Axiomatic Semantics

- Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine
- Denotational semantics describes the meaning of programs with formal mathematical objects
- Axiomatic semantics describes the meaning of programs in terms of properties (axioms) about them
 - Captures dynamic behavior of individual programs
 - Vehicle for reasoning about program correctness
States

- Specification language is first-order predicate logic
 - Terms (variables, constants, arithmetic operations)
 - Formulae, e.g.
 - True and false
 - If t_1 and t_2 are terms then $t_1 = t_2$ and $t_1 < t_2$ are formulae
 - If ϕ and ψ are formulae then, $\phi \land \psi$, $\phi \lor \psi$, $\neg \phi$ and $\phi \Rightarrow \psi$ are formulae.
 - If $\phi(x)$ is a formula (with x possibly free) then, $\forall x. \phi(x)$ and $\exists x. \phi(x)$ are formulae.
Hoare Triples

- **Meaning of construct S can be described in terms of triples** \(\{ P \} S \{ Q \} \)
 - \(P \) and \(Q \) are formulae or assertions
 - \(P \) is a precondition on \(S \)
 - \(Q \) is a postcondition on \(S \)
 - **Asserts a fact** (may be either true or false)
 - The triple is valid if:
 - execution of \(S \) begins in a state satisfying \(P \)
 - \(S \) terminates
 - resulting state satisfies \(Q \)
Satisfiability

- A formula in first-order logic can be used to characterize states
 - The formula \(\{ x = 3 \} \) characterizes all program states in which the value of the location associated with \(x \) is 3
 - Think of formulas as assertions about states
- Define \(\{ \sigma \in \Sigma \mid \sigma \models \phi \} \) where “\(\models \)” is a satisfiability relation
- Think of \(\{ P \} \ c \ \{ Q \} \) for command \(c \) as meaning
 - \(\sigma \models \{ P \} \ c \ \{ Q \} \) iff \(\sigma \models P \Rightarrow C[c]\sigma \models Q \)
 - \(\bot \models P \) for any assertion \(P \)
Formal Semantics

- $\sigma \models \text{true always}$
- $\sigma \models e_1 = e_2$ iff $[e_1] \sigma = [e_2] \sigma$
- $\sigma \models e_1 \leq e_2$ iff $[e_1] \sigma \leq [e_2] \sigma$
- $\sigma \models A_1 \land A_2$ iff $\sigma \models A_1$ and $\sigma \models A_2$
- $\sigma \models A_1 \lor A_2$ iff $\sigma \models A_1$ or $\sigma \models A_2$
- $\sigma \models A_1 \Rightarrow A_2$ iff $\sigma \models A_1$ implies $\sigma \models A_2$
- $\sigma \models \forall x. A$ iff $\forall n \in \mathbb{Z} \sigma[x \mapsto n] \models A$
- $\sigma \models \exists x. A$ iff $\exists n \in \mathbb{Z} \sigma[x \mapsto n] \models A$
Validity

- Often not so much interested in assertions for particular states, e.g.
 - \{ i < x \} x := x + 1 \{i < x\}
 - Is valid in all states
 - All values for x
 - All interpretations for i

- Validity
 - \(\forall \sigma. \sigma \models \{P\} c \{Q\} \)
 - \(\models \{P\} c \{Q\} \)
Semantics of Assertions

- Note: i in the previous is integer variable introduced for assertions
 - E.g. assertion to express that a number k is not prime: $\exists \ i, l \geq 2 \ k = i \times l$
 - Can be free or bound (cf. lambda)
 - What binds assertion variables?
- Formal meaning
 - $\sigma \models \{P\} \Rightarrow \{Q\}$:
 - $\forall \ \sigma, \sigma' \in \Sigma \ (\sigma \models P \land <c, \sigma> \downarrow \sigma') \Rightarrow \sigma' \models Q$
Examples

- \(\{ 2 = 2 \} \ x := 2 \ {\ x = 2} \)
 - An assignment operation of \(x \) to 2 results in a state in which \(x \) is 2, assuming equality of integers.

- \(\{ \text{True} \} \) if \(B \) then \(x := 2 \) else \(x := 1 \) \(\{ x = 1 \lor x = 2 \} \)
 - A conditional expression that either assigns \(x \) to 1 or 2 if executed will lead to a state in which \(x \) is either 1 or 2.

- \(\{ 2=2 \} \ x := 2 \ {\ y = 1} \)

- \(\{ \text{True} \} \) if \(B \) then \(x := 2 \) else \(x := 1 \) \(\{ x = 1 \land x = 2 \} \)

- The above two triples are invalid. Why?
Partial and total correctness

- The validity of a Hoare triple depends upon statement S terminating
 - Partial correctness assertions
 - E.g., \(\{ 0 \leq a \land 0 \leq b \} S \{ z = a \times b \} \)
 - If executed in a state in which \(0 \leq a \) and \(0 \leq b \), and
 - S terminates,
 - then \(z = a \times b \)

- Alternative: total correctness assertions
 - \([P] c [Q] \): execution of c from state satisfying P terminates in a state which satisfies Q
 - Formal semantics has additional clause
 - \(\sigma \models [P] c [Q] \):
 - \(\forall \sigma, \sigma' \in \Sigma (\sigma \models P \land <c, \sigma> \Downarrow \sigma') \Rightarrow \sigma' \models Q \)
 - \(\land \forall \sigma \in \Sigma \sigma \models P \Rightarrow \exists \sigma' \in \Sigma <c, \sigma> \Downarrow \sigma' \)
A Theory

- Wanted: theory for proving soundness of programs
 - Mathematical framework for proving properties about a certain object domain
 - Such properties are called theorems
- Components of a theory
 - Grammar (e.g. BNF) defines well-formed formulae (WFF)
 - Axioms: formulae asserted to be theorems
 - Inference rules: ways to prove new theorems from previously obtained theorems
Hoare Logic

- Proof system based on Hoare rules
 - derivations are proofs
 - conclusions are theorems
- Write $\vdash \{P\} c \{Q\}$ if $\{P\} c \{Q\}$ is a theorem
- If $\vdash \{P\} c \{Q\}$ then $\models \{P\} c \{Q\}$
 - Any derivable assertion is sound wrt to the underlying semantics
Proof Rules

- **Skip:**
 \[\vdash \{ P \} \text{skip} \{ P \} \]

- **Assignment:**
 \[\vdash \{ P[t/x] \} x := t \{ P \} \]
 Example: Suppose \(t = x + 1 \) then, \(\{ x+1 = 2 \} x := x + 1 \{ x = 2 \} \)

- **("Forward" axiom):**
 \[\vdash \{ P \} x := t \{ \exists x_0 [x_0/x] \top \land x = [x_0/x] t \} \]
 Example: \(\{ y=x \} x := x + 1 \{ y=x-1 \}; x_0 \text{ "stores" the old value of } x \)

- **Sequencing:**
 \[\vdash \{ P \} c_0 \{ Q \}
 \vdash \{ Q \} c_1 \{ R \} \]
 \[\vdash \{ P \} c_0 ; c_1 \{ R \} \]
Proof Rules (cont)

- **Conditionals:**
 \[\vdash \{ P \land b \} c_0 \{ Q \} \quad \vdash \{ P \land \neg b \} c_1 \{ Q \} \]
 \[\vdash \{ P \} \text{ if } b \text{ then } c_0 \text{ else } c_1 \{ Q \} \]

- **Loops:**
 \[\vdash \{ P \land b \} \ c \ \{ P \} \]
 \[\vdash \{ P \} \text{ while } b \text{ do } c \ \{ P \land \neg b \} \]

- **Consequence:**
 \[\vdash (P \Rightarrow P') \quad \vdash \{ P' \} \ c \ \{ Q' \} \quad \vdash (Q' \Rightarrow Q) \]
 \[\vdash \{ P \} \ c \ \{ Q \} \]

- If \(\vdash P \Rightarrow P' \) then all states \(\sigma \) which satisfy \(P \) also satisfy \(P' \). Rule allows strengthening of \(P' \) to \(P \) and weakening of \(Q' \) to \(Q \)
Example

- \(\{ x > 0 \} \ y = x - 1 \{ y \geq 0 \} \) implies
- \(\{ x > 10 \} \ y = x - 1 \{ y \geq -5 \} \)

- \(\{ x > 0 \} \ y = x - 1 \{ y \geq 0 \} \) and
- \(\{ y \geq 0 \} \ x = y \{ x \geq 0 \} \) implies
- \(\{ x > 0 \} \ y = x - 1; \ x = y \{ x \geq 0 \} \)

- Rule of consequence allows us to arrive at a precondition of true and postcondition of false
Example

- Prove the program:
 - \(z := 0; \)
 - \(n := y; \)
 - \(\text{while } n > 0 \text{ do} \)
 - \(z := z + x; \)
 - \(n := n - 1 \)
 - computes the product of \(x \) and \(y \) (assuming \(y \) is not negative).
Example

- Want to show the following:
 \[\{ y \geq 0 \} \text{ <program> } \{ z = x \times y \} \]
 is valid.

- Key insight is picking the invariant for the while loop:

 \[P = \{ z = x \times (y - n) \land n \geq 0 \} \]
Example

\[
\{ z = x \times (y - n) \land n \geq 0 \}\] \hspace{1cm} (13)

while \(n > 0 \) do \(z := z + x; \ n := n -1 \)

\{ z = x \times y \}

\[
z = x \times (y - n) \land n \geq 0 \land \neg (n > 0) \Rightarrow z = x \times y \] \hspace{1cm} (12)

(by definition of while: \{ P \} while \(b \) do \(c \) \{ P \land \neg b \})

\[
\{ z = x \times (y - n) \land n \geq 0 \}\]

while \(n > 0 \) do \(z := z + x; \ n := n -1 \)

\{ z = x \times (y - n) \land n \geq 0 \land \neg n > 0 \} \hspace{1cm} (11)

\[
\{ z = x \times (y - n) \land n \geq 0 \land n > 0 \}\]

\[
z := z + x; \ n := n -1 \]

\{ z = x \times (y - n) \land n \geq 0 \} \hspace{1cm} (10)

(by definition of while: premise is \{ P \land b \} c \{ P \})
Example

- \[z = x \cdot (y - n) \land n \geq 0 \land n > 0 \Rightarrow \]
- \[(z + x) = x \cdot (y - (n - 1)) \land (n - 1) \geq 0 \quad (9)\]
- (rewrite; prepare replacing \(z+x \) by \(z \) and \(n-1 \) by \(n \))

\[
\{(z + x) = x \cdot (y - (n - 1)) \land (n - 1) \geq 0\}
\]
- \[z := z + x; \; n := n - 1 \]
- \[\{z = x \cdot (y - n) \land n \geq 0\} \quad (8) \]

\[
\{(z + x) = x \cdot (y - (n - 1)) \land (n - 1) \geq 0\}
\]
- \[z := z + x; \]
- \[\{z = x \cdot (y - (n - 1)) \land (n - 1) \geq 0\}
\]
- \[n := n - 1; \]
- \[\{z = x \cdot (y - n) \land n \geq 0\} \quad (7) \]
Example

We have shown $A = \{ z = x \times (y - n) \land n \geq 0 \}$ while $n > 0$ do $z := z + x; n := n - 1 \{ z = x \times y \}$

Remains

\{ y \geq 0 \} z := 0; n := y \quad A = \{ z = x \times (y - n) \land n \geq 0 \} \quad (5)

Holds because $y \geq 0 \Rightarrow 0 = x \times (y - y) \land y \geq 0$:

\{ 0 = x \times (y - y) \land y \geq 0 \}
\{ z := 0; n := y \}
\{ z = x \times (y - n) \land n \geq 0 \} \quad (3)

\{ z = x \times (y - y) \land y \geq 0 \}
\{ n := y \}
\{ z = x \times (y - n) \land n \geq 0 \} \quad (2)

\{ 0 = x \times (y - y) \land y \geq 0 \}
\{ z := 0 \}
\{ z = x \times (y - y) \land y \geq 0 \} \quad (1)
Soundness and Completeness

- **Soundness**
 - Whenever $\vdash \{P\} \propto \{Q\}$ we do have $\models \{P\} \propto \{Q\}$
 - Hoare rules are sound

- **But is it true that whenever $\vdash \{P\} \propto \{Q\}$ we can also derive $\vdash \{P\} \propto \{Q\}$?**
 - If it isn’t that means there are valid properties of programs we cannot verify
 - We would like to automatically generate and verify all proofs
Gödel’s Incompleteness

- Take consequence rule
 - Allows for strengthening of preconditions and weakening of postconditions
 - How strong? How weak? How to prove?
- What invariant for while?
- It is logically impossible to have an effective proof system in which one can prove precisely the valid assertions
Weakest Preconditions

- Take sequence \{P\} c_0;c_1 \{Q\}
 - How to find R s.t. \{P\} c_0 \{R\} and \{R\} c_1 \{Q\}

- Idea: weakest precondition
 - “Bottom-up”, iteratively compute minimally necessary preconditions for postconditions under respective commands
 - \(wp[c, Q] = \{\sigma \in \Sigma \upsilon \mid C[c] \sigma \models Q\}\)
 - Thus \(\models \{P\} c \{Q\}\) iff \(P \subseteq wp[c, Q]\)
Weakest Preconditions

- **Skip:** \(\{ P \} \text{skip} \{ P \} \)
- \(wp(\text{skip}, P) = P \)

- **Assignment:** \(\{ P[t/x] \} x := t \{ P \} \)
- \(wp(x:=t, P) = \{ P[t/x] \} \)
Weakest Preconditions (cont)

- **Sequencing:** \[
\{P\} c_0 \{Q\} \quad \{Q\} c_1 \{R\}
\]

- \[
\{P\} c_0 ; c_1 \{R\}
\]

- \[
wp(c_0 ; c_1, R) = wp(c_0, wp(c_1, R))
\]

- **Conditionals:**

- \[
\{P\} c_0 \{Q\} \quad \{R\} c_1 \{Q\}
\]

- \[
\{b \Rightarrow P \land \neg b \Rightarrow R\} \text{ if } b \text{ then } c_0 \text{ else } c_1 \{Q\}
\]

- \[
wp(\text{if } b \text{ then } c_0 \text{ else } c_1) = b \Rightarrow wp(c_0, Q) \land \neg b \Rightarrow wp(c_1, Q)
\]
While Loops Again

- How about \{P\} while b do c \{Q\}? P?
- Remember
 - while b do c = if b then c; while b do c else skip
- Let w = while b do c and W = wp(w, Q)
- We have W= b \Rightarrow wp(c, W) \land \neg b \Rightarrow Q
 - Recursion
Using Domain Theory

- What assertion contains least information? True
- What is an appropriate information ordering? \(P \sqsubseteq P' \iff \models P' \Rightarrow P \)
- Is this partial order complete?
 - Take a chain \(P_0 \sqsubseteq P_1 \sqsubseteq \ldots \)
 - Let \(\bigwedge P_i \) be the infinite conjunction of \(P_i \)
 - \(\sigma \models \bigwedge P_i \) iff for all \(i \) we have that \(\sigma \models P_i \)
Fixed Point Theorem

- Use fixed point theorem for
 - \(F(P) = b \Rightarrow wp(c, P) \land \neg b \Rightarrow Q \)
 - Verify that \(F \) is continuous

- Least fixed point is
 - \(wp(w, Q) = \land F^n(true) \)

- Define family of \(wp \)'s
 - \(wp_n(while \ b \ do \ c, Q) = \) weakest precondition on which if loop terminates in \(n \) or fewer iterations, terminates in \(Q \)
 - \(wp_0 = \neg b \Rightarrow Q \)
 - \(wp_1 = b \Rightarrow wp(c, wp_0) \land \neg b \Rightarrow Q \)
 - \(wp(c, Q) = \land n \geq 0 wp_n = \Box \{wp_n | n \geq 0\} \)
With a Little Help...

- With a little human guidance assertions can be established a lot better
 - wp can in fact not always be computed
- Define the annotated commands of IMP as:
 - $c ::= \text{skip}$
 - $| x := e$
 - $| c_0; (x := e)$
 - $| c_0; \{R\} c_1$
 - $| \text{if } b \text{ then } c_0 \text{ else } c_1$
 - $| \text{while } b \text{ do } \{R\} c$
- An annotated partial correctness assertion is of the form $\{P\} c \{Q\}$ with c defined as above
Check

- while loop means
 - \{P\} while b do \{R\} c \{Q\} with R invariant
 - Thus \{R \land b\} c \{R\}
 - \text{P }\Rightarrow \text{ R and } R \land \neg b \Rightarrow Q
 - Verifiable with Hoare consequence and while rules

- Verification conditions
 - Verify annotated partial correctness assertions
Verification Conditions

- $vc(\{P\} \text{ skip } \{Q\}) = \{P \Rightarrow Q\}$
- $vc(\{P\} X:=a \{Q\}) = \{P \Rightarrow Q[a/X]\}$
- $vc(\{P\} c_0; X:=a \{Q\}) = vc(\{P\} c_0 \{Q[a/X]\})$
- $vc(\{P\} c_0; \{R\} c_1 \{Q\}) = vc(\{P\} c_0 \{R\}) \cup vc(\{R\} c_1 \{Q\})$ (c_0 \text{ no assignm.})
- $vc(\{P\} \text{ if } b \text{ then } c_0 \text{ else } c_1 \{Q\}) =
 \begin{align*}
 &\quad vc(\{P \land b\} c_0 \{Q\}) \cup vc(\{P \land \neg b\} c_1 \{Q\})
 \end{align*}$
- $vc(\{P\} \text{ while } b \text{ do } \{D\} c \{Q\}) =
 \begin{align*}
 &\quad vc(\{P \land b\} c \{Q\}) \cup \{P \Rightarrow D\} \cup \{D \land \neg b \Rightarrow Q\}
 \end{align*}$