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Abstract

Concurrent programming is increasingly important for
achieving performance gains in the multi-core era, but it is
also a difficult and error-prone task. Concurrency bugs are
particularly difficult to avoid and diagnose, and thereforein
order to improve methods for handling such bugs, we need a
better understanding of their characteristics. In this paper
we present a study of concurrency bugs in MySQL, a widely
used database server. While previous studies of real-world
concurrency bugs exist, they have centered their attention
on the causes of these bugs. In this paper we provide a
complementary focus on their effects, which is important for
understanding how to detect or tolerate such bugs at run-
time. Our study uncovered several interesting facts, such
as the existence of a significant number of latent concur-
rency bugs, which silently corrupt data structures and are
exposed to the user potentially much later. We also high-
light several implications of our findings for the design of
reliable concurrent systems.

1 Introduction

We are witnessing an unprecedented rise in the paral-
lelism of computer systems. The number of cores in com-
modity processors has been steadily increasing. Today,
dual-core and quad-core processors are commonplace; In-
tel has recently announced an 8-core processor [3], and
specialized CPUs with even more cores are currently be-
ing manufactured [1, 2]. However, increasing the number
of processors is not the way by which CPU manufacturers
have traditionally increased the performance of their hard-
ware. Clock speeds no longer increase at a significant rate;
as a result, software no longer automatically runs signif-
icantly faster as new chips are deployed. Consequently,
for software to extract performance gains out of the extra
processing capacity, programmers will have to design their
software in a more parallel way.
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However, parallel programming is challenging and of-
ten error prone. It is difficult enough for programmers to
reason about all the possible inputs and the flow of execu-
tion in single-threaded applications; reasoning about allthe
different thread interleavings that can occur in concurrent
programs, combined with all possible inputs, is even more
difficult. Additionally, the non-determinism that is inherent
to concurrency bugs, which are only triggered under certain
thread interleavings, makes it difficult to reproduce, iden-
tify, analyze, or correct such programming mistakes. But at
the same time this non-determinism can be essential in han-
dling them (e.g., using fault detection, fault tolerance, or
fault recovery) since it enables exploring redundant, diverse
executions using different thread interleavings.

To improve methods for addressing concurrency bugs, it
is important to have a thorough understanding of the char-
acteristics of these bugs. While a few studies of concur-
rency bugs exist [11,14,22], they either focus on artificially
injected bugs, or, in the few cases where real applications
were studied, they mostly focus on thecausesof these bugs,
and limit the study of their effects to whether they cause
deadlocks or not. Such studies are useful for determining
what kinds of programming mistakes are typical of such
applications, and can drive the design of program analysis
tools for finding these bugs [27].

However understanding theeffectsof concurrency bugs
is important for a different set of reasons than why it is in-
teresting to study their causes. Analyzing the effects allows
us to assess how efficiently existing detection approaches
handle these bugs. And, more importantly, it can serve
as a guide for further development not only of tools and
methodologies that detect, but also of tools and methodolo-
gies designed to tolerate and recover from the faults and
errors caused by such bugs. To give a simple example, it is
important to understand how often concurrency bugs cause
failure modes where the server returns incorrect replies (i.e.,
a Byzantine failure), in order to gauge the effectiveness of
using multi-threaded replicas to ensure fault diversity ina
Byzantine-fault-tolerant replication scheme [10].

In this paper we provide the complementary angle of
studying theeffectsof concurrency bugs that affect paral-
lel applications. In particular, we exhaustively study real



concurrency bugs that were found in MySQL [5], a mature,
widely-used database server application.

Our study produced several interesting findings. First,
we found a non-negligible number oflatent concurrency
bugs. Latent concurrency bugs, when triggered, do not be-
come immediately visible to users. Instead, these concur-
rency bugs first silently corrupt internal data structures,and
only potentially much later cause an application failure to
become externally visible1. Latent concurrency bugs have
been anecdotally reported [13], but we are the first to study
their extent, and their internal and external effects in detail.

A second finding is related to bugs that cause the ap-
plication to fail in ways other than silently crashing. We
characterize Byzantine failures that are caused by concur-
rency bugs. Some of our findings were surprising, like the
fact that these bugs cause subtle changes in the output that
would be difficult to find using existing run-time monitor-
ing tools, or the fact that there exists a strong correlation
between bugs that cause Byzantine failures and latent bugs.

Our findings have implications for the design of tools and
methodologies that address concurrency bugs. For the con-
venience of the reader we present a summary of our main
findings together with their implications in Table 1.

The remainder of the paper is organized as follows. In
Section 2 we describe our methodology. We then present
an overview of the MySQL application in Section 3. The
results of our study are presented in Section 4 and in Sec-
tion 5 we discuss their implications. We survey related work
in Section 6 and we conclude in Section 7.

2 Methodology

In this section we present the methodology that we
adopted to find and analyze concurrency bugs. Our method-
ology is similar to one used in previous work [22].

2.1 Choice of concurrent application

We selected MySQL as the target of our study for three
main reasons. First, it is a widely deployed database.
Databases are a critical component of the IT infrastructure
of many corporations, and MySQL represents a substantial
share of that market (about1/3 of deployed database sys-
tems [4]). This implies that there is market pressure for
a quality development and maintenance process, so this is
an instance of well-maintained software where finding and
eliminating bugs matters. Second, it is an open source appli-
cation with a well-maintained bug report database. Having
access to the source code and the bug logs is necessary for
an in-depth analysis. Finally, it is a highly concurrent ap-
plication with rich semantics, and it has a large code base.

1The termlatent bugis used in other papers [8,18,20] with an unrelated
meaning – that of a bug that went undetected by theprogrammer.

These characteristics make MySQL representative of some
of the biggest challenges that we will be facing as complex
applications become more and more concurrent.

In Section 3 we provide some brief background on
MySQL, which will help in better understanding our results.

2.2 Concurrency bug selection

The MySQL versions that are affected by the bugs that
were reported in the bug report database range from version
3.x to 6.x and the oldest bug reports date back to 2003.

The MySQL bug report database contains a very large
number of bugs. Therefore, to make the task feasible, we
automatically filtered bugs that are not likely to be relevant
by performing a search query on the bug report database.

Our search query filtered bugs based on (1) the keywords
contained in the bug description, (2) the status of the bug
and (3) the bug category.

We searched the MySQL bug report database for bugs
that contained keywords commonly associated with concur-
rency bugs. Such keywords included the following terms:
lock, acquire, compete, atomic, concurrency, synchroniza-
tion, etc. In addition to this we searched for bugs whose sta-
tus wasclosed(i.e., bugs that are no longer under analysis
by the developers/debuggers). It would have been interest-
ing to also consider bugs with other status (such aswon’t fix
andcan’t repeat) but these bug reports are not likely to have
detailed discussions and more importantly, in general, they
won’t contain patches. Without reasonably complete bug
reports it would not be possible to thoroughly understand
the bugs they report.

Next, to exclude bugs from stand-alone utilities that are
unrelated to the multi-threaded server, our search query also
limited the search to bugs that were related to MySQL
Server, including those that were within the Storage En-
gines category [26].

Finally, we randomly sampled a subset of the bugs that
matched our search query and manually analyzed them.
The manual inspection revealed that some of the bugs that
matched the search query were not concurrency bugs (de-
fined in Section 3) and so we also excluded them. In addi-
tion, we excluded bugs for which the bug log did not con-
tain enough information to analyze them. After filtering, we
obtained a final set with 80 concurrency bugs that were an-
alyzed, a number that is very close (or even superior) to the
number of bugs analyzed in previous studies [11,22].

Table 2 shows the bug count across the different stages
of the bug selection process.

Note that this selection process has two main limitations.
First, the search query can miss some actual concurrency
bugs. However, a concurrency bug report that does not con-
tain any of the main keywords associated with concurrency
is also more likely to be incomplete and therefore more dif-



Finding Implication

Evolution of concurrency bugs
According to the opening dates of our sampled bugs,
the proportion of fixed bugs that involved concurrency
more than doubled over the last 6 years.

This shows the increasing need for new tools and
methodologies to handle concurrency bugs.

External effects of concurrency bugs
We found slightly more non-deadlock bugs (63%) than
deadlock bugs (40%).

Having good tools to handle deadlock bugs is not
enough – we also need to handle non-deadlock bugs.

We found a significant fraction of semantic/Byzantine
bugs (15%).

Techniques for Byzantine fault tolerance can potentially
handle a considerable fraction of concurrency bugs.

Immediacy of effects
Latent concurrency bugs were also found in significant
numbers (15%).

Tools and methodologies such as proactive recovery
can be leveraged to mask errors caused by a significant
numbers of concurrency bugs.

Of the latent concurrency bugs analyzed, 92% were se-
mantic bugs and conversely 92% of the semantic bugs
were also latent bugs.

Given the high correlation between these classes of
bugs, techniques that handle one class should also han-
dle the other.

Semantic concurrency bugs
The vast majority of semantic bugs (92%) generated
subtle violations of application semantics.

Run-time monitoring tools will have to devise complex
application-specific checks to detect the presence of se-
mantic bugs.

Internal data structures
Most of the examined latent bugs (92%) corrupted mul-
tiple data structures.

Techniques that detect inconsistencies among data
structures could be used to detect latent bugs. Analyz-
ing data structures individually might not suffice.

Severity and fixing complexity of bugs
Latent bugs were found to be slightly more severe than
non-latent bugs.

Latent bugs are an important threat to software reliabil-
ity and, therefore, latent bugs should also be addressed.

Latent bugs were found to be easier to fix than non-
latent bugs.

Further studies should be performed to analyze the rea-
sons for this difference.

Table 1. Main findings of this study and their implications. T he methodology for collecting the data
presented here is described in Section 2 and the results are e xplained in detail in Section 4.

Phase Number of bugs
Total MySQL server closed bugs 12.5k
Concurrency related keyword matches 583
Sampled bugs 347
Concurrency bugs analyzed 80

Table 2. Bug counts for different stages of the
analysis.

ficult to successfully analyze. Second, concurrency bugs
are likely to be underreported, which would explain why
out of a total of about 12.5k bugs in the bug database we
only found 80 concurrency bugs.

2.3 Manual analysis of bug reports

We manually analyzed the bug reports of the sampled list
of bugs, focusing on trying to understand the effects of the

bugs. We analyzed the bugs using information contained in
the bug reports (including the patches), as well as the source
code of the application.

Bug reports contain several types of information that are
useful for filtering out non-concurrencybugs, and for under-
standing their characteristics. In particular, bug reports con-
tain not only the description of the bug, but also discussion
among the developers and debuggers about how to diagnose
and solve the problem. The information contained in these
discussions is often important to understand the bugs, in
particular to determine whether they are concurrency bugs,
and to understand their effects. Typically the bug report will
also include the patch, and even the method to reproduce
the bug; sometimes more than one patch attempt is made
before developers agree on a definitive patch. Bug reports
also include additional fields such as the perceived severity,
the status, and the software version affected.

We used all these types of information contained in bug
reports to gain an understanding of how bugs are triggered



and when they are what are their effects2. In addition, some
of this information was also used to estimate the complexity
of fixing concurrency bugs and their severity.

3 MySQL

In this section we provide a brief overview of the char-
acteristics of MySQL that are relevant for this study.

3.1 Internal structure

MySQL is a complex code base where the state of the
server is spread across multiple data structures that are
stored both in memory and persistently. Here we describe
some of the main data structures that will be referred to in
later sections.

An important class of stored structures are data files
that contain the contents of different tables stored in the
database. In addition, a series of files containing the in-
dexes of the tables are also maintained, which allow for fast
lookups by the contents of certain columns of the tables.

Another important persistent structure is the binary log
(referred to as the binlog structure), which is used for two
different purposes. The log is mainly useful when primary-
backup replication of the database is used, in which the pri-
mary replica writes to the binlog the statements correspond-
ing to all client requests that modify the database state. The
backup replicas then sequentially re-execute the statements
contained in the binlog. The other use of the binlog is re-
lated to other recovery operations such as restoring database
state from a backup file, in which case some events that
were logged after the backup operation must be re-executed.

Finally, MySQL contains a series of caches that speed
up access to persistent structures or processing of requests.
For instance, a table cache holds the descriptors of recently
accessed tables, while a query cache holds the results of
recently executed queries.

3.2 Concurrent programming

The use of concurrency in MySQL is typical of a server
application. Clients issue several requests to the database
server, which are grouped into sessions (called connec-
tions). Each connection is handled by a separate thread on
the server side, and different threads contend for access to
many shared data structures, such as the ones we mentioned
above. To synchronize access to these structures, threads
mostly resort to locks but also use condition variables.

2The raw data gathered from this manual analysis can
be found at http://www.mpi-sws.org/ ˜ pfonseca/
dsn2010-bug-study.tgz

Despite the existence of recent proposals for other types
of synchronization primitives such as transactional mem-
ory [17], there is value in studying and improving the meth-
ods that address the problems with lock-based synchroniza-
tion. This is not only because we still run many applications
that use locks, which will benefit from being made more ro-
bust for years to come, but also because the vision behind
such proposals is not to entirely replace locks, but instead
to use these new primitives in smaller sections of the code
where the possible performance impact would be lower.

3.3 Request vs. transaction concurrency

To correctly understand the meaning of concurrency
bugs the distinction between request and transaction-level
concurrency needs to be clear. In a database system, client
operations are logically grouped into transactions, each of
which consists of a sequence of requests (e.g., requests to
begin a transaction, read or write to the database, and com-
mit or abort the transaction). There is often some confusion
between the notion of concurrent transactions and concur-
rent requests, and which kinds of concurrency bugs are we
interested in.

We will only analyze bugs that are triggered by concur-
rent individual requests, since these are the ones that reflect
the traditional concurrency problems that arise in parallel
programs. Bugs that are triggered by concurrent transac-
tions but can be reproduced deterministically by a given se-
quence of requests are not considered concurrency bugs in
this study.

Thus we define a concurrency bug as one where the ap-
plication deviates from the intended behavior, given a cer-
tain pattern of inputs, but it must be the case that the bug
is only manifested under specific thread interleavings. This
definition is general enough to include both safety problems
(e.g., server crash or issuing wrong replies) and liveness
problems (e.g., deadlocks or even performance bugs).

4 Results

In this section we present the results of our analysis of
the 80 concurrency bugs that we found in the MySQL bug
database. A summary of these results and their main impli-
cations are also presented in Table 1.

4.1 Evolution of concurrency bugs

We investigated the proportion of concurrency bugs
present in the bug database and how this proportion evolves.
We were interested in knowing whether concurrency bugs
are becoming more prevalent. To determine this, we iden-
tified the opening and closing year of the concurrency bugs
that we analyzed as well as of all closed bugs within the
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Figure 1. Evolution of bugs (by open date).

MySQL server category. To obtain the set containing all
bugs we excluded the keyword part of the search together
with the sampling phase explained in Section 2. For each
year we counted the number of concurrency bugs and their
proportion (compared with generic bugs). We looked at
both the opening date and closing date because program-
mers typically require a significant amount of time (i.e.,
many months) to solve the bugs under analysis. The results
are presented in Figures 1 and 2. From these results we can
see that there has been a trend of increasing number and
proportion of concurrency bugs over the years. However,
this trend does not seem to be very prominent.

The data that we collect does not allow us to determine
the causes underlying this finding, however we can think of
two possible reasons for this slight increase. One possible
explanation is that the advent of multi-core hardware causes
users and developers to stumble upon these bugs more of-
ten than they used to in the past. Another explanation that
we cannot rule out is that developers, while trying to fur-
ther parallelize the code, actually increase the number of
concurrency bugs that they introduce.

Of the concurrency bugs that we sampled, the oldest con-
currency bug was opened in March 2nd, 2003, while the
youngest was closed in September 16th, 2009. Therefore,
to make the comparison fair, we excluded the bugs that were
outside this range from the list of generic bugs used to com-
pute the proportions.

To interpret these results it should also be taken into con-
sideration that, as we show in Section 4.7, the time it takes
to close a concurrency bug can be quite long (e.g., some
bugs took more than a year to fix). This explains why the ab-
solute number of bugs opened in the last year is low: many
concurrency bugs potentially discovered in 2009 have not
yet been fixed, which means they are not yet closed and
were therefore not accounted for in this study.

4.2 External effects

We analyzed the concurrency bugs with respect to the
external effects that are exposed to the clients, and divided
these effects into six categories. The results are presented in
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Figure 2. Evolution of bugs (by close date).

Table 3. Note that the sum of all occurrences is larger than
the total number of bugs because some bugs fit into more
than one category.

We can see that there are slightly more bugs that cause
non-deadlock conditions (63%) than deadlock conditions
(40%), and among the non-deadlock bugs the most preva-
lent consequences are either causing the server to crash
(28%) or providing the wrong results to the user, which we
termsemantic bugs(15%).

Semantic bugs are Byzantine failures, where the applica-
tion provides the user with a result that violates the intended
semantics of the application. This is an interesting class
of bugs since masking their effects requires sophisticated
(and possibly expensive) techniques such as Byzantine-
fault-tolerant replication [10] or run-time verification of the
behavior of the application against a specification of the
system [30]. We discuss these bugs in more detail in Sec-
tion 4.4.

The high percentage of deadlock bugs that we encoun-
tered leads us to believe that, despite significant research
to address deadlock bugs, in practice this class of bugs still
constitutes a significant problem for the robustness of soft-
ware. The percentage of deadlock bugs that our study found
is in line with results from other studies [22].

The remaining three classes of external effects were
slightly less prevalent. These are error messages (9%),
which we distinguish from the class of semantic bugs, de-
spite the fact that when error messages are provided to the
user an unexpected result is also returned. We distinguish
error bugs from semantic bugs by the fact that an error is
detected by the server and therefore is explicitly flagged in
the reply to the client request, and can be handled by the
client application appropriately. For instance, in one bug
(bug #42519) when a restore operation is performed con-
currently with an insert operation a generic error message is
returned to the user. We also found a number of bugs (8%)
in which client requests hang (the client does not receive a
reply), which differs from a deadlock situation where one
thread or a series of threads are waiting in a circular de-
pendency. Typically these are caused by a thread that fails
to release a certain lock, causing another thread that triesto



External effect Number of bugs
Crash 22
Deadlock 32
Error 7
Hang 6
Performance 5
Semantic (Byzantine) 12

Table 3. External effects of concurrency
bugs.

acquire it to wait forever. Finally, we found a few (6%) con-
currency bugs that caused performance degradation (e.g.,
memory leaks that increase the number of page faults the
server incurs).

4.3 Latent bugs

Next we analyzed whether the bugs caused latent errors
or not. We define a latent bug as one where the (concur-
rent) requests that cause the erroneous state to occur differ
from the request (or requests) that cause the external effects
of the bug to be exposed to the clients (i.e., the violation to
the application’s specification). In other words, latent bugs
cause internal data structures to be silently corrupted (i.e.,
an error) but do not immediately cause a wrong output (i.e.,
a failure). A failure is only triggered by a subsequent re-
quest that may not have to run concurrently with any other
requests.

We found that a relevant fraction of concurrency bugs in
our study were latent (15% versus 85% non-latent bugs).
This result was somewhat surprising and has an interesting
implication. The fraction is large enough that we believe
there is value in developing tools that try to recover the in-
ternal state of the concurrent application. Performing such
a recovery could prevent concurrency bugs from affecting
the correct behavior of the application, even after the con-
current requests that cause the error have already been exe-
cuted and the application state is corrupt.

We also analyzed how latent bugs were categorized ac-
cording to the previous analysis of their external effects.
The results in Table 4 show a very high correlation between
latent and semantic bugs: 92% of the latent bugs manifest
themselves by returning wrong results to the client, and con-
versely also 92% of the semantic bugs are latent. (The fact
that these values are exactly the same is only a consequence
of the relatively small sample size.)

We see two possible consequences of the high correla-
tion between latent and semantic bugs. On the one hand,
methods to address the problems caused by latent bugs will
have to take into account that they manifest themselves
through violations of the application semantics (rather than
crashing or halting), which raises the bar for detecting when

External effect Number of bugs
Crash 1
Deadlock 0
Error 0
Hang 0
Performance 1
Semantic (Byzantine) 11

Table 4. Effects of latent concurrency bugs.

a latent error is activated and becomes a failure. On the
other hand, this opens an opportunity for the methods that
handle non-crash faults to try to heal the state of the ap-
plication in the background instead of masking the effects
of these faults in the foreground. For instance, rather than
tolerating semantic errors using Byzantine Fault Tolerance
(BFT) replication, where the output of each request is voted
upon, one might be able to get similar results by having a
foreground replica that issues the reply, and a background
replica that checks and recovers the service state.

A concrete example of a latent bug will help the reader
understand some of the typical patterns surrounding bugs
that are both latent and semantic. Bug #14262 involved con-
current requests updating both the contents of the database
(e.g., table contents) and the binlog structure. This bug is
caused by the code not enforcing the same order for con-
current requests that update both the table contents and the
binlog. Thus, when a specific set of statements is sent to
the primary replica, the primary replica updates the table
data by executing the statements in one order but, depend-
ing on the exact interleaving of threads, may write those
statements to the binlog in the reverse order. The result of
this bug to the client is only visible after a fault of the pri-
mary replica occurs (or when clients otherwise contact the
backup replicas). In this case, one of the backups will take
over with a state that diverges from the previously observed
state (in that it reflects a different sequence for transaction
execution) and subsequent results will be incoherent with
those that were previously returned.

In the remainder of this section we will analyze semantic
and latent bugs in more detail. The reason for our focus is
twofold. First, we found these bugs to have a relevant (and
perhaps unexpected) prevalence. Second, and more impor-
tantly, although existing tools are very effective at handling
application crashes (e.g., Rx [28]) and deadlocks (e.g., Dim-
munix [19]), they are not so effective at handling the re-
maining, more subtle types of failures. Thus, there is a re-
search opportunity for improving methods that address this
type of concurrency bug.



4.4 Characteristics of semantic bugs

We further analyzed the incorrect outputs returned by se-
mantic bugs in order to determine how difficult it is to de-
tect them, e.g., using a run-time monitoring tool [30], which
would avoid the use of more expensive techniques such as
BFT replication [10].

Out of all the semantic bugs, we found only one to have
a self-inconsistent output, meaning that the buggy output
clearly deviated from the expected reply. In this particular
bug, the wrong reply returned to clients contains informa-
tion about the contents of a certain table, but at the same
time the reply also contains information that indicates that
the table does not exist in the database.

None of the remaining bugs were self-inconsistent, im-
plying that there are limited benefits from detection tech-
niques that try to validate the correctness of the application
by analyzing the replies.

We further analyzed these results and categorized the
output of semantic bugs into two groups. Some of the bugs
did not fit into either of these groups.

The first group, containing 58% of these bugs, corre-
sponds to outputs that reflect an ordering of previously ex-
ecuted transactions that is inconsistent with the ordering
that was implied in previous replies. The latent bug we
described before where binlog entries were logged in the
wrong order is an example of such a bug: after the primary
becomes faulty, the output of the system reflects the order
in which transactions were recorded in the binlog, which
differs from the order in which they had been originally ex-
ecuted.

The second group, containing 25% of the bugs, corre-
sponds to violations of transactional semantics, in particu-
lar of the isolation property of the transactions. This means
that transaction A could see the intermediate effects of a
concurrent transaction B (e.g., some of the updates made
by transaction B, but not all of them).

Finally, 17% of the semantics bugs did not fall into either
of the previous two categories.

4.5 Internal effects of latent bugs

We also analyzed the set of latent bugs in more detail.
In our analysis, we paid close attention to how the internal
state was being corrupted, so that we could gain better un-
derstanding of the kinds of techniques that can be useful for
detecting the errors before they are exposed to the user and
for recovering the internal state of the application.

First, we determined whether each bug corrupted a sin-
gle high-level data structure, or modified two or more data
structures in an inconsistent way (leaving them in an in-
correct state relative to each other). Only 8% of the latent
concurrency bugs involve a single data structure, and the re-

Data structure Number of bugs Persistent?
Data file 11 Yes
Index file 9 Yes
Definition file 8 Yes
Query cache 7 No
Key cache 6 No∗

Binlog 5 Yes

Table 5. Most frequent data structures in-
volved in latent bugs. ∗ The contents of the
cache can also be written back to disk.

maining 92% involve inconsistency between separate struc-
tures.

Next we analyzed whether the data structures involved
are persistent structures stored on disk or volatile structures
kept in memory. Table 5 shows that the three most affected
data structures are persistent, namely the files that contain
the database contents, the respective indices, and the afore-
mentioned binlog file. We also found a large number of
bugs involving caches that are only stored in main memory.

Note, however, that these results do not allow us to draw
conclusions about the probability that accesses to these data
structures trigger bugs, given that we do not know how often
different structures are accessed (and also we cannot claim
that we have a perfectly representative sample of the exist-
ing bugs).

Note that the numbers in Table 5 do not add up to the
total number of latent bugs because certain bugs affected
more than one data structure, as explained before.

4.6 Recovering from latent errors

We looked at the ability of the application to recover
from latent bugs after they have caused an error (i.e., cor-
rupted the internal state). The recovery mechanisms we
consider in this section are relatively simple ones: we iden-
tified the latent errors that can be recovered by a server
restart or other simple mechanisms (e.g., reloading indexes)
that do not require writing extensive recovery-specific code.
We present the results in Table 6. Note that some bugs allow
more than one simple recovery mechanism.

We found that in one third of the cases it is possible to
use simple mechanisms to recover latent errors such that
they go completely unnoticed by users. This increases the
chances of adopting proactive recovery techniques.

4.7 Severity and fixing complexity

Finally, we compared concurrency bugs belonging to dif-
ferent categories with respect to their severity and to the
complexity of fixing them, according to the bug report fields



Number of bugs
No simple recovery mechanism 8
Allow for simple recovery: 4

Server restart 4
Other mechanisms 3

Table 6. Recovery mechanisms for latent con-
currency bugs.

Bug immediacy Severity
Latent 2
Non-latent 2.2

Bug category Severity
Deadlock 2.3
Crash 1.7
Error 2.4
Hang 2
Performance 3
Semantic 2.2

Table 7. Average severity of concurrency
bugs according to their immediacy and cat-
egory. Maximum severity is rated as 1 (i.e.,
critical bug) while minimum severity is rated
as 5.

that specify these properties. Additionally, we also com-
pared non-latent bugs against latent bugs with respect to
these two properties.

The average severity of bugs is compared in Table 7. The
results show that latent bugs were considered to be slightly
more severe on average than non-latent bugs. In the ranking
of severity by external effects, crash bugs were found to be
the most severe while, as expected, performance bugs were
found to be the least severe.

For the complexity of fixing concurrency bugs we used
four metrics that we extracted from the bug reports: time to
fix the bug, number of patching attempts, number of files
changed in the final patch, and the number of comments ex-
changed in the bug reports. Although none of these metrics
is perfect, in combination they help us estimate the com-
plexity of fixing these bugs. We present a comparison of
the four complexity metrics in Table 8. Since some of these
fields contain significant outliers, in addition to presenting
the average for all four metrics we also present the median.

Our analysis of the fixing complexity revealed a surpris-
ing result: non-latent bugs were found to be more complex
to fix than latent bugs in all metrics except for the number
of patches. We do not have a clear explanation, so we defer
study of the reasons for this to future work.

Bug immediacy Time Patches Files Disc.
Latent 114/79 3.8/2 2.3/1 10.4/7.5
Non-latent 137/90 2.7/2 3.9/1 11.6/9

Bug category Time Patches Files Disc.
Deadlock 125/90 1.9/2 1.5/1 9.3/9
Crash 128/83 3.5/2 7.7/3 12.9/11
Error 150/94 3.0/2 4.4/4 17.0/11
Hang 210/116 4.5/2 3.8/2 13.2/11
Performance 125/92 1.4/2.5 1.8/2 8.2/6
Semantic 108/67 3.8/2 2.2/1 10.5/8

Table 8. Complexity of fixing concurrency
bugs according to their immediacy and cat-
egory. For each class of bugs we present the
average/median for each of the four metrics:
time in days, number of patches, number of
files in the patches and the number of com-
ments in the discussion.

5 Discussion and limitations

One of the results of our study is that the percentage of
concurrency bugs present in the bug database is low. This
is not very surprising, since it has long been believed that
concurrency bugs are underrepresented. The fact that con-
currency bugs are hard to observe and reproduce (in fact
they are commonly referred to as Heisenbugs [15]) is likely
to contribute to their underrepresentation in bug databases
for three main reasons. First, when users are faced with
the bug a single time they may not even be sure that it is
a problem with the software and might not report it at all.
Second, even when users are able to reproduce bugs on their
machines, it might not be possible to reproduce the bug in
the developer’s environment due to small differences in the
environments. Third, even if developers manage to repro-
duce the bug, they might not be able to systematically re-
produce it using traditional debugging methods, since some
debugging tools and methods might interfere with the re-
producibility of the bug.

In this work we focused our attention on concurrency
bugs found in the MySQL application. A previous paper
compared concurrency and non-concurrency bugs of three
different database systems including MySQL [32]. It con-
cluded that the three different database systems exhibiteda
very similar proportion of crash vs. non-crash faults (i.e.,
a bit over half of the bugs led to non-crash faults in each
database system). While not conclusive, this leads us to be-
lieve that the bug patterns we found in MySQL might also
apply to other database systems. More analyses are required
to confirm whether this is in fact the case.

On the other hand, it seems less likely that these results
can be generalized to arbitrary multi-threaded applications.



Applications can be very different (e.g., some have graph-
ical user interfaces while others do not, some applications
use the client-server model while others do not). As an ex-
ample, from the data collected in another study [22] that
compared different applications, about half of the deadlocks
found in MySQL involved only 1 resource while almost all
of the deadlocks found in Mozilla involved 2 or more re-
sources. Given the very different characteristics of applica-
tions, we believe that the conclusions that we present here
are unlikely to be generalizable to arbitrary multi-threaded
applications.

The number of bugs analyzed in this study is compara-
ble to the number of bugs analyzed in other related stud-
ies [11, 22, 32]. However, it is worth noting that our results
could potentially suffer from two sources of bias. First, our
sample, in absolute terms, is small. Obviously, this limits
the confidence in the results, but at the same time it is a
limitation that is difficult to overcome due to the time re-
quired to gather the data and the amount of data available.
(This is a limitation shared by previous studies.) Second, we
only analyzed bugs that were documented and fixed. This
means we did not account for bugs that were not fixed (or
even found), nor bugs that were fixed but not documented.
We believe that these biases are very difficult to overcome
given the nature of bugs in general but specifically given
the nature of concurrency bugs. Nevertheless, more studies
are desirable to improve our understanding of concurrency
bugs.

6 Related Work

Given the importance of software reliability and the
prevalence of bugs in software in general, many studies
about bugs have previously been undertaken.

There is a large body of literature about the propaga-
tion [33] and even prediction [24] of bugs in source code.
Some of these studies use the revision control system to
understand the behavior of programmers and its effects on
software reliability (e.g., which components or source code
files are most prone to errors). This work is complemen-
tary to the work presented in this paper, which is focused
on a specific class of bugs (i.e., concurrency bugs) and on
understanding their consequences.

In a previous paper, researchers analyzed the conse-
quences of bugs for three different database systems [32].
However the authors did not distinguish between con-
currency and non-concurrency bugs, and only evaluated
whether they caused crash or Byzantine faults (since that
paper was focused on presenting a replication architecture,
instead of being focused on studying bugs). In contrast, we
provide a detailed analysis of the effects of the bugs and we
focus on concurrency bugs.

Chandra et al. [11] looked at bug databases of three open-

source applications (including MySQL) but the focus of
their work was quite different from ours. They analyzed all
bugs (among which only 12 were concurrent) and focused
exclusively on determining whether generic recovery tech-
niques such as process pairs would be effective in tolerating
them. In their case, concurrency bugs were only one pos-
sible type of bug that fell into the category for which such
techniques are effective. In contrast, we focus on a more
narrow class of bugs by limiting ourselves to concurrency
bugs, but provide a broader analysis taking into considera-
tion several characteristics of these bugs.

Farchi et al. analyzed concurrency bugs, but by artifi-
cially creating them [14]. The methodology adopted by
the study was to ask programmers to write programs con-
taining concurrency bugs, which arguably may not lead to
bugs that are representative of real world problems. In con-
trast, we analyze a database of bugs in a widely used, well-
maintained application.

Recently Lu et al. [22] studied real concurrency bugs that
were found in four open source applications. Using the re-
spective bug report databases, the authors analyzed a total
of 105 concurrency bugs. Their study focused on several
aspects of the causes of concurrency bugs, and the study of
their effects was limited to determining whether they caused
deadlocks or not. We build on this study, in particular by
using a very similar methodology for deciding which bugs
to analyze, but provide a complementary angle by studying
the effects of concurrency bugs (e.g., whether concurrency
bugs are latent or not, or what type of failures they cause).

There also exist various studies of bug characteristics
in software systems focusing on several aspects of generic
bugs [12, 16, 21, 25, 31]. In contrast, our study focuses
specifically on concurrency bugs, which are more challeng-
ing to analyze.

Recently Sahoo et al. have been trying to understand the
reproducibility of bugs [29]. While the main focus of their
study was not concurrency bugs, the authors distinguished
concurrency bugs from non-concurrency bugs when trying
to characterize their reproducibility.

Finally, there exist many proposals for handling concur-
rency bugs. These represent not only different techniques,
but also very different approaches to improving software re-
liability. They include approaches to avoid bugs [17], to
find bugs [13], to mask bugs [32] and even to recover from
bugs [9]. Because concurrency bugs, in addition to being
dependent on the input, are also dependent on the interleav-
ing chosen by the operating system, there are approaches
that specifically handle concurrency bugs by artificially dis-
turbing [6], controlling [23] or limiting [7] thread interleav-
ings. Our work is complementary in that it has the potential
to guide and motivate the development of these kinds of
techniques and approaches.



7 Conclusion

Concurrency bugs pose a challenge in the development
of reliable applications. Concurrency bugs are a type of bug
that is likely to become more and more prevalent in the de-
velopment life cycle as applications become more concur-
rent to take advantage of parallelism in the hardware.

To gain a better understanding of this problem, we pre-
sented a study of concurrency bugs in MySQL. In contrast
to previous studies, we focused on the effects of concur-
rency bugs rather than on their causes.

Studying how bugs manifest enabled us to produce some
interesting findings, such as a high prevalence of latent bugs
that silently corrupt data structures but may take longer to
become externally visible, and a strong correlation between
latent bugs and bugs that cause Byzantine failures.

We hope that our study can open interesting avenues for
future research. In particular, we intend to develop tools that
address the issue of latent bugs from two different angles.
First, we need to develop better ways to find these bugs dur-
ing the course of testing. We intend to develop better tools
for catching the subtle corruption of internal state causedby
the kinds of bugs we analyzed. Second, latent bugs provide
an interesting opportunity to develop techniques that detect
them and heal the service state before the buggy output is
seen by clients.
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