture adaptation
Motivated by the vast number of existing x86 applications,
we have used Bascule to experiment with running 32-bit x86
Windows applications and an x86 LibOS on alternative host
architectures. Two prototype extensions support the 32-bit
x86 Bascule ABI atop an alternative architecture host ABI.

32-on-64-bit x86 As discussed in §2.1, the 64-bit exten-
sion to the x86 architecture supports backward compatibil-
ity with 32-bit code, and most 64-bit OSes support 32-bit
applications, either with a modified kernel or custom user li-
braries. In Bascule, an extension provides this functionality
at the ABI level without modifying either the guest LibOS
or host OS. This extension translates between the 32-bit and
64-bit variants of the Bascule ABI, switching from the pro-
cessor’s execution mode for each ABI crossing, while con-
verting arguments appropriately for the different word sizes.
It also modifies the parameters to ABI calls to ensure that all
virtual memory allocations exposed to the guest lie below
the 4GB address limit.

x86 on ARM JIT This experimental extension also sup-
ports the x86 Bascule ABI, but does so on an ARM host plat-
form. It uses an interpreter and just-in-time (JIT) compiler to
convert x86 instructions to ARMv6 code. ABI calls occur-
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Figure 4. Experiment demonstrating an x86 Windows ap-
plication (Reversi) on an ARM phone.

ring within the x86 code are translated and issued as down-
calls according to the Bascule ABI. Since it must only sup-
port user-mode code, the interpreter is significantly simpler
than full-system emulators, as would be required by a VM-
based solution. For example, address translation is direct-
mapped to the host process address space relying on the host
OS to catch invalid memory accesses, and no virtual devices
are needed. Upon an exception, the interpreter reconstructs
the corresponding x86 state, and delivers the exception to
the guest LibOS as an ABI upcall. The entire interpreter, in-
cluding the JIT engine which adds most of the complexity,
is implemented in approximately 50k lines of C code.

Figure 4 shows an x86 application (Reversi) running atop
the Windows 7 LibOS on an ARM phone using this exten-
sion. The application and LibOS are completely unmodified
– the same binaries also run on an x86 host, albeit much
faster, using the 64-bit compatibility extension previously
described.

4.3 Host platforms: implementing Bascule
Windows The Windows host implementation is based on
Drawbridge [29], and supports the x86 (32- and 64-bit) and
ARM (32-bit) architectures. It consists of three components:
(i) a PAL library that is loaded into the guest picoprocess and
implements the ABI, generally by issuing custom system
calls for each ABI downcall; (ii) modifications to the host
kernel to implement the system calls made by the PAL and
confine the guest process by preventing it from invoking
other system calls; and (iii) a security monitor that runs in
a separate user process, which is consulted by the kernel-
mode component for policy decisions (such as stream open
calls) and is responsible for starting and managing Bascule
applications.

As described in the previous section, we modified Draw-
bridge to support our ABI and added support to the security

monitor to specify extensions to be loaded and pass parame-
ters to them.

Barrelfish Just as we used Linux to test the generality of
the Bascule ABI from the perspective of a LibOS person-
ality, we similarly aimed to exercise the ABI with a non-
Windows host. Barrelfish [2] is a research operating sys-
tem project, whose primary goal is to explore OS struc-
ture for future multi- and many-core systems. Implement-
ing a Bascule host for Barrelfish has two key benefits. First,
it allows us to ensure that Bascule has no hidden depen-
dencies on Windows, since Barrelfish differs significantly
from Windows: it builds with GCC and uses the Linux/ELF
ABI, its native API is unique but in many respects closer to
POSIX than to Win32, and significant portions of functional-
ity that would typically reside in the kernel are implemented
in user-mode libraries, including thread scheduling and ad-
dress space management. Second, it allows Barrelfish to run
real (Windows and Linux) applications, adding both func-
tionality and potential workloads for further research.

Unlike the Windows host implementation, on Barrelfish
we rely on the system’s native confinement mechanisms for
security, and implement the ABI entirely in-process: the Bar-
relfish PAL is also a loader application which links against
the native Barrelfish API libraries. At startup, it loads the
guest extensions and LibOS into its address space, then
jumps to the guest code, implementing all of the Bascule
ABI in-process by translating ABI calls to equivalent na-
tive Barrelfish functionality. On each downcall and upcall
through the ABI, a generated assembly fragment, or “thunk”,
converts the call from the Bascule ABI calling convention to
the native Linux ABI, by shuffling argument registers and
switching stacks. The PAL also manages entries in the x86
local segment descriptor table, to provide suitable support
for thread-local storage. For convenience, to enable reuse of
existing packages, it supports the same packaging mecha-
nism and manifest format as the Windows host’s monitor.

The Barrelfish PAL consists of approximately 8k lines of
C code. It implements the Bascule ABI with the exception
of subprocess support. Nevertheless, it is able to run both
Windows and Linux guests, including rich applications such
as Excel, PowerPoint, and Apache.

5. Evaluation
The goals for Bascule were safety of the host and other
applications, independence of extensions, LibOSes and host
platforms, efficiency and composability of extensions.

Bascule meets the safety goal by design, so we do not
evaluate it here: since extensions run in the guest process
address space, they are no more privileged than the guest
process itself. The host must ensure that any system calls
that are permitted from the guest process are appropriately
secured, but since the ABI is narrow, this is a significantly
easier task than for a traditional OS API.
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Figure 5. Linux and Windows applications running with
their respective LibOSes on the Bascule Windows 7 host.

In the this section, we evaluate the remaining goals. We
focus on the Windows LibOS and host implementation, as
they are the most mature. All reported experiments were run
on a Lenovo ThinkStation E30 PC with a 3.2GHz Intel Xeon
E31230 4-core processor and 8GB of RAM.

Independence As described in §4, we have implemented
host PALs for Windows and Barrelfish, and LibOSes for
Windows and Linux. We have run both on both host plat-
forms with a variety of applications – for example, Figure 5
shows a combination of Windows and Linux applications
running on the Windows 7 host, including xeyes and Fire-
fox (Linux LibOS), MS Paint, Internet Explorer, WordPad,
Reversi and Notepad (Windows LibOS). In this screenshot,
IE is displaying a page served by the Apache server, which
also runs on the Linux LibOS. We have tested our 64-bit ex-
tensions (tracing and checkpointer) with both LibOS guests.

Direct cost of interposition We first used a microbench-
mark to measure the overhead of a null extension that in-
terposes on the Bascule ABI but makes no change to any
calls. We measured the difference in processor cycles (us-
ing rdtsc) spent in a Bascule ABI call with and without this
extension. We repeated each run 1000 times, and found that
the average per-call overhead was 86 cycles (with standard
deviation of 29 cycles). This is the cost of switching stacks
on call and return, which is minor compared to the overhead
of the system call that ABI calls ultimately invoke.

Extensions also impose a memory overhead. This is
highly dependent on the specific extension; the base cost
is the size of the extension binary image, a few kB of data
structures such as the ABI call table and initialisation param-
eters used at startup time, and an additional per-thread stack
that can be as small as a single page.

Runtime overhead of extensions We next measure the
overhead of several Bascule extensions on real applications.
Figures 6 and 7 show the startup time and committed mem-
ory for a range of applications on the Windows LibOS, run-
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ning with a variety of extensions. For Internet Explorer (IE)
and the IIS web server, we measure the time to render a triv-
ial page and serve the first request respectively. For Excel,
we measure the time to open one of three sample input files
of increasing size. All times and sizes include the applica-
tion, LibOS, and any extensions. The plots show the mean
and standard deviation of 100 runs. We see that our exten-
sions have negligible overhead on real-world applications,
both in terms of time and memory footprint.

Overhead of LibOS-independent checkpoints Since the
checkpointer extension implements functionality originally
developed as part of the Windows LibOS, it allows us to
compare the overhead of performing checkpointing in an
OS-independent Bascule extension rather than building it
into the LibOS. Figures 8 and 9 report the size of check-
point files and time to checkpoint for the same Excel con-
figurations running on Bascule, using either the checkpoint
code built into the Windows LibOS, or our new extension.
We plot uncompressed file sizes, but note that checkpoints
compress well. For example, a sample checkpoint for Excel
with a 20 MB input compresses from over 100 MB down to
22 MB, only slightly larger than the original input file.

Figure 8 shows that Bascule checkpoints are larger and
more variable in size than LibOS checkpoints, with the size
difference not noticeably affected by the absolute size. The
reason for this is as follows. Parts of the address space, in-
cluding relocated segments of executables and dynamic li-
braries, are initialised deterministically by the LibOS and
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not included in its checkpoints. For each executable seg-
ment, the LibOS applies a deterministic relocation algorithm
to rectify internal pointers with the location where the seg-
ment was actually loaded. The LibOS checkpointer knows
this, and thus it can avoid writing the initialised data to the
checkpoint, and just resume from a checkpoint by following
the same procedures. By contrast, the Bascule checkpointer
must note all page modifications in the checkpoint, including
those caused by relocation. For example, the Excel.exe text
segment is 22 MB. The LibOS only ever checkpoints 24 kB
of this, regardless of where it is loaded, whereas the exten-
sion must often checkpoint all of it, when it is relocated by
the LibOS. This explains the checkpoint size difference. It
also explains the size variability, because the extension only
needs to checkpoint this segment when address-space lay-
out randomisation (a feature of the host OS) causes it to be
loaded elsewhere than its preferred address.

This size variation leads to a somewhat longer time to
checkpoint Excel, as seen in Figure 9, because a significant
fraction of checkpointing time is spent writing the check-
point file.

Cost of composability Like independence, composability
is partly a functional property achieved by careful design of
the Bascule ABI to enable nesting. However, it also comes
at a cost. In this section, we look at the overhead of indepen-
dent extensions composed at runtime versus a “monolithic”
extension that combines their functionality.

Table 1. Overhead of extension composition on Excel
startup while loading an 11kB input file. Mean and standard
deviation (σ) over 100 runs are reported.

Startup time Committed memory
s (σ) MB (σ)

No extensions 3.6 (0.3) 73 (14)
Tracing 3.6 (0.2) 74 (14)
FS translation 3.5 (0.3) 76 (20)
Both (monolithic) 3.5 (0.2) 79 (30)
Both (composed) 3.6 (0.2) 77 (8)

We use as our workload Excel with the 11 kB input file.
Table 1 reports the startup time and committed memory for
a variety of configurations: no extensions, only the tracing
extension, only the file system translation extension, an al-
ternative extension that we implemented specifically for this
test which duplicates the functionality of both tracing and
filesystem translation extensions in a single binary, and fi-
nally the two separate extensions composed at runtime.

We see that, much as in the previous experiments, the
overhead of extensions is so low as to be within the noise.
This confirms that the mechanism Bascule provides for com-
posing extensions is of sufficiently low overhead that it
should not be a concern when choosing to use extensions;
rather, the performance behaviour of individual extensions
will be the more important factor.

6. Discussion and future work
Implementation effort The effort required to implement
the various components of Bascule varies. Clearly, the
LibOS involves the most existing code and requires the most
work. The cost of refactoring Windows 7 to produce a LibOS
for Drawbridge was found to be tractable: 16k changes and
36k additions out of 5.6M lines of code total in the LibOS,
completed in less than two person-years [29]. Our experi-
ence with Linux is only early, but indicates similar effort:
it took one of us 12 weeks to construct the initial func-
tional LibOS, but there is certainly much more work required
to achieve full compatibility and optimise performance. Al-
though each LibOS requires significant implementation ef-
fort, we expect few will be required, since there are corre-
spondingly few dominant OS APIs.

Implementing a PAL for Bascule is comparatively less
work, and requires mapping the ABI calls to the host plat-
form. However, the real value of Bascule lies in its support
for extensions, so we expect that there will ultimately be
many more extensions than either LibOSes or host PALs.
To write an extension requires understanding only the Bas-
cule ABI, and we showed how simple extensions such as the
tracer can be implemented in relatively little code. The pro-
gramming environment for extensions is spartan, and simply
consists of the ABI calls. This is both a drawback and ben-
efit: since there is no runtime support extensions must pro-
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vide their own, but conversely there is no complex internal
OS interface with which extensions must remain compati-
ble. We have begun to develop a set of self-contained sup-
port libraries for extensions using the Bascule ABI, however
extension developers are always free to choose their own.

Multi-process support At present, the Bascule ABI in-
cludes functionality derived from Drawbridge to create child
processes and communicate with them over pipes, however
it is incapable of supporting general inter-process sharing,
nor of implementing fork. Surprisingly few Windows appli-
cations use child processes (and the API has no fork primi-
tive), but for Linux and other potential LibOSes this is insuf-
ficient.

We are evaluating two solutions for supporting multi-
process applications, both of which entail expanding the
confinement boundary between the LibOS and host OS to
encompass multiple address spaces within a single sandbox.
The first, more straightforward, approach would extend the
ABI with new calls providing the ability to create and ma-
nipulate address spaces and their threads, and share resource
handles between them. The main downside of this is a sig-
nificant increase in the complexity of the ABI. Our second
approach is motivated by the Dune system [3], and uses
hardware support for virtualisation to run multiple “child”
address spaces within a single container, while maintaining
roughly the same ABI with the host (and with extensions).
Both cases would require support within the host and LibOS,
but the latter has the advantage that the management of child
address spaces is entirely under the control of the LibOS.

Protecting extensions from applications Bascule fully
protects the host OS and other applications against malicious
applications and extensions, but does not attempt to protect
extensions from the applications they extend. This enables
lightweight extensibility by reducing the overhead of each
extension, and keeps extensions outside the system’s trusted
computing base. However, it also precludes some possibly
useful extensions that require protection from malicious (or
buggy) application and LibOS code.

To maintain the safety of such extensions, they must be
run in a separate (user-mode) address space. It is relatively
straightforward to provide glue stubs that issue ABI calls as
RPCs to a separate process where they are converted back
to ABI calls, allowing such extensions to transparently use
the same ABI. However, besides ABI call parameters, ex-
tensions may also assume access to the guest process ad-
dress space. Absent hardware support for fine-grained shar-
ing [35] the cleanest way to provide this for an unmodified
extension would be to mirror the two address spaces, so that
all memory visible to the guest is also visible to the protected
extension, but not vice-versa. We are considering adding this
support, but would only use it for specific extensions that re-
quire such protection (which we expect to be rare) or as a
debugging aid.

7. Related Work
Bascule borrows ideas from many prior systems, including
extensible operating systems, interposition mechanisms, and
API compatibility libraries.

Past work on extensible OS architectures [4, 7, 14, 15, 31]
generally focused on engineering new OSes from scratch
to support fine-grained, secure extensibility. While the re-
sulting systems were highly extensible, they often lacked
compatibility with existing applications. For example, Ex-
okernels [14] support OS extensibility by placing the ma-
jority of OS functionality in a user-mode library, permit-
ting an application to supply its own customised LibOS. The
main focus of this work was improving performance through
application-specific optimisations to a LibOS [20]. While
this is also possible in Bascule, we see the LibOS primarily
as a compatibility mechanism, and provide a more limited
form of extensibility via interposition on the Bascule ABI.
Our intuition is that few application developers have the mo-
tivation to customise a LibOS. Moreover, a custom LibOS
would be unable to receive security patches directly from
the OS vendor. Rather, interposing at the Bascule ABI level
enables extension development independently of a specific
application or LibOS, and supports late-binding; extensions
chosen by a user may provide functionality unforeseen by
the application developer.

Interposition has also been used as an extensibility mech-
anism by prior systems. The Fluke microkernel [15] sup-
ports “nester” processes, that implement OS extensions such
as checkpointing and demand paging. Each nester is imple-
mented by a separate process, so keeping the overhead of
nesters low requires the use of selective interposition, how-
ever common nesters such as the checkpointer interpose on
all system interfaces. SLIC [16] targeted extensibility for a
mainstream OS with in-kernel extensions that interpose on
the Solaris system call interface. While this has low over-
head, and supports extensions that perform additional secu-
rity checks, extensions must be fully trusted. Bascule runs
extensions in application context, which limits its use for
security purposes, but at the same time protects the system
from malicious extensions while retaining low overhead. We
find that many extensions are suited to this trust model.

The Spring OS supports extensible file systems through
stacking of extensions that add functionality such as data
compression or distribution [21]. Spring’s file and memory
management interfaces are defined to enable efficient use of
caches and file metadata across multiple extensions, and to
permit interposition on a per-file basis. Bascule also enables
extending the behaviour file system on a per-application
basis (for example, by encrypting or compressing all file data
transparently to the application), but is more general and thus
lacks the filesystem-specific extension interfaces of Spring.

Many commodity operating systems also support an in-
terposition mechanism for system calls intended for debug-
ging purposes, such as ptrace in Unix-like systems, and it is
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also possible to interpose on OS library APIs [18]. However,
the complexity of the relevant interfaces makes these solu-
tions demanding to use, and tightly couples the implementa-
tion of an extension to a specific OS. Moreover, composing
extensions using such mechanisms is often impossible. Fol-
lowing the insight that despite the large number of system
calls in an OS interface there are relatively few abstractions,
interposition agents [19] provide an object-oriented exten-
sion API to simplify the task of interposing on system inter-
faces, while also supporting composition. However, interpo-
sition overheads are high, and extensions are still dependent
on a specific OS interface. Motivated by a similar observa-
tion, the Bascule ABI was designed from the outset to use
a small and stable set of abstractions, and naturally supports
composition. Moreover, because interposition code runs in
the context of the application, it has near-zero overhead.

API or ABI compatibility libraries [1, 11, 17, 34] allow
code written for one OS to run on another, much as we sup-
port Linux and Windows applications on other host plat-
forms. This is essentially a problem of interface adaptation,
and LibOSes written to the Bascule ABI make use of many
of the same techniques. The key difference is that the adap-
tation code is decoupled between the LibOS and host PAL –
since the LibOS targets a common intermediate ABI, it can
be reused by all Bascule host platforms.

Closely related systems to Bascule include Xax [12] and
Drawbridge [29]. Xax enables the use of legacy code as
secure browser plugins, and uses picoprocesses for confining
untrusted native code, combined with an ABI for access
to system services. Drawbridge showed how to refactor a
large existing monolithic OS (Windows) to create a self-
contained library OS capable of running in a picoprocess
yet supporting rich desktop applications; its ABI is richer
than the one used by Xax, consisting of a set of abstractions
designed to mimic core Windows functionality. Our ABI
is derived from it, which allowed us to port and reuse the
Drawbridge LibOS, but it is more general. We also used
similar techniques to develop the Linux LibOS described in
§4.1. While Bascule retains all the benefits of Drawbridge,
our focus in this work is on generality (across varying host
and guest operating systems), and on supporting lightweight,
composable OS extensions at runtime using interposition.

8. Conclusion
We presented Bascule, a LibOS extensibility architecture
that allows application behaviour to be customised by ex-
tensions loaded at runtime. Bascule shows that it is possible
to support lightweight yet safe OS extensibility as well as
composition of extensions by running them in a shared ad-
dress space and exploiting interposition on a common binary
interface of primitive OS abstractions. We also showed that
the use of an abstractional interface to the LibOS and exten-
sions does not restrict Bascule to a single LibOS personality

or host environment, but rather that a variety of OS person-
alities can be expressed above carefully-chosen abstractions.

Providing LibOS extensibility in the manner of Bascule
is appealing, because it avoids the need to modify the library
OS, allowing it to be patched and updated. Ultimately, we
envision these techniques being used to support an “exten-
sion store” model where extensions are developed indepen-
dently of both the OS and applications, and deployed at run-
time by end users or system integrators.
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