
CNTR: Lightweight OS Containers

Jörg Thalheim, Pramod Bhatotia
University of Edinburgh

Pedro Fonseca
University of Washington

Baris Kasikci
University of Michigan

Abstract
Container-based virtualization has become the de-facto

standard for deploying applications in data centers.
However, deployed containers frequently include a
wide-range of tools (e.g., debuggers) that are not required
for applications in the common use-case, but they
are included for rare occasions such as in-production
debugging. As a consequence, containers are significantly
larger than necessary for the common case, thus increasing
the build and deployment time.

CNTR1 provides the performance benefits of lightweight
containers and the functionality of large containers by
splitting the traditional container image into two parts: the
“fat” image — containing the tools, and the “slim” image
— containing the main application. At run-time, CNTR
allows the user to efficiently deploy the “slim” image and
then expand it with additional tools, when and if necessary,
by dynamically attaching the “fat” image.

To achieve this, CNTR transparently combines the two
container images using a new nested namespace, without
any modification to the application, the container manager,
or the operating system. We have implemented CNTR in
Rust, using FUSE, and incorporated a range of optimiza-
tions. CNTR supports the full Linux filesystem API, and
it is compatible with all container implementations (i.e.,
Docker, rkt, LXC, systemd-nspawn). Through extensive
evaluation, we show that CNTR incurs reasonable perfor-
mance overhead while reducing, on average, by 66.6% the
image size of the Top-50 images available on Docker Hub.

1 Introduction
Containers offer an appealing, lightweight alternative to
VM-based virtualization (e.g., KVM, VMware, Xen) that
relies on process-based virtualization. Linux, for instance,
provides the cgroups and namespaces mechanisms
that enable strong performance and security isolation
between containers [24]. Lightweight virtualization is

1Read it as “center”.

fundamental to achieve high efficiency in virtualized
datacenters and enables important use-cases, namely
just-in-time deployment of applications. Moreover,
containers significantly reduce operational costs through
higher consolidation density and power minimization,
especially in multi-tenant environments. Because of all
these advantages, it is no surprise that containers have seen
wide-spread adoption by industry, in many cases replacing
altogether traditional virtualization solutions [17].

Despite being lightweight, deployed containers often
include a wide-range of tools such as shells, editors,
coreutils, and package managers. These additional tools
are usually not required for the application’s core function
— the common operational use-case — but they are
included for management, manual inspection, profiling,
and debugging purposes [64]. In practice, this significantly
increases container size and, in turn, translates into
slower container deployment and inefficient datacenter
resource usage (network bandwidth, CPU, RAM and disk).
Furthermore, larger images degrade container deployment
time [52, 44]. For instance, previous work reported that
downloading container images account for 92% of the de-
ployment time [52]. Moreover, a larger code base directly
affects the reliability of applications in datacenters [50].

Given the impact of using large containers, users
are discouraged from including additional tools that
would otherwise simplify the process of debugging,
deploying, and managing containers. To mitigate this
problem, Docker has recently adopted smaller run-times
but, unfortunately, these efforts come at the expense of
compatibility problems and have limited benefits [13].

To quantify the practical impact of additional tools on
the container image size, we employed Docker Slim [11]
on the 50 most popular container images available on
the Docker Hub repository [10]. Docker Slim uses a
combination of static and dynamic analyses to generate
smaller-sized container images, in which, only files
needed by the core application are included in the final
image. The results of this experiment (see Figure 5) are

encouraging: we observed that by excluding unnecessary
files from typical containers it is possible to reduce the
container size, on average, by 66.6%. Similarly, others
have found that a only small subset (6.4%) of the container
images is read in the common case [53].

CNTR addresses this problem2 by building lightweight
containers that still remain fully functional, even in uncom-
mon use-cases (e.g., debugging and profiling). CNTR en-
ables users to deploy the application and its dependencies,
while the additional tools required for other use-cases are
supported by expanding the container “on-demand”, dur-
ing runtime (Figure 1 (a)). More specifically, CNTR splits
the traditional container image into two parts: the “fat” im-
age containing the rarely used tools and the “slim” image
containing the core application and its dependencies.

During runtime, CNTR allows the user of a container to
efficiently deploy the “slim” image and then expand it with
additional tools, when and if necessary, by dynamically
attaching the “fat” image. As an alternative to using a “fat”
image, CNTR allows tools from the host to run inside the
container. The design of CNTR simultaneously preserves
the performance benefits of lightweight containers and
provides support for additional functionality required by
different application workflows.

The key idea behind our approach is to create a new
nested namespace inside the application container (i.e.,
“slim container”), which provides access to the resources in
the “fat” container, or the host, through a FUSE filesystem
interface. CNTR uses the FUSE system to combine the
filesystems of two images without any modification to the
application, the container implementation, or the operating
system. CNTR selectively redirects the filesystem requests
between the mount namespace of the container (i.e., what
applications within the container observe and access) and
the “fat” container image or the host, based on the filesys-
tem request path. Importantly, CNTR supports the full
Linux filesystem API and all container implementations
(i.e., Docker, rkt, LXC, systemd-nspawn).

We evaluated CNTR across three key dimensions:
(1) functional completeness – CNTR passes 90 out of
94 (95.74%) xfstests filesystem regression tests [14]
supporting applications such as SQLite, Postgres, and
Apache; (2) performance – CNTR incurs reasonable over-
heads for the Phoronix filesystem benchmark suite [18],
and the proposed optimizations significantly improve
the overall performance; and lastly, (3) effectiveness –
CNTR’s approach on average results in a 66.6% reduction
of image size for the Top-50 images available on Docker
hub [10]. We have made publicly available the CNTR
implementation along with the experimental setup [6].

2Note that Docker Slim [11] does not solve the problem; it simply
identifies the files not required by the application, and excludes them from
the container, but it does not allow users to access those files at run-time.

2 Background and Motivation
2.1 Container-Based Virtualization
Containers consist of a lightweight, process-level form
of virtualization that is widely used and has become a cor-
nerstone technology for datacenters and cloud computing
providers. In fact, all major cloud computing providers
(e.g., Amazon [2], Google [16] and Microsoft [4]) offer
Containers as a Service (CaaS).

Container-based virtualization often relies on three
key components: (1) the OS mechanism that enforces
the process-level isolation (e.g., the Linux cgroups [41]
and namespaces [40] mechanisms), (2) the application
packaging system and runtime (e.g., Docker [9], Rkt [38]),
and (3) the orchestration manager that deploys, distributes
and manages containers across machines (e.g., Docker
Swarm [12], Kubernetes [22]). Together, these com-
ponents enable users to quickly deploy services across
machines, with strong performance and security isolation
guarantees, and with low-overheads.

Unlike VM-based virtualization, containers do not
include a guest kernel and thus have often smaller memory
footprint than traditional VMs. Containers have important
advantages over VMs for both users and data centers:

1. Faster deployment. Containers are transferred and
deployed faster from the registry [44].

2. Lower resource usage. Containers consume fewer
resources and incur less performance overhead [62].

3. Lower build times. Containers with fewer binaries
and data can be rebuilt faster [64].

Unfortunately, containers in practice are still unnecessar-
ily large because users are forced to decide which auxiliary
tools (e.g. debugging, profiling, etc.) should be included
in containers at packaging-time. In essence, users are cur-
rently forced to strike a balance between lightweight con-
tainers and functional containers, and end up with contain-
ers that are neither as light nor as functional as desirable.

2.2 Traditional Approaches to Minimize Containers
The container-size problem has been a significant source
of concern to users and developers. Unfortunately, existing
solutions are neither practical nor efficient.

An approach that has gained traction, and has been
adopted by Docker, consists of packing containers using
smaller base distributions when building the container
runtime. For instance, most of Docker’s containers are
now based on the Alpine Linux distribution [13], resulting
in smaller containers than traditional distributions. Alpine
Linux uses the musl library, instead of libc, and bundles
busybox , instead of coreutils — these differences
enable a smaller container runtime but at the expense of
compatibility problems caused by runtime differences.
Further, the set of tools included is still restricted and
fundamentally does not help users when less common
auxiliary tools are required (e.g., custom debugging tools).

The second approach to reduce the size of containers
relies on union filesystems (e.g., UnionFS [60]). Docker,
for instance, enables users to create their containers on
top of commonly-used base images. Because such base
images are expected to be shared across different contain-
ers (and already deployed in the machines), deploying the
container only requires sending the diff between the base
image and the final image. However, in practice, users still
end up with multiple base images due to the use of different
base image distributions across different containers.

Another approach that has been proposed relies on the
use of unikernels [57, 58], a single-address-space image
constructed from a library OS [61, 49, 65]. By removing
layers of abstraction (e.g., processes) from the OS, the
unikernel approach can be leveraged to build very small
virtual machines—this technique has been considered as
containerization because of its low overhead, even though
it relies on VM-based virtualization. However, unikernels
require additional auxiliary tools to be statically linked into
the application image; thus, it leads to the same problem.

2.3 Background: Container Internals
The container abstraction is implemented by a userspace
container run-time, such as Docker [9], rkt [38] or
LXC [37]. The kernel is only required to implement a set
of per-process isolation mechanisms, which are inherited
by child processes. This mechanism is in turn leveraged
by container run-times to implement the actual container
abstraction. For instance, applications in different
containers are isolated and have all their resources bundled
through their own filesystem tree. Crucially, the kernel
allows the partitioning of system resources, for a given
process, with very low performance overhead thus
enabling efficient process-based virtualization.

The Linux operating system achieves isolation through
an abstraction called namespaces. Namespaces are
modular and are applied to individual processes inherited
by child processes. There are seven namespaces to limit
the scope what a process can access (e.g., filesystem
mountpoints, network interfaces, or process IDs[40]).

During the container startup, by default, namespaces
of the host are unshared. Hence, processes inside the
container only see files from their filesystem image (see
Figure 1 (a)) or additional volumes, that have been
statically added during setup. New mounts on the host
are not propagated to the container since by default, the
container runtime will mount all mount points as private.

2.4 Use-cases of CNTR

We envision three major use cases for CNTR that cover
three different debugging/management scenarios:

Container to container debugging in production.
CNTR enables the isolation of debugging and administra-
tion tools in debugging containers and allows application
containers to use debugging containers on-demand.

Consequently, application containers become leaner,
and the isolation of debugging/administration tools
from applications allows users to have a more consistent
debugging experience. Rather than relying on disparate
tools in different containers, CNTR allows using a single
debugging container to serve many application containers.
Host to container debugging. CNTR allows developers
to use the debugging environments (e.g., IDEs) in their
host machines to debug containers that do not have these
environments installed. These IDEs can sometimes take
several gigabytes of disk space and might be not even
compatible with the distribution of the container image
is based on. Another benefit of using CNTR in this context
is that development environments and settings can be also
efficiently shared across different containers.
Container to host administration and debugging.
Container-oriented Linux distributions such as CoreOS [8]
or RancherOS [30] do not provide a package manager and
users need to extend these systems by installing containers
even for basic system services. CNTR allows a user of a
privileged container to access the root filesystem of the
host operating system. Consequently, administrators can
keep tools installed in a debug container while keeping
the host operating system’s filesystem lean.

3 Design
In this section, we present the detailed design of CNTR.

3.1 System Overview

Design goals. CNTR has the following design goals:
• Generality: CNTR should support a wide-range of

workflows for seamless management and problem
diagnosis (e.g., debugging, tracing, profiling).

• Transparency: CNTR should support these workflows
without modifying the application, the container man-
ager, or the operating system. Further, we want to be
compatible with all container implementations.

• Efficiency: Lastly, CNTR should incur low perfor-
mance overheads with the split-container approach.

Basic design. CNTR is composed of two main compo-
nents (see Figure 1 (a)): a nested namespace, and the
CNTRFS filesystem. In particular, CNTR combines slim
and fat containers by creating a new nested namespace to
merge the namespaces of two containers (see Figure 1 (b)).
The nested namespace allows CNTR to selectively break
the isolation between the two containers by transparently
redirecting the requests based on the accessed path. CNTR
achieves this redirection using the CNTRFS filesystem.
CNTRFS is mounted as the root filesystem (/), and
the application filesystem is remounted to another path
(/var/lib/cntr) in the nested namespace. CNTRFS
implements a filesystem in userspace (FUSE), where the
CNTRFS server handles the requests for auxiliary tools
installed on the fat container (or on the host).

(a) Basic design (b) Example of nested namespace

Access the
application

Fat image

Nested
namespace

Slim container

App
(e.g., MySQL)

Slim image

Fat container (or host)

CntrFS
server

User
#A

Access tool
(e.g., GDB)

#B
Resolve path in
the namespace

#C
Access the tool via FUSE

#D
Serve the tool

Paths forwarded
 via FUSE to the

fat container

/

usr

bin

gdb

var

libcntr

usr

bin

mysql

Bind mount
from the

"slim" container

Tools in the
fat container

Application in the
slim container

...

Figure 1: Overview of CNTR

At a high-level, CNTR connects with the CNTRFS server
via the generic FUSE kernel driver. The kernel driver sim-
ply acts as a proxy between processes accessing CNTRFS,
through Linux VFS, and the CNTRFS server running
in userspace. The CNTRFS server can be in a different
mount namespace than the nested namespace, therefore,
CNTR establishes a proxy between two mount namespaces
through a request/response protocol. This allows a process
that has all its files stored in the fat container (or the host)
to run within the mount namespace of the slim container.

Cntr workflow. CNTR is easy to use. The user simply
needs to specify the name of the “slim” container and, in
case the tools are in another container, the name of the “fat”
container. CNTR exposes a shell to the user that has access
to the resources of the application container as well as the
resources forwarded from the fat container.

Figure 1 (a) explains the workflow of CNTR when a
user requests to access a tool from the slim container
(#A): CNTR transparently resolves the requested path
for the tool in the nested namespace (#B). Figure 1 (b)
shows an example of CNTR’s nested namespace, where
the requested tool (e.g., gdb) is residing in the fat container.
After resolving the path, CNTR redirects the request via
FUSE to the fat container (#C). Lastly, CNTRFS serves
the requested tool via the FUSE interface (#D). Behind
the scenes, CNTR executes the following steps:

1. Resolve container name to process ID and get con-
tainer context. CNTR resolves the name of the un-
derlying container process IDs and then queries the
kernel to get the complete execution context of the
container (container namespaces, environment vari-
ables, capabilities, ...).

2. Launch the CNTRFS server. CNTR launches the
CNTRFS server. CNTR launches the server either
directly on the host or inside the specified “fat” con-
tainer containing the tools image, depending on the
settings that the user specified.

3. Initialize the tools namespace. Subsequently, CNTR
attaches itself to the application container by setting
up a nested mount namespace within the namespace
of the application container. CNTR then assigns a
forked process to the new namespace. Inside the new
namespace, the CNTR process proceeds to mount
CNTRFS, providing access to files that are normally
out of the scope of the application container.

4. Initiate an interactive shell. Based on the configura-
tion files within the debug container or on the host,
CNTR executes an interactive shell, within the nested
namespace, that the user can interact with. CNTR
forwards its input/output to the user terminal (on the
host). From the shell, or through the tools it launches,
the user can then access the application filesystem
under /var/lib/cntr and the tools filesystem in /.
Importantly, tools have the same view on system re-
sources as the application (e.g., /proc, ptrace). Fur-
thermore, to enable the use of graphical applications,
CNTR forwards Unix sockets from the host/debug
container.

3.2 Design Details
This section explains the design details of CNTR.

3.2.1 Step #1: Resolve Container Name and Obtain
Container Context

Because the kernel has no concept of a container name
or ID, CNTR starts by resolving the container name, as
defined by the used container manager, to the process IDs
running inside the container. CNTR leverages wrappers
based on the container management command line tools to
achieve this translation and currently, it supports Docker,
LXC, rkt, and systemd-nspawn.

After identifying the process IDs of the container,
CNTR gathers OS-level information about the container
namespace. CNTR reads this information by inspecting the
/proc filesystem of the main process within the container.

This information enables CNTR to create processes inside
the container in a transparent and portable way.

In particular, CNTR gathers information about the
container namespaces, cgroups (resource usage limits),
mandatory access control (e.g., AppArmor [26] and
SELinux [19] options), user ID mapping, group ID map-
ping, capabilities (fine-grained control over super-user per-
missions), and process environment options. Additionally,
CNTR could also read the seccomp options, but this would
require non-standard kernel compile-time options and
generally has limited value because seccomp options have
significant overlap with the capability options. CNTR reads
the environment variables because they are heavily used
in containers for configuration and service discovery [36].

Before attaching to the container, in addition, to gather
the information about the container context, the CNTR
process opens the FUSE control socket (/dev/fuse).
This file descriptor is required to mount the CNTRFS
filesystem, after attaching to the container.

3.2.2 Step #2: Launch the CNTRFS Server

The CNTRFS is executed either directly on the host or in-
side the “fat” container, depending on the option specified
by the user (i.e., the location of the tools). In the host case
the CNTRFS server simply runs like a normal host process.

In case the user wants to use tools from the “fat”
container, the CNTRFS process forks and attaches itself
to the “fat” container. Attaching to the “fat” container is
implemented by calling the setns() system call, thereby
assigning the child process to the container namespace
that was collected in the previous step.

After initialization, the CNTRFS server waits for a
signal from the nested namespace (Step #3) before it starts
reading and serving the FUSE requests (reading before
an unmounted FUSE filesystem would otherwise return
an error). The FUSE requests then will be read from the
/dev/fuse file descriptor and redirected to the filesystem
of the server namespace (i.e., host or fat container).

3.2.3 Step #3: Initialize the Tools Namespace

CNTR initializes the tool namespace by first attaching to
the container specified by the user—the CNTR process
forks and the child process assigns itself to the cgroup, by
appropriately setting the /sys/ option, and namespace
of the container, using the setns() system call.

After attaching itself to the container, CNTR creates
a new nested namespace, and marks all mountpoints as
private so that further mount events (regarding the nested
namespace) are not propagated back to the container
namespace. Subsequently, CNTR creates a new filesystem
hierarchy for the nested namespace, mounting the
CNTRFS in a temporary mountpoint (TMP/).

Within the nested namespace, the child process
mounts CNTRFS, at TMP/, and signals the parent process

(running outside of the container) to start serving requests.
Signalling between the parent and child CNTR processes
is implemented through a shared Unix socket.

Within the nested namespace, the child process re-
mounts all pre-existing mountpoints, from the application
container, by moving them from / to TMP/var/lib/cntr.
Note that the application container is not affected by this
since all mountpoints are marked as private.

In addition, CNTR also mounts special container-
specific files from the application over files from the tools
or host (using bind mount [42]). The special files include
the pseudo filesystems procfs (/proc), ensuring the
tools can access the container application, and devtmpfs
(/dev), containing block and character devices that
have been made visible to our container. Furthermore,
we bind mount a set of configuration files from the
application container into the temporary directory (e.g.,
/etc/passwd, and /etc/hostname).

Once the new filesystem hierarchy has been created
in the temporary directory, CNTR atomically executes a
chroot turning the temporary directory (TMP/) into the
new root directory (/).

To conclude the container attachment and preserve
the container isolation guarantees, CNTR updates the
remaining properties of the nested namespace: (1) CNTR
drops the capabilities by applying the AppArmor/SELinux
profile and (2) CNTR applies all the environment variables
that were read from the container process; with the
exception of PATH – the PATH is instead inherited from the
debug container since it is often required by the tools.

3.2.4 Step #4: Start Interactive Shell

Lastly, CNTR launches an interactive shell within the
nested namespace, enabling users to execute the tools.
CNTR forwards the shell I/O using a pseudo-TTY, and sup-
ports graphical interface using Unix sockets forwarding.

Shell I/O. Interactive shells perform I/O through standard
file descriptors (i.e., stdin, stdout, and stderr file descrip-
tors) that generally refer to terminal devices. For isolation
and security reasons, CNTR prevents leaking the terminal
file descriptors of the host to a container by leveraging
pseudo-TTYs – the pseudo-TTY acts as a proxy between
the interactive shell and the user terminal device.

Unix socket forwarding. CNTR forwards connections to
Unix sockets, e.g., the X11 server socket and the D-Bus
daemon running on the host. Unix sockets are also visible
as files in our FUSE. However, since our FUSE has inode
numbers that are different from the underlying filesystem,
the kernel does not associate them with open sockets in
the system. Therefore, we implemented a socket proxy
that runs an efficient event loop based on epoll. It uses
the splice syscall to move data between clients in the
application container and servers listening on Unix sockets
in the debug container/host.

3.3 Optimizations
We experienced performance slowdown in CNTRFS
when we measured the performance using the Phoronix
benchmark suite [18] (§5.2). Therefore, we incorporated
the following performance optimizations in CNTR.

Caching: Read and writeback caches. The major perfor-
mance improvement gain was by allowing the FUSE kernel
module to cache data returned from the read requests as
well as setting up a writeback buffer for the writes. CNTR
avoids automatic cache invalidation when a file is opened
by setting the FOPEN KEEP CACHE flag. Without this flag
the cache cannot be effectively shared across different pro-
cesses. To allow the FUSE kernel module to batch smaller
write requests, we also enable the writeback cache by speci-
fying the FUSE WRITEBACK CACHE flag at the mount setup
time. This optimization sacrifices write consistency for
performance by delaying the sync operation. However, we
show that it still performs correctly according to the POSIX
semantics in our regression experiments (see § 5.1).

Multithreading. Since the I/O operations can block, we
optimized the CNTRFS implementation to use multiple
threads. In particular, CNTR spawns independent threads
to read from the CNTRFS file descriptor independently
to avoid contentions while processing the I/O requests.

Batching. In addition to caching, we also batch operations
to reduce the number of context switches. In particular,
we apply the batching optimization in three places:
(a) pending inode lookups, (b) forget requests, and (c)
concurrent read requests.

Firstly, we allow concurrent inode lookups by applying
FUSE PARALLEL DIROPS option on mount. Secondly, the
operating system sends forget requests, when inodes
can be freed up by CNTRFS. The kernel can batch a
forget intent for multiple inodes into a single request. In
CNTR we have also implemented this request type. Lastly,
we set FUSE ASYNC READ to allow the kernel to batch
multiple concurrent read requests at once to improve the
responsiveness of read operations.

Splicing: Read and write. Previous work suggested the
use of splice reads and writes to improve the performance
of FUSE [66]. The idea behind splice operation is to avoid
copying data from and to userspace. CNTR uses splice for
read operations. Therefore, the FUSE userspace process
moves data from the source file descriptor into a kernel
pipe buffer and then to the destination file descriptor with
the help of the splice syscall. Since splice does not
actually copy the data but instead remaps references in the
kernel, it reduces the overhead.

We also implemented a splice write optimization. In
particular, we use a pipe as a temporary storage, where the
data is part of the request, and the data is not read from a
file descriptor. However, FUSE does not allow to read the
request header into userspace without reading the attached

data. Therefore, CNTR has to move the whole request to
a kernel pipe first in order to be able to read the request
header separately. After parsing the header it can move the
remaining data to its designated file descriptor using the
splice operation. However, this introduces an additional
context switch, and slowdowns all FUSE operations since
it is not possible to know in advance if the next request will
be a write request. Therefore, we decided not to enable
this optimization by default.

4 Implementation

To ensure portability and maintainability, we decided not to
rely on container-specific APIs, since they change quite of-
ten. Instead, we built our system to be as generic as possible
by leveraging more stable operating system interfaces. Our
system implementation supports all major container types:
Docker, LXC, systemd-nspawn and rkt. CNTR’s imple-
mentation resolves container names to process ids. Process
ids are handled in an implementation-specific way. On av-
erage, we changed only 70 LoCs for each container imple-
mentation to add such container-specific support for CNTR.

At a high-level, our system implementation consists of
the following four components:

• Container engine (1549 LoC) analyzes the container
that a user wants to attach to. The container engine
also creates a nested mount namespace, where it starts
the interactive shell.

• CNTRFS (1481 LoC) to serve the files from the fat
container. We implemented CNTRFS based on Rust-
FUSE [33]. We extended Rust-FUSE to be able to
mount across mount namespaces and without a dedi-
cated FUSE mount executable.

• A pseudo TTY (221 LoC) to connect the shell
input/output with the user terminal.

• A socket proxy (400 LoC) to forward the Unix socket
connection between the fat (or the host) and slim
containers for supporting X11 applications.

All core system components of CNTR were imple-
mented in Rust (total 3651 LoC). To simplify deployment,
we do not depend on any non-Rust libraries. In this way,
we can compile CNTR as a ∼1.2MB single self-contained
static executable by linking against musl-libc [23].
This design is imperative to ensure that CNTR can run
on container-optimized Linux distributions, such as
CoreOS [8] or RancherOS [30], that do not have a package
manager to install additional libraries.

Since CNTR makes heavy use of low-level filesystem
system calls, we have also extended the Rust ecosystem
with additional 46 system calls to support the complete
Linux filesystem API. In particular, we extended the
nix Rust library [34], a library wrapper around the Lin-
ux/POSIX API. The changes are available in our fork [29].

5 Evaluation
In this section, we present the experimental evaluation of
CNTR. Our evaluation answers the following questions.

1. Is the implementation complete and correct? (§5.1)
2. What are the performance overheads and how

effective are the proposed optimizations? (§5.2)
3. How effective is the approach to reducing container

image sizes? (§5.3)

5.1 Completeness and Correctness
We first evaluate the completeness and correctness claim
of the CNTR implementation. The primary goal is to
evaluate whether CNTR implements the same features
(completeness) as required by the underlying filesystem,
and it follows the same POSIX semantics (correctness).

Benchmark: xfstests regression test suite. For this
experiment, we used the xfstests [14] filesystem
regression test suite. The xfstests suite was originally
designed for the XFS filesystem, but it is now widely used
for testing all of Linux’s major filesystems. It is regularly
used for quality assurance before applying changes to the
filesystem code in the Linux kernel. xfstests contains
tests suites to ensure correct behavior of all filesystem
related system calls and their edge cases. It also includes
crash scenarios and stress tests to verify if the filesystem
correctly behaves under load. Further, it contains many
tests for bugs reported in the past.

Methodology. We extended xfstests to support
mounting CNTRFS. For running tests, we mounted
CNTRFS on top of tmpfs, an in-memory filesystem. We
run all tests in the generic group once.

Experimental results. xfstests consists of 94 unit tests
that can be grouped into the following major categories:
auto, quick, aio, prealloc, ioctl, and dangerous.

Overall, CNTR passed 90 out of 94 (95.74%) unit tests
in xfstests. Four tests failed due minor implementation
details that we currently do not support. Specifically, these
four unit tests were automatically skipped by xfstests

because they expected our filesystem to be backed by a
block device or expected some missing features in the
underlying tmpfs filesystem, e.g. copy-on-write ioctl.
We next explain the reasons for the failed four test cases:

1. Test #375 failed since SETGID bits were not cleared
in chmod when the owner is not in the owning group
of the access control list. This would require man-
ual parsing and interpreting ACLs in CNTR. In our
implementation, we delegate POSIX ACLs to the un-
derlying filesystem by using setfsuid/setfsguid
on inode creation.

2. Test #228 failed since we do not enforce the per-
process file size limits (RLIMIT FSIZE). As replay
file operations and RLIMIT FSIZE of the caller is not
set or enforced in CNTRFS, this has no effect.

3. Test #391 failed since we currently do not support the
direct I/O flag inopen calls. The support for direct I/O
and mmap in FUSE is mutually exclusive. We chose
mmap here, since we need it to execute processes. In
practice, this is not a problem because not all docker
drivers support this feature, including the popular
filesystems such as overlayfs and zfs.

4. Test #426 failed since our inodes are not exportable.
In Linux, a process can get inode references from
filesystems by the name to handle at system call.
However, our inodes are not persisted and are dynami-
cally requested and destroyed by the operating system.
If the operating system no longer uses them, they be-
come invalid. Many container implementations block
this system call as it has security implications.

To summarize, the aforementioned failed test cases are
specific to our current state of the implementation, and they
should not affect most real-world applications. As such,
these features are not required according to the POSIX stan-
dard, but, they are Linux-specific implementation details.

5.2 Performance Overheads and Optimizations
We next report the performance overheads for CNTR’s
split-containers approach (§5.2.1), detailed experimental
results (§5.2.2), and effectiveness of the proposed
optimizations (§5.2.3).

Experimental testbed. To evaluate a realistic envi-
ronment for container deployments [3], we evaluated
the performance benchmarks using m4.xlarge virtual
machine instances on Amazon EC2. The machine type
has two cores of Intel Xeon E5-2686 CPU (4 hardware
threads) assigned and 16GB RAM. The Linux kernel
version was 4.14.13. For storage, we used a 100GB EBS
volume of type GP2 formatted with ext4 filesystem
mounted with default options. GP2 is an SSD-backed
storage and attached via a dedicated network to the VM.

Benchmark: Phoronix suite. For the performance
measurement, we used the disk benchmarks [39] from
the Phoronix suite [18]. Phoronix is a meta benchmark
that has a wide range of common filesystem benchmarks,
applications, and realistic workloads. We compiled the
benchmarks with GCC 6.4 and CNTR with Rust 1.23.0.

Methodology. For the performance comparison, we ran
the benchmark suite once on the native filesystem (the
baseline measurement) and compared the performance
when we access the same filesystem through CNTRFS.
The Phoronix benchmark suite runs each benchmark
at least three times and automatically adds additional
trials if the variance is too high. To compute the relative
overheads with respect to the baseline, we computed
the ratio between the native filesystem access and
CNTRFS (native/cntr) for benchmarks where higher
values are better (e.g. throughput), and the inverse ratio

AIO
-St

res
s

Ap
ac

he
be

nc
h

Co
mpil

eb
.: C

om
p.

Co
mpil

eb
.: C

rea
te

Co
mpil

eb
.: R

ea
d

Dbe
nc

h:
1 C

lie
nts

Dbe
nc

h:
12

 Cl
ien

ts

Dbe
nc

h:
12

8 C
lie

nts

Dbe
nc

h:
48

 Cl
ien

ts
FS

-M
ark FIO Gzip

IOzo
ne

: R
ea

d
IOzo

ne
: W

rite
Po

stM
ark

Pg
be

nc
h

SQ
lite

Th
rea

de
d I

/O
: R

ea
d

Th
rea

de
d I

/O
: W

rite
Un

pa
ck

 ta
rba

ll

0

1

10
Re

la
tiv

e
ov

er
he

ad
2.6x

1.5x
2.3x

7.3x
13.3x

1.4x
0.9x 1.0x 1.0x 1.0x

0.2x

1.0x

2.1x

1.2x

7.1x

0.4x

1.9x

1.1x

0.3x

1.2x

Lower is better

Figure 2: Relative performance overheads of CNTR for the Phoronix suite. The absolute values for each benchmark
is available online on the openbenchmark platform [31].

(cntr/native), where lower values are better (e.g. time
required to complete the benchmark).

5.2.1 Performance Overheads

We first present the summarized results for the entire
benchmark suite. Thereafter, we present a detailed
analysis of each benchmark individually (§5.2.2).

Summary of the results. Figure 2 shows the relative per-
formance overheads for all benchmarks in the Phoronix
test suite. We have made the absolute numbers available
for each benchmark on the openbenchmark platform [31].

Our experiment shows that 13 out of 20 (65%)
benchmarks incur moderate overheads below 1.5×
compared to the native case. In particular, three
benchmarks showed significantly higher overheads,
including compilebench-create (7.3×) and
compilebench-read (13.3×) and the postmark

benchmark (7.1×). Lastly, we also had three benchmarks,
where CNTRFS was faster than the native baseline
execution: FIO (0.2×), PostgreSQL Bench (0.4×) and
the write workload of Threaded I/O (0.3×).

To summarize, the results show the strengths and
weaknesses of CNTRFS for different applications and
under different workloads. At a high-level, we found
that the performance of inode lookups and the double
buffering in the page cache are the main performance
bottlenecks in our design (much like they are for FUSE).
Overall, the performance overhead of CNTR is reasonable.
Importantly, note that while reporting performance
numbers, we resort to the worst-case scenario for CNTR,
where the “slim” application container aggressively uses
the “fat” container to run an I/O-intensive benchmark suite.
However, we must emphasize the primary goal of CNTR:
to support auxiliary tools in uncommon operational
use-cases, such as debugging or manual inspection, which
are not dominated by high I/O-intensive workloads.

5.2.2 Detailed Experimental Results

We next detail the results for each benchmark.

AIO-Stress. AIO-Stress submits 2GB of asynchronous
write requests. In theory, CNTRFS supports asynchronous
requests, but only when the filesystem operates in the
direct I/O mode. However, the direct I/O mode in
CNTRFS restricts the mmap system call, which is required
by executables. Therefore, all requests are, in fact,
processed synchronously resulting in 2.6× slowdown.

Apache Web server. The Apache Web server bench-
mark issues 100K http requests for test files (average
size of 3KB), where we noticed a slowdown of up to 1.5×.
However, the bottleneck was not due to serving the actual
content, but due to writing of the webserver access log,
which triggers small writes (<100 bytes) for each request.
These small requests trigger lookups in CNTRFS of the
extended attributes security.capabilities, since
the kernel currently neither caches such attributes nor it
provides an option for caching them.

Compilebench. Compilebench simulates different
stages in the compilation process of the Linux kernel.
There are three variants of the benchmark: (a) the
compile stage compiles a kernel module, (b) the read

tree stage reads a source tree recursively, and lastly,
(c) the initial creation stage simulates a tarball
unpack. In our experiments, Compilebench has the
highest overhead of all benchmarks with the read tree

stage being the slowest (13.4×). This is due to the fact
that inode lookups in CNTRFS are slower compared to the
native filesystem: for every lookup, we need one open()
system call to get a file handle to the inode, followed by a
stat() system call to check if we already have lookup-ed
this inode in a different path due hardlinks. Usually, after
the first lookup, this information can be cached in the
kernel, but in this benchmark for every run, a different
source tree with many files are read. The slowdown of

Before After
0

20000

40000

60000

T
h
re

a
d

e
d

 r
e
a
d

 [
M

B
/s

]

Before After
0

100

200

300

400

S
e
q

u
e
n
ti

a
l
w

ri
te

 [
M

B
/s

]
Before After

0

200

400

600

800

R
e
a
d
 c

o
m

p
ile

d
 t

re
e
 [

M
B

/s
]

Before After
0

1000

2000

3000

4000

S
e
q

u
e
n
ti

a
l
re

a
d
 [

M
B

/s
]

 (a) Read cache (b) Writeback cache (c) Batching (d) Splicing

Figure 3: Effectiveness of optimizations
(a) Threaded I/O bench - Read (b) IOZone - Sequential write with 4GB (record size 4KB)
(c) Compilebench - Read (d) IOZone - Sequential read 4GB (record size 4KB)

lookups for the other two variants, namely the compile
stage (2.3×) and initial create (7.3×) is lower,
since they are shadowed by write operations.

Dbench. Dbench simulates a file server workload, and it
also simulates clients reading files and directories with
increasing concurrency. In this benchmark, we noticed
that with increasing number of clients, CNTRFS is able to
cache directories and file contents in the kernel. Therefore,
CNTRFS does not incur performance overhead over the
native baseline.

FS-Mark. FS-Mark sequentially creates 1000 1MB files.
Since the write requests are reasonably large (16 KB per
write call) and the workload is mostly disk bound. There-
fore, there is no difference between CNTRFS and ext4.

FIO benchmark. The FIO benchmark profiles a fileserver
and measures the read/write bandwidth, where it issues
80% random reads and 20% random writes for 4GB data
with an average blocksize of 140KB. For this benchmark,
CNTRFS outperforms the native filesystem by a factor
of 4× since the writeback cache leads to fewer and larger
writes to the disk compared to the underlying filesystem.

Gzip benchmark. The Gzip benchmark reads a 2GB file
containing only zeros and writes the compressed version of
it back to the disk. Even though the file is highly compress-
ible,gzip compresses the file slower than the data access in
CNTRFS or ext4. Therefore, there was no significant per-
formance difference between CNTR and the native version.

IOZone benchmark. IOZone performs sequential writes
followed by sequential reads of a blocksize of 4KB. For
the write requests, as in the apache benchmark, CNTR
incurs low overhead (1.2×) due to extended attribute
lookup overheads. Whereas, for the sequential read
request, both filesystems (underlying native filesystem
and CNTRFS) can mostly serve the request from the page
cache. For smaller read sizes (4GB) the read throughput
is comparable for both CNTRFS and ext4 filesystems
because the data fits in the page cache. However, a larger
workload (8GB) no longer fits into the page cache of

CNTRFS and degrades the throughput significantly.

Postmark mailserver benchmark. Postmark simulates
a mail server that randomly reads, appends, creates or
deletes small files. In this benchmark, we observed higher
overhead (7.1×) for CNTR. In this case, inode lookups in
CNTRFS dominated over the actual I/O because the files
were deleted even before they were sync-ed to the disk.

PGBench – PostgreSQL Database Server. PGBench is
based on the PostgreSQL database server. It simulates
both read and writes under normal database load. Like
FIO, CNTRFS was faster in this benchmark also, since
PGBench flushes the writeback buffer less often.

SQLite benchmark. The SQlite benchmark measures
the time needed to insert 1000 rows in a SQL table. We
observed a reasonable overhead (1.9×) for CNTR, since
each insertion is followed by a filesystem sync, which
means that we cannot make efficient use of our disk cache.

Threaded I/O benchmark. The Threaded I/O bench-
mark separately measures the throughput of multiple
concurrent readers and writers to a 64MB file. We
observed good performance for reads (1.1×) and even
better performance for writes (0.3×). This is due to the
fact that the reads can be mostly served from the page
cache, and for the writes, our writeback buffer in the kernel
holds the data longer than the underlying filesystem.

Linux Tarball workload. The Linux tarball

workload unpacks the kernel source code tree from a com-
pressed tarball. This workload is similar to the create
stage of the compilebench benchmark. However, since
the source is read from a single tarball instead of copying
an already unpacked directory, there are fewer lookups
performed in CNTRFS. Therefore, we incur relatively
lower overhead (1.2×) even though many small files are
created in the unpacking process.

5.2.3 Effectiveness of Optimizations

We next evaluate the effectiveness of the proposed
optimizations in CNTR (as described in §3.3).

0 1000 2000 3000 4000
Sequential read [MB/s]

1
2
4
8

16

#T
hr

ea
ds

Figure 4: Multithreading optimization with IOZone: Se-
quential read 500MB/4KB record size with increasing
number of CNTRFS threads.

Read cache. The goal of this optimization is to allow the
kernel to cache pages across multiple processes. Figure 3
(a) shows the effectiveness of the proposed optimization
for FOPEN KEEP CACHE: we observed 10× higher
throughput with FOPEN KEEP CACHE for concurrent reads
with 4 threads for the Threaded I/O benchmark.

Writeback cache. The writeback optimization was
designed to reduce the amount of write requests by
maintaining a kernel-based write cache. Figure 3 (b)
shows the effectiveness of the optimization: CNTR can
achieve 65% more write throughput with the writeback
cache enabled compared to the native I/O performance
for sequential writes for the IOZone benchmark.

Multithreading. We made CNTRFS multi-threaded to im-
prove responsiveness when the filesystem operations block.
While threads improve the responsiveness, their presence
hurts throughput as measured in Figure 4 (up to 8% for
sequential read in IOZone). However, we still require mul-
tithreading to cope with blocking filesystem operations.

Batching. To improve the directory and inode lookups,
we batched requests to kernel by specifying the
PARALLEL DIROPS flag. We observed a speedup of
2.5× in the compilebench read benchmark with this
optimization (Figure 3 (c)).

Splice read. Instead of copying memory into userspace,
we move the file content with the splice() syscall in the
kernel to achieve zero-copy I/O. Unfortunately, we did
not notice any significant performance improvement with
the splice read optimization. For instance, the sequential
read throughput in IOZone improved slightly by just 5%
as shown in Figure 3 (d).

5.3 Effectiveness of CNTR

To evaluate the effectiveness of CNTR’s approach to reduc-
ing the image sizes, we used a tool called Docker Slim [11].

Docker Slim applies static and dynamic analyses to
build a smaller-sized container image that only contains
the files that are actually required by the application.
Under the hood, Docker Slim records all files that have
been accessed during a container run in an efficient way
using the fanotify kernel module.

0 20 40 60 80 100
Reduction [%]

0

2

4

6

8

Co

nt
ai

ne
r

Figure 5: Reduction of container size after applying
docker-slim on Top-50 Docker Hub images.

For our analysis, we extended Docker Slim to support
container links, which are extensively used for service
discovery and it is available as a fork [28].

Dataset: Docker Hub container images. For our
analysis, we chose the Top-50 popular official container
images hosted on Docker Hub [10]. These images are
maintained by Docker and contain commonly used
applications such as web servers, databases and web
applications. For each image, Docker provides different
variants of Linux distributions as the base image. We used
the variant set to be default as specified by the developer.

Note that Docker Hub also hosts container images that
are not meant to be used directly for deploying applications,
but they are meant to be used as base images to build ap-
plications (such as language SDKs or Linux distributions).
Since CNTR targets concrete containerized applications,
we did not include such base images in our evaluation.

Methodology. For our analysis, we instrumented the
Docker container with Docker Slim and manually ran the
application so it would load all the required files. There-
after, we build new smaller containers using Docker Slim.
These new smaller images are equivalent to containers
that developers could have created when having access
to CNTR. We envision the developers will be using a com-
bination of CNTR and tools such as Docker Slim to create
smaller container images. Lastly, we tested to validate that
the smaller containers still provide the same functionality.

Experimental results. On average, we could reduce the
size by 66.6% for the Top-50 Docker images. Figure 5
depicts the histogram plot showcasing percentage of
container size that could be removed in this process. For
over 75% of all containers, the reduction in size was
between 60% and 97%. Beside the applications, these
containers are packaged with common used command
line auxiliary tools, such as coreutils, shells, and package
managers. For only 6 out of 50 (12%) containers, the
reduction was below 10%. We inspected these 6 images
and found out they contain only single executables written
in Go and a few configuration files.

6 Related Work
In this section, we survey the related work in the space of
lightweight virtualization.

Lambda functions. Since the introduction of AWS
Lambda [1], all major cloud computing providers of-
fer serverless computing, including Google Cloud Func-
tions [15], Microsoft Azure Functions [5], IBM Open-
Whisk [20]. Moreover, there exists a research implemen-
tation called Open Lambda [55]. In particular, serverless
computing offers a small language runtime rather than the
full-blown container image. Unfortunately, lambdas offer
limited or no support for interactive debugging or profiling
purposes [63] because the clients have no access to the
lambda’s container or container-management system. In
contrast, the goal of the CNTR is to aim for lightweight con-
tainers, in the same spirit of lambda functions, but to also
provide an on-demand mechanism for auxiliary tools for
debugging, profiling, etc. As a future work, we plan to sup-
port auxiliary tools for lambda functions [43] using CNTR.

Microkernels. The microkernel architecture [54, 46, 56]
shares a lot of commonalities with the CNTR architec-
ture, where the applications/services are horizontally
partitioned and the communication happens via the inter-
process communication (IPC) mechanism. In CNTR, the
application container obtains additional service by commu-
nicating with the “fat” container via IPC using CNTRFS.

Containers. Recently, there has been a lot of interest in
reducing the size of containers, but still allowing access to
the rich set of auxiliary tools. For instance, Toolbox [35] in
CoreOS [7] allows to bind the mount of the host filesystem
in a container to administrate or debug the host system
with installing the tools inside the container. In contrast to
Toolbox, CNTR allows bidirectional access with the debug
container. Likewise, nsenter [27] allows entering into
existing container namespaces, and spawning a process
into a new set of namespaces. However, nsenter only
covers namespaces, and it does not provide the rich set of
filesystem APIs as provided by CNTR. Lastly, Slacker [53]
proposed an opportunistic model to pull images from
registries to reduce the startup times. In particular, Slacker
can skip downloading files that are never requested by
the filesystem. Interestingly, one could also use Slacker
to add auxiliary tools such as gdb to the container in an
“on-demand” fashion. However, Slacker could support
additional auxiliary tools to a container, but these tools
would be only downloaded to the container host, if the
container is started by the user. Furthermore, Slacker also
has a longer build time and greater storage requirements in
the registry. In contrast, CNTR offers a generic lightweight
model for the additional auxiliary tools.

Virtual machines. Virtual machines [25, 47, 51]
provide stronger isolation compared to containers by
running applications and the OS as a single unit. On the

downside, full-fledged VMs are not scalable and resource-
efficient [62]. To strike a balance between the advantages
of containers and virtual machines, Intel Clear Containers
(or Kata Containers) [21] and SCONE [45] offer stronger
security properties for containers by leveraging Intel VT
and Intel SGX, respectively. Likewise, LightVM [59] uses
unikernel and optimized Xen to offer lightweight VMs. In a
similar vein, CNTR allows creating lightweight containers,
which are extensively used in the data center environment.

Unikernels and Library OSes. Unikernels [57, 58]
leverage library OSes [61, 49, 65, 48] to selectively include
only those OS components required to make an application
work in a single address space. Unikernels use a fraction
of the resources required compared to full, multipurpose
operating systems. However, Unikernels also face a
similar challenge as containers — If Unikernels need
additional auxiliary tools, they must be statically linked
in the final image as part of the library OS. Moreover,
unikernel approach is orthogonal since it targets the kernel
overhead, whereas CNTR targets the tools overhead.

7 Conclusion
We presented CNTR, a system for building and deploying
lightweight OS containers. CNTR partitions existing
containers into two parts: “slim” (application) and “fat”
(additional tools). CNTR efficiently enables the application
container to dynamically expand with additional tools in
an on-demand fashion at runtime. Further, CNTR enables
a set of new development workflows with containers:

• When testing the configuration changes, instead of
rebuilding containers from scratch, the developers
can use their favorite editor to edit files in place and
reload the service.

• Debugging tools no longer have to be manually
installed in the application container, but can be
placed in separate debug images for debugging or
profiling in production.

To the best of our knowledge, CNTR is the first generic
and complete system that allows attaching to container
and inheriting all its sandbox properties. We have used
CNTR to debug existing container engines [32]. In our
evaluation, we have extensively tested the completeness,
performance, and effectiveness properties of CNTR. We
plan to further extend our evaluation to include the nested
container design.

Software availability. We have made CNTR along with
the complete experimental setup publicly available [6].

Acknowledgments. We thank our shepherd Swaminathan
Sundararaman and the anonymous reviewers for their
helpful comments. The work is supported in part by
the Alan Turing Institute and an Amazon Web Services
Education Grant.

References
[1] Amazon AWS Lambdas. https://aws.amazon.

com/lambda/.

[2] Amazon Elastic Container Service (ECS). https:
//aws.amazon.com/ecs/.

[3] Amazon’s documentation on EBS volume types.
https://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/EBSVolumeTypes.html.

[4] Azure Container Service (AKS). https:

//azure.microsoft.com/en-gb/services/

container-service/.

[5] Azure Functions. https://azure.microsoft.

com/en-gb/services/functions/.

[6] Cntr homepage. https://github.com/Mic92/

cntr.

[7] Container optimized Linux distribution. https://
coreos.com/.

[8] CoreOS. https://coreos.com/.

[9] Docker. https://www.docker.com/.

[10] Docker repositories. https://hub.docker.com/
explore/.

[11] Docker Slim. https://github.com/docker-

slim/docker-slim.

[12] Docker Swarm. https://www.docker.com/

products/docker-swarm.

[13] Docker switch to Alpine Linux. https://news.

ycombinator.com/item?id=11000827.

[14] File system regression test on linux im-
plemented for all major filesystems.
https://kernel.googlesource.com/

pub/scm/fs/ext2/xfstests-bld/+/HEAD/

Documentation/what-is-xfstests.md.

[15] Google Cloud Functions. https://cloud.

google.com/functions/.

[16] Google Compute Cloud Containers. https:

//cloud.google.com/compute/docs/

containers/.

[17] Google: ’EVERYTHING at Google runs in a
container’. https://www.theregister.co.

uk/2014/05/23/google_containerization_

two_billion/.

[18] Homepage of Phoronix test suite. https:

//www.phoronix-test-suite.com/.

[19] Homepage of SELinux. https://

selinuxproject.org/page/Main_Page.

[20] IBM OpenWhisk. https://www.ibm.com/

cloud/functions.

[21] Intel Clear Containers. https://clearlinux.

org/containers.

[22] Kubernetes. https://kubernetes.io/.

[23] Lightweight standard libc implementation.
https://www.musl-libc.org/.

[24] Linux Containers. https://linuxcontainers.

org/.

[25] Linux Kernel Virtual Machine (KVM). https:

//www.linux-kvm.org/page/Main_Page.

[26] Manual of AppArmor. http://manpages.

ubuntu.com/manpages/xenial/en/man7/

apparmor.7.html.

[27] nsenter. https://github.com/jpetazzo/

nsenter.

[28] Our fork of Docker Slim used for evaluation.
https://github.com/Mic92/docker-slim/

tree/cntr-eval.

[29] Our fork the nix rust library. https:

//github.com/Mic92/cntr-nix.

[30] RancherOS. https://rancher.com/rancher-

os/.

[31] Raw benchmark report generated by phoronix
test suite. https://openbenchmarking.org/

result/1802024-AL-CNTREVALU05.

[32] Root cause analysis in unprivileged nspawn con-
tainer with cntr. https://github.com/systemd/
systemd/issues/6244#issuecomment-

356029742.

[33] Rust library for filesystems in userspace.
https://github.com/zargony/rust-fuse.

[34] Rust library that wraps around the Linux/Posix API.
https://github.com/nix-rust/nix.

[35] Toolbox. https://github.com/coreos/

toolbox.

[36] Twelve-Factor App. https://12factor.net/

config.

[37] Website of the lxc container engine.
https://linuxcontainers.org/.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://azure.microsoft.com/en-gb/services/container-service/
https://azure.microsoft.com/en-gb/services/container-service/
https://azure.microsoft.com/en-gb/services/container-service/
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://github.com/Mic92/cntr
https://github.com/Mic92/cntr
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://www.docker.com/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
https://news.ycombinator.com/item?id=11000827
https://news.ycombinator.com/item?id=11000827
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/compute/docs/containers/
https://cloud.google.com/compute/docs/containers/
https://cloud.google.com/compute/docs/containers/
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://selinuxproject.org/page/Main_Page
https://selinuxproject.org/page/Main_Page
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://clearlinux.org/containers
https://clearlinux.org/containers
https://kubernetes.io/
https://www.musl-libc.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://manpages.ubuntu.com/manpages/xenial/en/man7/apparmor.7.html
http://manpages.ubuntu.com/manpages/xenial/en/man7/apparmor.7.html
http://manpages.ubuntu.com/manpages/xenial/en/man7/apparmor.7.html
https://github.com/jpetazzo/nsenter
https://github.com/jpetazzo/nsenter
https://github.com/Mic92/docker-slim/tree/cntr-eval
https://github.com/Mic92/docker-slim/tree/cntr-eval
https://github.com/Mic92/cntr-nix
https://github.com/Mic92/cntr-nix
https://rancher.com/rancher-os/
https://rancher.com/rancher-os/
https://openbenchmarking.org/result/1802024-AL-CNTREVALU05
https://openbenchmarking.org/result/1802024-AL-CNTREVALU05
https://github.com/systemd/systemd/issues/6244#issuecomment-356029742
https://github.com/systemd/systemd/issues/6244#issuecomment-356029742
https://github.com/systemd/systemd/issues/6244#issuecomment-356029742
https://github.com/zargony/rust-fuse
https://github.com/nix-rust/nix
https://github.com/coreos/toolbox
https://github.com/coreos/toolbox
https://12factor.net/config
https://12factor.net/config
https://linuxcontainers.org/

[38] Website of the rkt container engine. https:

//coreos.com/rkt/.

[39] Wiki page for the Phoronix disk test suite. https:
//openbenchmarking.org/suite/pts/disk.

[40] namespaces(7) Linux User’s Manual, July 2016.

[41] cgroups(7) Linux User’s Manual, September 2017.

[42] mount(8) Linux User’s Manual, September 2017.

[43] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke,
A. Beck, P. Aditya, and V. Hilt. SAND: Towards
High-Performance Serverless Computing. In
Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2018.

[44] A. Anwar, M. Mohamed, V. Tarasov, M. Littley,
L. Rupprecht, Y. Cheng, N. Zhao, D. Skourtis, A. S.
Warke, H. Ludwig, D. Hildebrand, and A. R. Butt.
Improving Docker Registry Design based on Produc-
tion Workload Analysis. In 16th USENIX Conference
on File and Storage Technologies (FAST), 2018.

[45] S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE:
Secure linux containers with intel SGX. In 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[46] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. Fettweis. M3: A Hardware/Operating-System
Co-Design to Tame Heterogeneous Manycores. In
Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[47] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the Art of Virtualization. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[48] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,
J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt.
Composing OS Extensions Safely and Efficiently
with Bascule. In Proceedings of the 8th ACM Eu-
ropean Conference on Computer Systems (EuroSys),
2013.

[49] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe
User-level Access to Privileged CPU Features. In
Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2012.

[50] P. Bhatotia, A. Wieder, R. Rodrigues, F. Junqueira,
and B. Reed. Reliable Data-center Scale Compu-
tations. In Proceedings of the 4th International
Workshop on Large Scale Distributed Systems and
Middleware (LADIS), 2010.

[51] R. J. Creasy. The Origin of the VM/370 Time-sharing
System. IBM J. Res. Dev., 1981.

[52] L. Du, R. Y. Tianyu Wo, and C. Hu. Cider: A Rapid
Docker Container Deployment System through
Sharing Network Storage. In Proceedings of the
19th International Conference on High Performance
Computing and Communications (HPCC), 2017.

[53] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Slacker: Fast Distribu-
tion with Lazy Docker Containers. In 14th USENIX
Conference on File and Storage Technologies
(FAST), 2016.

[54] G. Heiser and K. Elphinstone. L4 Microkernels: The
Lessons from 20 Years of Research and Deployment.
ACM Transaction of Computer Systems (TOCS),
2016.

[55] S. Hendrickson, S. Sturdevant, T. Harter,
V. Venkataramani, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Serverless Computation with
OpenLambda. In 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2016.

[56] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal Verification of an
OS Kernel. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles
(SOSP), 2009.

[57] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. In Proceedings of the Eighteenth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2013.

[58] A. Madhavapeddy and D. J. Scott. Unikernels:
The Rise of the Virtual Library Operating System.
Communication of ACM (CACM), 2014.

[59] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuen-
zer, S. Sati, K. Yasukata, C. Raiciu, and F. Huici. My
VM is Lighter (and Safer) Than Your Container. In
Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

https://coreos.com/rkt/
https://coreos.com/rkt/
https://openbenchmarking.org/suite/pts/disk
https://openbenchmarking.org/suite/pts/disk

[60] D. P. Quigley, J. Sipek, C. P. Wright, and E. Zadok.
UnionFS: User- and Community-oriented Develop-
ment of a Unification Filesystem. In Proceedings
of the 2006 Linux Symposium (OLS), 2006.

[61] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and
J. Appavoo. EbbRT: A Framework for Building
Per-Application Library Operating Systems. In 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[62] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay.
Containers and Virtual Machines at Scale: A Compar-
ative Study. In Proceedings of the 17th International
Middleware Conference (Middleware), 2016.

[63] J. Thalheim, P. Bhatotia, and C. Fetzer. INSPEC-
TOR: Data Provenance Using Intel Processor Trace
(PT). In IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), 2016.

[64] J. Thalheim, A. Rodrigues, I. E. Akkus, R. C.
Pramod Bhatotia, B. Viswanath, L. Jiao, and C. Fet-
zer. Sieve: Actionable Insights from Monitored
Metrics in Distributed Systems. In Proceedings of
Middleware Conference (Middleware), 2017.

[65] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen,
J. John, H. A. Kalodner, V. Kulkarni, D. Oliveira,
and D. E. Porter. Cooperation and Security Isolation
of Library OSes for Multi-process Applications. In
Proceedings of the Ninth European Conference on
Computer Systems (EuroSys), 2014.

[66] B. K. R. Vangoor, V. Tarasov, and E. Zadok. To
FUSE or Not to FUSE: Performance of User-Space
File Systems. In 15th USENIX Conference on File
and Storage Technologies (FAST), 2017.

	Introduction
	Background and Motivation
	Container-Based Virtualization
	Traditional Approaches to Minimize Containers
	Background: Container Internals
	Use-cases of Cntr

	Design
	System Overview
	Design Details
	Step #1: Resolve Container Name and Obtain Container Context
	Step #2: Launch the CntrFS Server
	Step #3: Initialize the Tools Namespace
	Step #4: Start Interactive Shell

	Optimizations

	Implementation
	Evaluation
	Completeness and Correctness
	Performance Overheads and Optimizations
	Performance Overheads
	Detailed Experimental Results
	Effectiveness of Optimizations

	Effectiveness of Cntr

	Related Work
	Conclusion

