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Abstract

Kernel fuzzers rely heavily on program mutation to automat-
ically generate new test programs based on existing ones.
In particular, program mutation can alter the test’s control
and data flow inside the kernel by inserting new system
calls, changing the values of call arguments, or performing
other program mutations. However, due to the complexity
of the kernel code and its user-space interface, finding the
effective mutation that can lead to the desired outcome such
as increasing the coverage and reaching a target code loca-
tion is extremely difficult, even with the widespread use of
manually-crafted heuristics.

This work proposes SNowpLOw, a kernel fuzzer that uses
a learned white-box test mutator to enhance test mutation.
The core of SNowpLOW is an efficient machine learning
model that can learn to predict promising mutations given
the test program to mutate, its kernel code coverage, and
the desired coverage. SNowpLOW is demonstrated on argu-
ment mutations of the kernel tests, and evaluated on re-
cent Linux kernel releases. When fuzzing the kernels for 24
hours, SNowpLow shows a significant speedup of discover-
ing new coverage (4.8xX~5.2X) and achieves higher overall
coverage (7.0%~8.6%). In a 7-day fuzzing campaign, SNow-
pLow discovers 86 previously-unknown crashes. Further-
more, the learned mutator is shown to accelerate directed
kernel fuzzing by reaching 19 target code locations 8.5X
faster and two additional locations that are missed by the
state-of-the-art directed kernel fuzzer.

CCS Concepts: « Security and privacy — Operating sys-
tems security; - Software and its engineering — Soft-
ware defect analysis.
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1 Introduction

Kernel fuzzers [26, 28, 30] test the kernel by running user-
space programs that invoke kernel APIs (i.e., system calls). To
automatically generate new kernel tests, modern fuzzers rely
heavily on mutation techniques [8, 34, 46] that create new
tests by progressively applying minor changes—such as new
system call invocations and new argument values—to a base
test program. By focusing on minor and controlled changes at
each test generation, fuzzers can systematically discover new
ways to invoke system calls in the base test and increase the
likelihood of reaching new kernel branches [32, 53] missed
by the base test but reachable with slightly different initial
conditions (e.g., different system-call arguments), therefore
testing the kernel more comprehensively.

However, effectively mutating the base test to exercise new
kernel code remains challenging due to a dauntingly large
search space rooted in the complexity of the kernel APIs (i.e.,
system calls). For mutations that try to insert new system
calls, hundreds of system calls are available to choose from,
but only a few of them are effective in changing the behavior
of existing calls [9, 35, 46], and such control dependencies are
often implicit and under-documented [1, 27, 38, 46]. For ar-
gument mutations, although system calls may seem to input
a limited number of arguments at first glance, each argument
can further encode several sub-level arguments [32, 33] via
data structures such as nested struct, different types, dif-
ferent memory stances, etc. Together, they contribute to a
non-trivial search space—a kernel test on average contains
more than 60 arguments available for mutation (§5.1).

Modern kernel fuzzers employ heuristics and random-
ness [15, 21, 27, 38, 41, 46, 52, 53] to explore the vast argu-
ment search space. For example, Syzkaller [26]—the state-
of-the-art kernel fuzzer—uses heuristics to assign weights
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to different mutation choices (e.g., which system calls to
insert) and then makes decisions semi-randomly, favoring
options prioritized by heuristics while occasionally choos-
ing de-prioritized ones in case heuristics are imperfect. This
strategy allows Syzkaller to rapidly generate new tests, but it
bears efficiency challenges in finding effective mutations in
the extensive search space. According to our measurements
(§5.1), Syzkaller on average can only discover 44 new tests
that trigger kernel branches missed by the base test after
1000 argument mutations of the base.

White-box mutation techniques [3, 17, 20] are promising
to fundamentally address the challenges of test mutation in
complex systems, like kernels. For every test to mutate, the
white-box mutator performs precise analysis of the executed
kernel code path, solves the constraints of the uncovered
branches and guides the test mutations accordingly. Build-
ing such a mutator typically requires heavyweight methods
such as symbolic execution [5, 10, 12, 39, 55]. However, the
high cost and poor scalability of such approaches prevent
kernel fuzzers from using them as a first-option mutator,
opting instead to use them as a fallback mechanism to exist-
ing heuristics [11, 29, 44, 55]. For example, HFL [32], which
employs symbolic execution to assist kernel test genera-
tion, only invokes the symbolic engine when certain kernel
branches are repeatedly missed by Syzkaller, at which point
significant testing resources were already wasted.

This paper proposes SNOwPLOW, a kernel fuzzer that uses
a learned white-box mutator to mutate kernel tests. SNow-
pLOW pursues the direction of symbolizing the kernel test
using machine learning. The core of SNOwWPLOW is a new ML
model architecture called Program Mutation Model (PMM).
PMM takes the kernel test (i.e., a user-space program), its
kernel coverage (kernel code blocks triggered by that test),
and the desired target coverage (i.e., a block not covered yet)
as input, and predicts mutations that lead to the target cov-
erage. PMM bridges the gap between the precise successful
mutations that kernel fuzzers discover through thousands
of trials and the lack of effective methods to memorize and
generalize these mutation strategies, making an accurate and
scalable white-box mutator for the kernel test feasible.

We present PMM focusing on a case study of argument
mutations specifically, one of the mutation types that in-
crease coverage the most in existing gray-box fuzzers. We
train PMM using a dataset of successful argument mutations
discovered on the real-world kernel, on the task of identi-
fying which arguments, when mutated, would lead the test
to reach the desired target coverage. Then, we build SNow-
PLOW to orchestrate the argument mutations of a pre-existing
kernel fuzzer, while leaving other mutation types to their
existing handcrafted mutations and heuristics. Although we
demonstrate the value of PMM in the context of argument
mutations, it could potentially be used to learn most test
mutation types used in modern kernel fuzzers (§6), and is
composable with diverse types of hand-crafted heuristics.
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SnowpLow is evaluated on recent stable Linux kernel re-
leases. First, when fuzzing the same kernel we trained on,
SnowpLow can speed up the discovery of edge coverage
by 5.2x and achieve 7.0% higher overall edge coverage in
a repeated 24-hour side-by-side comparison to Syzkaller.
Second, SNowPLOW can generalize to newer kernels after
the one we trained on without re-training or fine-tuning.
In a 24-hour comparison, SNOWPLOW on average achieves
>4.8% speedup and 7.7%~8.6% higher overall edge coverage.
Third, in a 7-day side-by-side fuzzing campaign, SNOWpPLOW
discovers 86 new crashes (57 with reproducers) in stable ker-
nels, whereas Syzkaller did not; these crashes have not been
discovered during the continuous fuzzing efforts of Linux
kernels, run by the kernel-developer community. Finally, the
learned mutator can significantly improve directed kernel
fuzzing, which is a special mode of fuzzing that focuses on
testing certain code regions instead of all, e.g., to validate
a patch before accepting it. In an experiment that aims to
reach certain code locations in the kernel, PMM introduces
an average speedup of 8.5X on 19 unique target code loca-
tions while reaching 2 additional locations that are missed
by the state-of-the-art.

This paper makes the following contributions:

e A design of a machine learning model that learns
successful mutations of the kernel test. SNow-
pLow introduces PMM, which inputs both the user-
space test program and the kernel code to reason about
and learn from the mutation.

¢ An implementation of an ML-based white-box
kernel test mutator. This includes discovering and
building a dataset of real-kernel test program muta-
tions, implementing and training PMM, and integrat-
ing it into modern kernel fuzzers.

e An evaluation of the ML-based white-box mu-
tator. SNowPLow is evaluated to fuzz recent stable
Linux kernel releases. SNowPLOW not only can stably
achieve higher coverage on recent kernels, but also
helps discover 86 unique new crashes. We conducted
a manual analysis on these crashes, analyzed a subset
in detail, and reported our analysis results with kernel
developers. As of this writing, we diagnosed and re-
ported 7 crashes, of which 4 have been confirmed and
2 have been fixed.

Snowplow is publicly available®.

2 Motivation

A kernel test is a small user-space program that makes system-
call invocations. Such tests are generated and executed by
kernel fuzzer tools, like Syzkaller, in a fuzzing loop, with a
goal of increasing code coverage in the kernel internals or,
even better, triggering new crashes indicating a potential
unknown bug. Much of the logic in kernel fuzzers is carefully

1SNOWPLOW implementation: https://github.com/rssys/snowplow
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constructed by system experts with accrued mastery in what
mutations of a test might uncover new, suspect behaviors.
The general problem we target is using machine learning to
control such programmatic mutation logic, to achieve high
coverage faster and to find more crashing tests.

Figure 1 abstracts the fuzzing logic using Python as pseu-
docode. The main fuzzing loop (function fuzz_corpus) in-
volves picking a test from a corpus of known and previously-
executed tests (line 9), mutating the chosen test (line 13),
executing the mutated test (line 17), and either reporting a
crash if one is triggered (line 19), or measuring the result-
ing increase in code coverage (line 22). A fuzzing campaign
can be undirected—any code block in the control-flow graph
of the kernel is desirable to cover (line 4)—or directed to
some interesting given targets (line 6), such as code blocks
changed recently. Given the result and any new coverage
from execution, the fuzzer decides whether to include the
newly generated test into the corpus, to mutate the chosen
test again, or to pick another test to mutate from the cor-
pus (line 20). Prior work has studied how to optimize these
high-level decisions (the control functions choose_test and
update_corpus in our pseudocode) for Syzkaller (e.g., SyzVe-
gas [52]); in this work, we focus on the test-mutation part of
this workflow in particular (function mutate_test).

When facing an input test to mutate, a specialized muta-
tion engine such as Syzkaller considers three fundamental
policy decisions, captured in the pseudocode for mutate_test
(line 25): (1) what kind of mutation to perform (type selection,
line 28), (2) where to apply this mutation on the incoming
test (localization, line 29), and (3) how to perform the chosen
mutation type at the chosen location (instantiation, line 31).
Syzkaller and other mutation engines provide a number of
actual mutation strategies (e.g., randomize a flag value, re-
place an integer with a constant, move a pointer inside a
buffer, etc.), and once an instantiation strategy is chosen, it
can then be applied to the test under mutation (line 34).

Consider the incoming test at the top of Figure 3. Type
selection decided to mutate one of the system call arguments,
as opposed to adding or removing a system call, or some
other high-level mutation type. Localization decided to per-
form argument mutation on the second argument of the first
system call, as opposed to any other argument of open or
read. Instantiation decided to turn the O_CREAT value in that
argument to O_CREAT | O_RDWR, as opposed to any other valid
flag setting for the open system call.

Mutation experts study and encode the domain of each
of these choices. For example, Syzkaller uses a specialized
language, Syzlang [24], to capture variants of each system
call (e.g., for the Linux mount system call, there are 12 spe-
cialized variants [23], with their own arguments), properties
of each system-call argument (e.g., whether it is a buffer or
file mode, or a flag in our example), and useful instantiations
for each mutation type (e.g., how to mutate an integer, a
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1 def fuzz_corpus(corpus, choose_test, selector,

2 localizer, instantiator,
3 targets):

4 uncovered: set[Block] = cfg_of (KERNEL)
5 covered: set[Block] = {3}

6 targets = (uncovered if targets is None
7 else targets)

8 while(not targets <= covered):

9 test, target = choose_test(corpus,

10 uncovered,
11 covered,
12 targets)
13 mutated = mutate_test(test, target,
14 selector, localizer,
15 instantiator)
16 try:

17 coverage = execute(mutated)

18 except Crash:

19 report(mutated)

20 update_corpus (corpus, test, mutated,
21 coverage, uncovered)

22 uncovered = uncovered - coverage

23 covered = covered + coverage

25 def mutate_test(

26 test_to_mutate, target,

27 selector, localizer, instantiator):

28 m_type = selector(test_to_mutate, target)

29 location = localizer(test_to_mutate,

30 target, m_type)

31 instantiation = instantiator(test_to_mutate,
32 target, m_type,
33 location)

34 mutated_test = apply_mutation(test_to_mutate,
35 m_type,

36 location,

37 instantiation)
38 return mutated_test

Figure 1. Controller logic of a fuzzer. mutate_test is illus-
trated pictorially in Figure 2.

Argu‘me‘nt (PMM) ‘Argun‘wept
localization instantiation
Existing random mutators

Figure 2. The fuzzing workflow showing a fuzzer and its
use for PMM as an argument-mutation localizer.

buffer, a file mode, a struct, etc.). Using this “palette” of muta-
tions, experts can also develop heuristics on how to control
the search through the palette, to come up with a muta-
tion strategy. These heuristics are captured by the controller
functions in the abstraction above, directing type selection,
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Incoming Test:

1 r@ = open("./file@", O_CREAT, 0777)
2 read(ro, buffer, 42)

Mutated Test:

1 r@ = open("./file@", O_CREAT|O_RDWR, 0777)
2 read(ro, buffer, 42)

Figure 3. Mutation of a simple kernel test.

...
2 sendmsg$inet (

3 rl, // first arg

4 &(0x7f0000001600)={ // second arg

5 ox0, 0x0,

6 &(0x7f0000001580)=

7 [{&(0x7f0000000280)="db", 0x13}],
8 ox1},

9 ox41) // third arg

Figure 4. Nested arguments in a syz test [47] snippet, show-
ing a second argument (line 4) that is a struct buffer, with 4
fields, the third of which (line 6) is also a nested struct buffer.

localization, and instantiation; a mutator can implement sim-
ple controllers (e.g., undirected controllers that ignore the
target input), or sophisticated white-box controllers such
as ours that consider the kernel itself, prior executions, and
desirable targets. Syzkaller developers have fixed probabil-
ities by which they choose a mutation type during type
selection; in other words, the default selector function of
syzkaller on Figure 1, line 28 ignores the target, flips a biased
coin, and returns one of the known types such as ARGUMENT_
MUTATION or SYSCALL_INSERTION. Similarly, Syzkaller consid-
ers the arity of each system call when doing localization for
argument mutation; the default Syzkaller localizer func-
tion ignores the target, and if mutation_type is ARGUMENT_
MUTATION, it randomly picks an argument from the system call
with the largest arity. Such heuristic controllers can require
static analysis and the development of complex templates.
For instance, SyzDirect [48]—a kernel fuzzer specializing
in directed testing [2]—considers what kinds of inputs (i.e.,
resources) each system call needs, and encodes resource-
specific heuristics when mutating upstream system calls; as
an illustrative simplification for our example, since there is
a read call downstream, mutating the mode flag of open to
create a readable file will be preferred. This kind of logic
can be encoded in all three controller functions: selector,
localizer, and instantiator.

The purpose of such heuristics is to reduce the size of
the search space towards increasing coverage of previously
uncovered code more efficiently. This is a well-placed bet:
a typical Syzkaller “syz” test contains dozens of arguments,
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often more than 100; recall that these are not just Linux
system-call arguments, but also fields of structs, as well as
parameterizations of fixed mechanisms to produce those ar-
guments (e.g., “create a buffer in the heap and fill it with
struct X, but then shift the pointer 2 bytes into that buffer”).
Figure 4 illustrates this, and contains arguments that are
numeric constants, structs that initialize fields at explicit
memory and stack locations, etc. In our experiments, we see
on average more than 60 arguments per test (§5.1). Conse-
quently, when selector chooses the ARGUMENT_MUTATION type,
it has at least a search space of possibly tens of arguments
to select from, which is multipled by the instantiation space
of the chosen argument’s mutation (the composed output
domain of localizer and instantiator); a good choice could
lead to orders of magnitude of speedup. This motivated us
to focus on argument selection as the target of our work
(the implementation of localizer, when selector returns
ARGUMENT _MUTATION), since the head-room over semi-random
argument selection can be significant. Nevertheless, much
of the approach described in this work applies to other mu-
tation types (§6).

Our second motivating consideration comes from the ob-
servation that the Linux Kernel, possibly the most-widely
distributed software system, is fuzzed continuously, produc-
ing many examples of tests, their mutations, and the covered
code before and after. This preponderance of data, as well
as the promising results from prior work using data-driven
approaches to find bugs in software [22, 42, 49], encouraged
us to pursue a machine-learning approach to drive the de-
cisions of the test mutator. Rather than using hand-written
implementations of selector, localizer and instantiator
such as those described above, can we learn from prior ob-
servations (of the outputs of those functions, as well as the
result of executing the mutated test on Figure 1 line 17) to
predict the right choice that ensures a positive reward (i.e.,
getting a crash on line 19 or a coverage increase on line 22)?
In what follows, we show that even a modest deployment
of alearned localizer function with otherwise unmodified
mutators can significantly improve fuzzing efficiency in both
the undirected and directed settings.

We revisit our earlier problem definition as follows: in the
formulation of Figure 1, design functions selector, localizer,
and instantiator so that given the same computational re-
sources (e.g., time, compute, money), the number of reported
crashes (Figure 1 line 19) or the achieved coverage (size of
covered at line 22) surpass those of the baseline (Syzkaller).
In the targeted setting (where targets is set explicitly in Fig-
ure 1 line 6), we seek to reach the targets faster (using fewer
resources) than the baseline. In this paper, we focus purely
on function localizer, in the case where function selector
has yielded the ARGUMENT_MUTATION type, both for directed
and undirected fuzzing.

Note that in the computational resources considered we
include fixed startup costs (e.g., the cost of data generation
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and training of an ML model) as well as per-mutation costs
(e.g., in the case of ML, the cost of inference).

3 Design

In this section, we will present a detailed view of a learned
argument-mutation localizer, i.e., a ML model trained to
predict good arguments to mutate. Our work fits into the
existing workflow of a program mutator, such as Syzkaller.
We supply the argument localization, i.e., the choice of argu-
ment to mutate, so as to cover a particular bit of the kernel
code that the test under mutation did not cover, and leave it
to the mutator to do the argument instantiation (§2).

SnowpLow first collects a dataset of successful argument
mutations to train PMM (§3.1). We call “successful” a muta-
tion that covered different parts of the kernel from what the
base test covered. Then, SNowPLOW trains a model to predict
the location of a successful argument mutation. To capture
the structure and semantics of both test programs and kernel
code, we use a graph representation of the base test, its cov-
erage, the target we are trying to cover, and the localization
result (§3.2). Armed with such training examples, we train
PMM (§3.3). Finally, we use PMM as an argument-mutation
localizer in a fuzzer (§3.4).

3.1 Mutation Dataset Generation

The goal of dataset collection is to assemble a large number
of examples in which a base test, mutated via an argument
mutation, leads to a mutated test with resulting kernel cov-
erage greater than that of the base test; we call that a suc-
cessful argument mutation. In the absence of an oracle that
gives us the perfect argument mutation that increases a test’s
coverage—after all, it is this oracle we are trying to build—we
resort to extensive random mutations using Syzkaller.

Specifically, we start with a seed corpus S, a collection of
test programs exhibiting broad coverage of the kernel. For
each base test s; € S, we collect the corresponding kernel
coverage c; by executing it, which is a sequence of kernel
code blocks executed when the kernel handles s;. Then, we
configure Syzkaller to perform a large number of argument
mutations on each test program. So for each mutation j of
base test s;, we ask Syzkaller to localize an argument a; ; to
mutate, and then to instantiate the argument mutation into
a mutant s; ;. We execute each unique s; ; and compare its
coverage c; ; to that of the base coverage c;; if ¢; ; contains
new code block(s) that are not in ¢; (i.e., ¢;; \ ¢;)), we collect
a sample (s;, ¢;, a;j,¢;j \ ¢;). a;j may contain one or more
arguments, since different mutations sometimes lead to the
same new coverage, and we merge those into a single sample.
Note that we do not collect the mutated program s; ;, since
we do not seek to train a model on the instantiation of a
mutated argument, and we only collect the newly covered
blocks of the mutant.
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Recall that our goal is to learn the argument-mutation
localization given a target. Our samples are generated in the
forward direction: given a base test and argument selection,
find the newly-covered kernel blocks. To “invert” this direc-
tion into a predictor, we assemble sensible training examples
in which we give a model the base test, its coverage, some
targets we desire to cover, and ask for argument selection
a;. We considered a few options: (a) use exactly the new
coverage c;; \ ¢; as the target; although natural, this formu-
lation has the downside that we do not know, at fuzzing
time, exactly the new coverage that can be achieved, and
some of that new coverage might be far away from the old
coverage; so this option would train the model with limited
robustness to uncertainty; (b) use exactly one newly covered
block b € ¢;; \ ¢; “near” the old coverage c;; this option is
reasonable, in that we could ask a model to give us precise
predictions given a single block we have not covered so far
say one branch away, but has the downside of extreme cost,
since each such “query” would require a model inference and
there may be hundreds of nearby uncovered blocks to target;
(c) use a mixture of newly covered blocks from ¢; ; \ ¢; and of
other blocks that were reachable within a small number of
hops from c¢; but were actually not covered as distractors; the
benefit of this option is that it gives the model only “partial”
knowledge about the exact new coverage that is achievable
by the mutated argument, “local” knowledge near the old
coverage that enables incremental coverage improvement
within the control-flow graph, and also adds some controlled
noise about other plausible reachable blocks, ensuring train-
ing robustness. We chose this third design option.

More concretely, to produce the set of targets c;;, we
take a “noisy” set of newly covered blocks consisting of all
uncovered blocks within one branch from c¢; and those in
¢ j\c; that are only one branch away from c;. Then we sample
from this noisy set 1, 25%, 50%, 75% or 100%, ensuring there
is some overlap with ¢; ; \ ¢;, and set that as our example’s
targets c; ;. To also reduce examples that have low efficiency
(i.e., do not help training much), we limit the number of
examples with “popular” code blocks in the target set: for
every kernel code block, we count the number of examples
in which it appears as a target, and we discard examples that
go over a maximum. In that way, we collect our training
dataset consisting of examples (s;, ¢;, a; j, ¢i ;).

Although machine learning can handle limited amounts
of noise with sufficient dataset size, it is important to avoid
systematic noise in dataset collection. One type of system-
atic noise in our collection process is non-determinism. As
Syzkaller executes candidate mutants it uses multiple threads
to dispatch system calls, to avoid getting stuck behind slow
or deadlocked system calls; and it runs multiple candidates
together, to avoid the cost of setting up a pristine virtual
machine for every test. As a result, a test’s coverage is non-
deterministic. When the goal is to find a kernel crash, this
non-determinism is acceptable; when a crash is detected,
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Figure 5. The representation of a mutation query for the
base test of Figure 3. The test covered the green basic blocks;
the red basic blocks are a single, not-taken branch away from
the base test’s coverage, and func_d is the target.

Syzkaller will attempt to reconstruct a hermetic reproducer
that is disentangled from other tests and other sources of
non-determinism, so that the bug can be investigated in a
reproducible manner. However, for our purposes, this non-
determinism introduces noise into our training dataset.

To reduce the noise in SNowprLOW, first, we ensure that
each test producing training examples runs from the same ini-
tial kernel state. We initialize a common execution environ-
ment, create a VM snapshot for it, and always load it before
executing each test. Second, we limit concurrency by execut-
ing system calls in the test sequentially in one thread; since
our goal is to generate training data (infrequently), rather
than continuous fuzzing, we can afford to be occasionally
stuck behind unresponsive tests. Third, SNowpLow avoids
unnecessary interrupts to the VM. Existing fuzzers typically
use the network stack to communicate with the VM (e.g.,
coverage collection), thus they may non-deterministically
trigger guest kernel code (e.g., network code) to run [35].
Snowprow replaces RPC with virtio, which reduces the
disturbance to the guest kernel coverage.

3.2 Argument Mutation Query Representation

Developing an effective ML approach necessitates bridging
the semantic gap between the mutator’s inputs: the user-
space program (kernel test) and the kernel coverage (both
covered and desired). First, the inputs imply disparate repre-
sentations. Programs are often represented as text sequences
while coverage is represented in graphs—making efficient
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learning difficult. Second, the control dependency between
the kernel test and its corresponding kernel coverage in-
volves complex interactions among the user-space program,
system calls, and kernel code. Accurately capturing these
intricate dependencies is crucial for the ML model to both
effectively and efficiently determine the effective mutations.

To address these challenges, our key idea is to represent
the test program and coverage as a single graph, in which
program and coverage are connected with explicit kernel-
user space transitions. As shown in Figure 5, we transform
the kernel test into a graph where nodes represent different
system calls and arguments (in the Syzlang domain-specific
language), while edges capture data and control flows in the
program. Similarly, the kernel coverage is represented in a
graph consisting of nodes for kernel code blocks and edges
for the control flows between blocks. Finally, the test and
coverage graphs are connected using edges that describe
the context switches between the kernel and user space.
This uniform graph representation enables ML to effectively
understand the program and coverage internals while seam-
lessly reasoning across the user-kernel boundary.

More specifically, consider the example (s;, ¢;, a; j, ¢i j), il-
lustrated in Figure 5, s; is the Syzlang base test, which we
parse into an Abstract Syntax Tree. SNOWPLOW uses nodes
to represent system calls and arguments in the test. For
nested arguments (recall that Syzlang parameterizes fields
of structs, and other constructor parameters for each sys-
tem call), SNowPLOW enumerates every sub-level argument
according to the corresponding data structure to create argu-
ment nodes. Then, SNowpLOW constructs edges to represent
the relations among nodes, including call ordering edges that
describe the control flow, argument in/out edges that capture
the data flow, and argument ordering edges that show the
ordering among arguments within a single system call.

For the base-test kernel coverage (c; in our example),
SNowpLOow first converts ¢; into executed kernel control
flows, consisting of kernel blocks (green nodes) and control
edges triggered by s;. Then, SNowpLow refers to the ker-
nel’s control flow graph—obtained using static analysis—to
identify code blocks reachable within one control-flow jump
from ¢; (red nodes), in Figure 5.

For example, SNowpLOWw detects that the uncovered func_
b and func_d are reachable in a single jump each via the
cmp. .. and je branches, so it adds the first code blocks of the
two uncovered paths as alternative path entry nodes. Based
on the example desirable target c; ;, SNowpLOw marks the
related alternative path entry nodes as the target (marked as
red vertices with dotted border in the figure), informing the
model of the desired mutation outcome.

Finally, SNowpLOW connects the user-space and kernel-
space inputs using kernel-user space context switch edges,
which connect the system call node to the entry code block
and the exit block of the system call handler. Kernel-user
space context switch edges explicitly inform the model of the
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control dependencies of the test and the kernel control flows.
Following these edges, the model can initiate information
flows that propagate between the test program tree and the
kernel control flow graph and understand their relations.

To summarize, a training example consists of (1) kernel
basic block vertices (containing the corresponding X386 as-
sembly), of type “covered”, “alternative” (i.e., uncovered), and
“target”, (2) test-program system-call vertices (containing the
name of the Syzlang system-call variant), and (3) argument
vertices (containing the type of the argument and the syscall
return). Argument vertices contain information about the
argument (e.g., whether it is a literal constant, a data pointer,
etc.). There are control-flow edges among kernel basic blocks,
edges of branches not taken connecting covered basic blocks
to uncovered basic blocks, system-call entry and exit edges
connecting system call vertices to the corresponding kernel
basic blocks, and control-flow edges within the test program
connecting arguments of a system call in order, inputs and
outputs of a system call, and system calls in execution order.
Figure 5 illustrates vertex and edge types.

3.3 PMM Training

Based on training examples (§3.1) and their representation
as graphs (§3.2), we train the model as follows. From each
example (s;, ¢;, a; j, ¢i j), we construct a training sample in
the form of < x; j, y; ; >, where the input x; ; is the argument
mutation query graph generated from the example’s s;, ¢;, ¢; ;
as discussed above, and the output y;; is an assignment
MUTATE / NOT-MUTATE of the argument nodes inside x; j, so
that those in a; ; are marked MUTATE.

We construct a Graph Neural Network (GNN) trained to
predict vertex labels (MUTATE or NOT-MUTATE for argument
vertices). Although describing the details of GNNs is out
of scope in this paper, to use any GNN one must define
how to embed the input features of the graph, i.e., how to
represent the “content” of vertices and edges as vectors of
floating-point numbers. We embed coverage-graph vertices
as text strings of the relevant X86 assembly basic block,
using a standard Transformer encoder [50]. We pre-train this
encoder on all X86 assembly in a compiled Linux kernel using
the BERT training recipe [36]. For program graph vertices,
we treat system-call variant names and argument types as
unique tokens, and use simple learned embedding matrices
to embed them. We do not include literal constants (e.g.,
Oxffff or "file") in our representation, but use instead
the type (e.g., “string” or “integer”). Edge types are similarly
embedded using a learnable embedding matrix.

To sum up, SNOWPLOW uses a model architecture with
3 learnable components: Ognn for the GNN, O1raNSFORMER
for the assembly code embedding, and O}, for embedding
system call and argument nodes in the program tree and all
edge types in the graph. We train the GNN by minimizing the
binary cross-entropy loss between the predicted argument
selection ¢; and the ground truth y; of argument nodes.
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3.4 SnowpLow: A Hybrid Fuzzer with PMM

Putting it all together, we plug PMM into a fuzzer (Syzkaller,
in SNOowPLOW’s case) by expanding its localizer function
(Figure 1) with PMM. When the fuzzer selects a base program
to mutate, SNOwPLOW creates the argument mutation query
and sends it to PMM. Then the fuzzer starts its own mutation
search, selecting a mutation type, localizing it, instantiating
it, and executing it.

Because a PMM inference takes longer (§5.5) than a muta-
tor iteration, we request argument localization asynchronously,
and let the mutator try other types, while inference is pend-
ing. Once the localization result returns, the corresponding
instantiation and execution take place.

Based on the number of predicted arguments to mutate,
SnowpLow dynamically adjusts the number of argument
mutations for this base program. Intuitively, if a program
has more arguments that are considered interesting by the
PMM, SxowpLow will mutate and execute more.

Meanwhile, the fuzzers’ own mutation search will be con-
ducted in a separate thread using existing mutation tech-
niques. In particular, SNowpLow still allows the fuzzer to
perform a few random argument localizations but with a
much lower probability than that of a normal fuzzer. This is
mainly a fallback mechanism in case PMM does not catch
all promising arguments and gives hand-crafted heuristic
decisions by the original fuzzer a chance to help.

4 Implementation

Kernel test mutation dataset collection. SNowpLOW im-
plements a test execution framework for data collection
(§3.1). The framework uses the prog module of Syzkaller
to load kernel tests in the Syzlang syntax and invokes the
argument mutator from Syzkaller on the selected argument
to generate new tests. This also included work to improve
the determinism of data generation (§3.1). In total, about 7.6K
LOC Golang code is written to implement the framework.

Argument mutation query representation. To create the
tree representation of the test program, SNowpLOW uses the
prog module of Syzkaller to parse the test, and then analyzes
the control flow and data flow inside the test program by
traversing the internal data structures that Syzkaller uses to
describe the test. To analyze the kernel coverage, SNowpLOW
uses Angr [43] to recover the control flow graph of the kernel
and uses it to identify alternative path entry code blocks.
About 2.4K Python and 1K Golang code are implemented.

Model training. PMM is implemented using frameworks
fairseq [37] (assembly code Transformer encoder) and Py-
torch Geometric framework [13] (GCN). We wrote about
0.9K LOC in Python to implement the model architecture and
training, and 2.0K LOC in Python/Bash to facilitate model
tuning and evaluation.
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Kernel fuzzing. SNowpPLOW uses torchserve [40] to deploy
PMM, automating model deployment on multiple GPUs, and
supporting gRPC inference requests. SNowpLow modifies
Syzkaller to invoke PMM for argument selection. In particu-
lar, SNowpLOow introduces an inference worker pool, a set
of goroutines responsible for creating the mutation query,
invoking PMM for prediction, and informing Syzkaller of the
selected arguments. When Syzkaller initiates the mutation
of a base test, SNowpPLOW sends the test to the worker pool
and immediately returns to Syzkaller, so that it can perform
other mutations (e.g., call mutations) while the inference is
being served. Once the inference is done, Syzkaller catches
up with argument mutations using the selected arguments.
Integration is implemented in 3.2K Golang LOC.

To study whether PMM is beneficial to other kernel fuzzing
use cases, we also integrate PMM into SyzDirect [48], which
is a state-of-the-art kernel fuzzer for directed fuzzing. The
integration follows a similar design as mentioned above and
takes about 2.6K LOC Golang code to implement.

5 Evaluation

We evaluate SNowpLow along the following questions:

RQ1: Can PMM localize mutations accurately? (§5.2)

RQ2: Does SxowpLow improve the efficiency of coverage-
directed kernel fuzzing? (§5.3.1)

RQ3: Does SNowpLow effectively find new bugs? (§5.3.2)

RQ4: Is PMM beneficial to directed fuzzing? (§5.4)

RQ5: What is the performance overhead of PMM? (§5.5)

Experimental Setup. In total, 4 types of machines on Google
Cloud Platform (GCP) are used in the evaluation of SNOw-
PLOW. Machine ¢ is a VM with 60 vCPUs for data collec-
tion; Machine, ., is a VM with 96 vCPUs, used for fuzzing the
kernels; Machine;,,;, is a VM with 8 A100 (40GB) GPUs, used
for training; Machine;, - is a VM with 8 L4 (24GB) GPUs,
used for inference. In addition, the stable Linux kernels 6.8,
6.9, and 6.10 are used to train and evaluate SNOwPLOW.

5.1 PMM Training

Data collection. We build the kernel test dataset based on
the publicly-accessible fuzzing artifacts of Syzbot [51], which
is a project that continuously runs Syzkaller to fuzz the Linux
kernel. We download the test corpus from different runs of
Syzkaller and sample 1M unique kernel tests as the base test
corpus. Among them, we are able to collect the kernel cover-
age of 0.98M tests, from which we generate the graph. Some
base tests did not complete or crashed, so we excluded them
from data generation. Generated training example graphs
on average contain 2372 vertices (5 system call nodes, 62
argument nodes, 1631 covered code block nodes, and 674
alternative path entry nodes), and 2989 edges (39 argument
ordering edges, 4 call ordering edges, 65 argument in/out
edges, 1782 covered control flow edges, 1087 uncovered con-
trol flow edges, 10 kernel-user space context switch edges).
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Selector F1 Precision Recall Jaccard

PMModel 84.2% 91.2% 81.2% 76.1%
Rand.8 30.3% 36.6% 37.0% 19.9%

Table 1. Promising arguments selector performance. Metric
scores are averaged across all base tests evaluated.

Then, we run 120 instances of machine .. for about
4 days to discover successful mutations—each base test is
randomly mutated and executed (§3.1) 1000 times on the
Linux kernel 6.8. In total, 44.3M successful mutations are
discovered (about 45 per base test). We partition the examples
generated from 80% of the base tests for the training dataset,
and similarly 10% each for the validation and evaluation
datasets, respectively. Note that a base test never appears in
different dataset splits: all examples derived from a base test
are either in training, or validation, or evaluation.

Hyperparameter search. We use F1 to guide the training
hyperparameter search. Specifically, once a model is trained
with a certain hyperparameter set, we use it to predict ar-
gument mutations for 10K base tests from the validation
dataset. For every example < x;,y; >, y; is the target set of
arguments and ¢; is the set of arguments selected by the
trained PMM. Of the arguments in ¢;, those in y; are true
positives, while those that are not are false positives. Simi-
larly, those in y; but not in ¢j; are false negatives. Therefore,
for each example, |7; N y;|/|7;| is the example precision and
similarly |g; N y;|/|y;| is recall. We compute per-example F1
and Jaccard similarity from these metrics, and then compute
means across all examples in the validation dataset. In total,
we tune the model by exploring 112 hyperparameter sets—
each is trained for up to 72 hours on a machine;,, and we
use the model with the highest mean F1 validation score.

5.2 PMM Performance

We evaluate the performance of the best trained PMM on
10K unique base tests from the evaluation dataset.

We compare PMM against a random argument localizer
baseline, which randomly selects K unique arguments from
each base test. We set K to 8, corresponding to the average
size of y; in the training dataset. Table 1 presents the perfor-
mance of PMM and the baseline. First, the baseline (Rand.8)
shows poor performance across all metrics, underscoring the
challenge of identifying promising system call arguments.
Under Jaccard Index—which measures |§; N y;|/|y; U il
Rand.8 averages less than 20%. In contrast, PMM signifi-
cantly outperforms the baseline across all metrics. Its F1
score and Jaccard Index are 2.7 and 3.8 times higher than
those of Rand.8, respectively, showing that PMM can accu-
rately identify the promising arguments to mutate on new
tests that it has not been trained for.
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Figure 6. Edge coverage in Syzkaller and SNowPLOW over
24 hours of fuzzing (a—c). The shaded area is bounded by the
max and min coverage across 5 repeated runs. The dotted line
within represents the mean. The dark horizontal line shows
the mean coverage achieved by Syzkaller at 24 hours, and the
dark vertical line shows the time (x-axis) when SNowpPLOW
reached that same level of coverage. (d) Coverage improve-
ment of SNowpPLOW over Syzkaller at 24 hours.

5.3 Fuzz the kernel to find new bugs

This section evaluates the fuzzing performance of Snow-
pLOW on 3 recent stable Linux kernels: Linux kernel 6.8,
6.9 and 6.10; the three kernel versions were released at a
2-month cadence between March and July of 2024.

5.3.1 Edge coverage. We compare the kernel edge cov-
erage achieved by SNowpLow and Syzkaller, which counts
the unique edges in the triggered kernel execution path. For
each kernel, we run SNowpLow and Syzkaller on two sepa-
rate instances of machineg,., to fuzz it for 24 hours, during
which we collect execution traces of each fuzz test using
kernel instrumentation [31]. We postprocess those execu-
tion traces (which are sequences of executed kernel basic
blocks) to identify unique, directional pairs of basic blocks,
or “edges”. We deploy PMM on one instance of machine;;,
which listens to the mutation queries from SNOowpLOW over
the network. We configure SNowpLow and Syzkaller to use
the same initial seed and the same amount of VMs (42 2-
vCPUs VMs) for running tests. Furthermore, the experiment
is repeated 5 times, each with a unique initial seed.

Figure 6 compares edge coverage between SNOWPLOW
and Syzkaller for equal machinef,., cost. First, when fuzzing
kernel 6.8 (Figure 6a), on which PMM is trained, SNowPLOW
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consistently achieves higher edge coverage than Syzkaller—
by 7.0% on average (Figure 6d). Moreover, the edge coverage
bands of SNowpLow and Syzkaller do not overlap after 5
hours, meaning that across 5 runs, Syzkaller, never surpasses
even the worst run of SNowpLow. When comparing the av-
erage edge coverage (i.e., dotted lines), SNOWPLOW requires
only 4.6 hours to reach the same coverage that Syzkaller
achieves in 24 hours, resulting in a 5.2x speedup. Even in
its best-out-of-5 run, Syzkaller is still twice as slow as the
average run by SNowpLow. These results demonstrate that
SnowpLow can fuzz the kernel more efficiently.

Second, SNowpLOW shows impressive improvement even
when fuzzing the other two kernels (Figure 6b and Fig-
ure 6¢), on which it was not trained. The edge coverage
bands of SNowpLow and Syzkaller do not overlap, showing
that SNowPLOW’s improvement is superior and robust. Af-
ter testing for 24 hours, SNowpLow achieves 8.6% and 7.7%
higher mean coverage than Syzkaller (Figure 6d). In terms of
edge coverage speed, SNowpPLOW generally takes less than 5
hours to reach the coverage achieved by Syzkaller after 24
hours (>4.8x speed up). This shows that PMM, while only
trained on one kernel, can generalize well to later kernels,
and contribute more effective argument mutations, thereby
amortizing the training cost of PMM.

Finally, we observe that the coverage band of Syzkaller is
wider than SNowPLOW’s. SNOwWPLOW achieves similar edge
coverage across different initial seeds while Syzkaller’s per-
formance is sensitive to the initial seed. This is expected
because most argument mutations in SNOwpLOW are guided
by PMM while argument mutations in Syzkaller are almost
random (modulo small, coverage-agnostic heuristics).

The above analysis compares the two deployments given
the same machineg,,, resources; however SNowpLow has the
advantage of the extra inference resources of machine;nf;.
We also performed a same test-time cost analysis (in which
we give Syzkaller enough additional machineg,,, resources
to make up for the cost of machine;,, for various smaller
instances of machine;nf,, (With only CPU or fewer L4 GPUs).
SnowpLow exhibits at least 2x speed up even in this setting.
Amortizing the cost of training even in this convervative
comparison is a matter of a few weeks, perhaps a drop in
the ocean of continuous kernel testing.

5.3.2 Finding new bugs. We study the bug-finding ability
of SNowpLOow under an exhaustive-fuzzing setting, where
SnowpLow and Syzkaller both fuzz the kernel for 7 days.
Because the experiment is much more time-consuming, we
repeat it 2 times with different seeds.

We follow a stricter set of rules than Syzbot [51] to confirm
if the crash is due to a harmful kernel error. Specifically,
when the guest kernel crashes, we first extract the crash
description from the VM, and filter out crashes that match
keywords "INFO:", "SYZFAIL", and "lost connection to the
VM" because such crashes are usually less severe or too
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SNowPLOW Syzkaller
Status
runyg; runy,y IUljg IUNg,
New Crashes 67 46 0 0
Known Crashes 14 13 8 11
Total 81 59 8 11

Table 2. Crashes found during the 7-day fuzzing campaign
with SNowpLow and Syzkaller.

ambiguous to locate the error. Finally, we fetch the list of all
kernel crashes found by Syzbot since 2018—including both
fixed and unfixed bugs—and we consider a crash to be new
if we cannot find the crash description in the list.

Category Reproducer
Yes No

Null pointer dereference 7 3

Paging fault 13 10

Explicit assertion violation 2

General protection fault 28 11

Out of bounds access 1

Warning 4 4

Other 2 0

Total 57 30

Table 3. New bug reports produced by SNowpLOW accord-
ing to their manifestation. Most of the crashes have serious
manifestations.

Table 2 presents the number of new and known crashes
found by SNowpLow and Syzkaller. First, Syzkaller does not
find any new crashes, which is understandable considering
Syzbot has already exhaustively tested those kernels—under
different configurations—using Syzkaller. In contrast, SNow-
pLOW discovers a considerable number of new crashes. It
finds 67 and 46 new crashes in the two runs and, in total, it
discovers 86 crashes. Second, both SNowpLOW and Syzkaller
discover some known crashes but SNowpLow finds more.
Such crashes are found in the prior runs of Syzkaller by
SyzBot but they are not fixed in the kernels we test, there-
fore can still be triggered.

Next, we perform an additional verification on the new
crashes by running the vanilla Syzkaller in bug-reproduction
mode. In this mode, Syzkaller parses the execution log from
the crashed VM and replays the tests to check if the crash
can be triggered again. We arrive at 57 (66%) crashes for
which Syzkaller’s tool syz-repro can generate a reproducer
in Syzlang ?. Additionally, we found that the reproducibility
rate for all crashes discovered by SyzBot is 32% (6705/20988).
A common reason Syzkaller fails to reproduce certain crashes

2Crash reports and reproducers are available in the Github repository.
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is concurrency [4], which is inherently difficult to replicate.
We further run syz-symbolize [25], which parses the kernel
console log, to locate the kernel code involved in each crash.

Table 3 categorizes the new crashes based on the patterns
of the crash description. It shows that most crashes, with or
without a reproducer, can have serious impact on the ker-
nel by causing kernel errors and even security issues, such
as out-of-bounds reads (detected by KASAN) in the kernel.
While SyzBot automatically reports all crashes to kernel de-
velopers, we opted for a more developer-friendly approach,
aligning with expectations for research prototypes. Specifi-
cally, we manually analyzed each crash before reaching out
to developers, ensuring we had preliminary findings to share.
Although this approach is more time-consuming, it fosters
better collaboration with the developer community. In total,
we diagnosed 7 unique crashes (out of our 57 reproducible
crashes) over approximately 50 hours and reported them to
developers, as presented in Table 4. As of this writing, 4 bugs
have been confirmed, with 2 already fixed.

In particular, SNowpLow discovered an out-of-bounds
write bug [7] in the Linux kernel ATA driver, which allowed
the driver thread to overwrite arbitrary kernel memory pages
with data read from the device, leading to kernel panics or
potential security vulnerabilities. Despite the driver being
actively maintained, the bug had remained unnoticed in the
kernel for nearly two decades before SNowpLow identified
it. Our analysis shows that this bug is difficult to find be-
cause the problematic code is only executed when the system
call request is configured with carefully crafted parameters.
Specifically, a kernel test must invoke the ioctl() system call
on a SCSI device file descriptor, setting the command request
to SCSI_IOCTL_SEND_COMMAND. Meanwhile, the call arguments
should set the SCSI command to ATA_16 PASS-THROUGH mode,
the ATA command to ATA_NOP, and the protocol to ATA_PROT_
PI0. Finally, an incorrect data length in the call argument trig-
gers the out-of-bounds write due to an insufficient boundary
check in the corresponding function.

Due to the strict constraints on system call arguments,
this bug is particularly difficult to uncover using Syzkaller’s
random mutations, which struggle to find the precise argu-
ment combinations needed to reach the problematic code
path. In contrast, SNowpLOW leverages PMM to systemati-
cally identify promising arguments of ioctl that trigger new
kernel execution paths. By guiding Syzkaller to keep mutat-
ing these critical arguments as long as the model predicts
new resulting coverage, SNowpLow effectively triggers the
bug, ultimately leading to its discovery.

Since the out-of-bounds write bug can corrupt arbitrary
kernel memory, leading to kernel crashes at different loca-
tions, we investigated whether other crashes might stem
from the same issue. We analyzed all crash reproducers and
found that 45 out of 57 contained the ioct1() system call with
the command SCSI_IOCTL_SEND_COMMAND. Given this strong
correlation, we conservatively attribute these 45 crashes to
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ID Bug description Detector

Failure context / syscall Failure location Status

1 Out of bound access in ata_pio_sector N/A ioctl() drivers/ata/ Fixed

2 General Protection Fault in native_tss_update_io_bitmap N/A io_uring() arch/x86/kernel/ Fixed

3 RCU stall in __sanitizer_cov_trace_pc RCU stall detector Timer interrupt kernel/ Confirmed
4 GUP (Get User Pages) no longer grows the stack Built-in checker ~ mmap() mm/ Confirmed
5 WARNING in ext4_iomap_begin WARN_ON() pwrite64() fs/ext4/ Reported
6 kernel BUG in ext4_do_writepages BUG() Filesystem background operation fs/ext4/ Reported
7 KASAN: slab-use-after-free Read in ext4_search_dir KASAN open() fs/ext4/ Reported

Table 4. Sample of 57 reproducible bugs reported by SNowpLow. Bugs #1-#7 were reported to developers, and bugs #1-#4 have

already been confirmed and/or fixed.

the discovered bug, while the remaining 12 crashes (6 already
diagnosed and reported) likely result from other issues.

5.4 Kernel Directed Fuzzing

Directed fuzzing has recently emerged as a promising tech-
nique to reproduce bugs and perform regression testing. Un-
like traditional fuzzers that aim at the highest kernel cover-
age, directed fuzzers try to reach one or more target code
region(s) specified by the user. But similar to normal fuzzers,
directed fuzzers still heavily rely on test mutation to create
new tests. This section evaluates the effectiveness of PMM
at accelerating directed kernel fuzzing.

SyzDirect—the state-of-the-art directed kernel fuzzer—
performs mutations in a manner similar to Syzkaller, but
prioritizes mutations using a number of sophisticated heuris-
tics (e.g., choosing system calls that allocate resources needed
by the code at the target, choosing arguments in earlier sys-
tem calls that will enable issuing the right system call later
in the test, choosing test to mutate by selecting the test
that achieved coverage closest to the target, etc.). As with
Syzkaller, we use PMM to select arguments when SyzDirect’s
heuristics choose to mutate arguments, and SyzDirect’s own
heuristics for remaining mutations. We call the resulting
hybrid SyzDirect with PMM SNowpLOW-D.

We compare SyzDirect and SNowpLOW-D using the same
test dataset on which SyzDirect is originally evaluated. The
dataset [18] consists of 100 unique kernel code locations that
are related to bugs found by SyzBot. Because the dataset
does not provide the exact kernel versions—and the original
dataset applies them to many development kernel versions—
we look up the bug list in SyzBot to find the kernel com-
mits that are associated with the bug documentation and
randomly select one commit to use. Following SyzDirect’s in-
structions, which involve applying a customized kernel patch
and compiling with a custom LLVM compiler, we are able
to run SyzDirect on 24 out of those 100 code locations. For
the remaining 76 code locations, we could not automatically
apply the kernel patch required by SyzDirect [19], and the
project offered no instructions on resolving such conflicts.

We evaluate the time taken for SNowpLow-D and SyzDi-
rect to reach (i.e., cover) the target code location. We focus on
reaching the target code instead of causing a crash, since our

goal is to measure the ability of SNowpLOw-D to speed up
directed fuzzing, and because the technique can be used also
to validate a patch (rather than causing crashes). For each
target code location, we run one machineg,,, for SyzDirect
and one for SNowpLow-D for up to 24 hours, and repeat the
measurement 5 times to compute the average time taken
for the search. As shown in Table 5, SyzDirect reaches 19
code locations while SNowpLOW-D reaches 2 more locations
(21 in total). In particular, a few code regions are particu-
larly hard to reach while the remaining ones can usually be
reached in less than 3 minutes. Our inspection shows that
the easy-to-reach code regions are typically located at the
entry point of a system call and can be reached easily as
long as the right system call is invoked. Thus, it is expected
that SNowpLow-D achieves similar or worse—due to the in-
ference overhead—performance as SyzDirect because PMM
focuses on the argument mutations.

Our analysis showed that the hard-to-reach regions reside
on the deeper branches of the system-call handler, which
naturally can benefit from more effective argument muta-
tions. This is consistent with the observed improvement
of SxowpLow-D. In total, SNowpLow-D is 8.5x faster than
SyzDirect in reaching the 19 code locations that both systems
can reach. The significant improvement on the hard-to-reach
regions suggests a hybrid design where SyzDirect performs
the initial exploration using its heuristics and resorts to PMM
if the target is challenging to reach.

Interestingly, all the evaluated kernels were released 2—
3 years ago, but PMM can still predict effective mutations
that accelerate the directed exploration, underscoring the
generalization ability of PMM to various kernel versions.

5.5 Performance characteristics

Inference performance. We deploy the trained PMM on
one instance of machine g, and then launch various concur-
rent fuzzing clients to understand inference performance. At
saturation, the machine serves about 57 queries per second,
and the average latency for a query is 0.69 seconds.

Fuzzing performance. SNowpLOw achieves similar fuzzing
throughput as Syzkaller. When fuzzing kernel 6.10 on one
instance of machinef,.., the throughput of SNowpLOW is 383
tests per second, and 390 for Syzkaller. This is because the
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Target Location Kernel SyzDirect SNowPLOwW-D Speedup
net/rxrpc/sendmsg.c:747 438645193e59  NA (0/5) 41 (1/5) INF
drivers/infiniband/core/cma.c:2584  555f3d7be91a  NA (0/5) 4376 (1/5) INF
drivers/scsi/scsi_ioctl.c:357 debe436e77c7 24487 (1/5) 101 (1/5) 2424
kernel/watch_queue.c:205 f443e374ae13 36093 (1/5) 1004 (1/5) 35.9
net/netfilter/nf_tables_api.c:7233 169387e2aa29 21083 (1/5) 5158 (2/5) 4.1
net/mac80211/iface.c:2008 1286cc4893cf 10848 (2/5) 4011 (2/5) 2.7
xdp/xdp_umem.c:101 f4bc5bbb5fef 438 (4/5) 18 (4/5) 2.7
net/packet/af_packet.c:4461 a763d5a5abd6 66 (3/5) 41 (2/5) 1.6
net/core/dev.c:3701 2585cf9dfaad 65 (4/5) 46 (5/5) 1.4
fs/io_uring.c:8999 7f25f0412c9e 70 (1/5) 57 (1/5) 1.2
fs/ext4/extents_status.c:897 14702b3b2438 110 (3/5) 101 (2/5) 1.1
fs/f2fs/node.c:611 09688c0166e7 25 (4/5) 23 (4/5) 1.1
sound/core/oss/pcm_plugin.c:70 68453767131a 42 (5/5) 42 (5/5) 1.0
net/bluetooth/sco.c:523 f443e374ae13 43 (4/5) 44 (5/5) 1.0
fs/btrfs/volumes.c:1361 2293be58d6al 65 (5/5) 68 (5/5) 1.0
fs/ext4/super.c:6607 cd8c917a56f2 25 (5/5) 31 (3/5) 0.8
mm/madvise.c:213 73878e5eb1bd 30 (2/5) 42 (3/5) 0.7
kernel/dma/mapping.c:263 aad611a868d1 17 (5/5) 24 (5/5) 0.7
drivers/video/fbdev/core/fbcon.c:2436 fa55b7dcdc43 18 (3/5) 26 (3/5) 0.7
fs/aio.c:2001 6513529296 f 19 (5/5) 34 (5/5) 0.6
fs/erofs/decompressor.c:227 a51e3ac43ddb 41 (5/5) 101 (5/5) 0.4

Subtotal 93195 10972 8.5

kernel/watch_queue.c:273
kernel/cgroup/cgroup.c:3629
crypto/crypto_null.c:88

34e047aa16c0  NA (0/5) NA (0/5) NA
1d1df41c5a33  NA (0/5) NA (0/5) NA
5859a2b19911  NA (0/5) NA (0/5) NA

Table 5. Average time to reach the bug-related kernel code in seconds and success rate (successful/total runs). Subtotal shows
the time taken to reproduce bugs that both systems reproduced.

inference is handled by concurrent goroutines and does not
block any critical paths (§4).

6 Discussion and Limitations

Other types of mutations. Although our results show that
our intervention produces a powerful hybrid fuzzer, we only
demonstrate the methodology for localization in argument
mutation. We believe that the PMM modelling approach will
readily generalize to a number of other mutation types, both
for localization and instantiation. For example, the method-
ology can be used to localize system call insertion with no
representational or training changes. We could further en-
hance our graphs trivially to enable an instantiation predic-
tion as well (choose one of the known system-call variants
for the insertion). This would require predicting not a binary
MUTATE/NOT-MUTATE label for the localized system-call node,
but instead one of the thousand or so system-call mutants,
which is a minimal change in the architecture. Capturing
other mutation types would work in a similar fashion, and
we expect that training a single model for multiple mutation
types will, in fact, improve performance, since the learning
tasks are very similar and subject to very positive knowl-
edge transfer. One mutation type that would not work well

with SNowPpLow is splicing different tests together (similar
to genetic mutation algorithms). That “non-local” style of
mutation would require a different approach.

Return on Investment. SNowpLow makes a bet that the
cost of obtaining training examples, and training PMM, are
together significantly lower than the benefit of reaching
given coverage faster. This bet pays off thanks to model gen-
eralization: PMM achieves the coverage that Syzkaller does
in 24 hours 5 times faster for multiple kernel versions over
four months. Approximately, after 8.75 days of continuous
fuzzing SNowpLOW breaks even with Syzkaller. This is over-
simplified, since SNowPLOW also needs relatively expensive
GPUs to train for 3 days, and inexpensive GPUs to serve the
model. Thankfully, given that the kernel-developer commu-
nity performs continuous fuzzing of the kernel for years(!),
training PMM for a few days every once in a while (and
potentially sharing the model weights among different insti-
tutions for their own uses, e.g., proprietary versions of the
kernel) is well amortized many times over. However, for one-
off fuzzing compaigns of vastly different kernel architectures,
the cost of training PMM might not pay off.

Coverage Dynamics. Our evaluation looks at “early” cover-
age, starting from scratch and getting to a coverage plateau.
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SNowpLow: Effective Kernel Fuzzing with
a Learned White-box Test Mutator

Although directed fuzzing approximates “late” coverage be-
havior where a singular block remains uncovered, there are
no good examples of hard-to-reach, persistent uncovered
blocks. Thankfully, SNowpLow is designed to be targeted.
In future work, we will run localized saturation campaigns
(within a single driver or subsystem) so we can more exhaus-
tively understand PMM performance in saturated settings.

7 Related work

Kernel test mutation. Moonshine [38] and Healer [46] im-
prove insert-new-call mutations by discovering implicit con-
trol dependencies between system calls and then encourag-
ing the discovered dependencies during mutations. Because
the kernel is highly stateful, the execution of one system call
A may affect the execution of the following call B, consti-
tuting a control dependency of call B on call A. To find the
dependencies, Moonshine profiles system call sequences in
real-world applications. Healer proposes a statistical method
to infer implicit system call dependencies from corpus tests
that trigger unique kernel coverage.

HFL [32] uses symbolic execution to guide argument mu-
tations. To achieve this, it introduces several kernel modifi-
cations to enable an existing symbolic solver [10] to work on
low-level kernel code. However, due to the high cost of sym-
bolic analysis, HFL employs the symbolic engine as a fallback
to the random argument mutations. Specifically, HFL only
performs expensive symbolic analysis when a code branch
remains uncovered after a certain number of mutations. In
contrast, SNowpLOW uses PMM as a first-choice mutator for
every base test, thanks to PMM’s high efficiency (§5.5).

ML in kernel fuzzing. SyzVegas [52] uses reinforcement
learning to schedule high-level fuzzing tasks such as when
to generate new programs from scratch or through muta-
tions, which otherwise is typically decided by the hard-coded
weights. To achieve this goal, SyzVegas proposes a reward
model that estimates the priority of different fuzzing tasks.
However, SyzVegas still relies on randomness to control the
lower-level fuzzing tasks such as test mutation. As such, it is
orthogonal to SNowpLow, which focuses on test mutation.
In SNowcAT [22] we proposed an ML model to improve
test selection in kernel concurrency testing [16]. It trains
a model that can predict kernel code coverage of a multi-
threaded kernel test and uses that to select promising tests
to execute. Compared to it, SNowpLOW predicts mutations
of the test given desirable coverage as input, rather than
predicting coverage given a thread interleaving. It would be
interesting future work to treat interleaving as an additional
mutation type in the context of SNowpLOW, or combine it
with a coverage predictor similar to that of SNOWCAT.
KernelGPT [54] leverages large language models to au-
tomatically generate system call specifications, which are
essential for kernel fuzzers to produce valid tests (e.g., cor-
rect argument types) but typically require kernel experts

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

to write manually [45]. SNowpLOW complements Kernel-
GPT by focusing on mutating generated base tests. Together,
these approaches enhance different stages of the fuzzing
pipeline—KernelGPT facilitates test generation, while SNow-
PLOW improves test mutation.

ML in software optimization. SmartChoices [6] introduces
alearning framework and new programming APIs that allow
developers to easily apply machine learning algorithms to
control important decisions in the program. In the same vein,
PSS [56] proposes a prediction service that can interact with
the caller to provide predictions and incorporate the feed-
back. Lake [14] explores how to efficiently and securely use
machine learning in the kernel-space so that heuristics in
the kernel can be replaced with machine learning algorithms.
Compared to them, SNowpLOW explores a dedicated ML ap-
proach for kernel test mutations, which can learn to predict
the outcome (e.g., argument localization) from a sequence
of decisions—heuristics and randomnesses in the existing
argument selection—all at once.

8 Conclusion

This work proposes SNowpLow, a kernel fuzzer that uses a
learned white-box test mutation strategy to perform effective
test mutations. SNowpPLOW builds the mutator using a new
machine learning model called PMM, which inputs the base
test, its kernel coverage, and the desired target coverage and
outputs promising mutations to reach the desired coverage.
SNnowpLow is implemented to learn the argument mutations
as a case study and evaluated on recent stable Linux kernel
releases, showing that learned mutation guidance can signifi-
cantly speed up coverage increase, help find new bugs in the
kernel, and considerably accelerate directed kernel fuzzing.
We are excited to explore the impact of this powerful and
practical new technique in making software safe and secure.
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