CS505: Distributed Systems

Lecture 16: Probabilistic Consensus
Outline

- Randomized Binary Consensus
- From Binary Consensus to Multivalued Consensus
- Hybrid Multivalued Consensus
(Uniform) Binary Consensus

To start consensus a process proposes either false (0) or true (1)

I. Validity
 Any value decided is a value proposed

II. Agreement
 No two processes decide differently

III. Integrity
 No process decides twice

IV. Termination
 Every correct process eventually decides
I. Validity
Any value decided is a value proposed

II. Agreement
No two processes decide differently

III. Integrity
No process decides twice

IV. Termination
With probability 1 every correct process eventually decides
[Ben-Or’83] tolerates crashes of a minority f of n processes

For Process p_i

upon propose(v):

- $r \leftarrow 0$, est $\leftarrow v$ // current round and estimate

while true do

- $r \leftarrow r + 1$
- send(phase1, r, est) to all processes // phase 1

wait for (receive(phase1, r, u) from a majority)

if all received with same u then

- send(phase2, r, u) to all processes // phase 2

else

- send(phase2, r, ⊥) to all processes // phase 2

wait for (receive(phase2, r, u) from a majority)

if some $u \neq ⊥$ then

- est $\leftarrow u$
 - if all received with same $u \neq ⊥$ then decide(u)

else then

- est \leftarrow coinFlip
Agreement

- If some process decides v, then no other decision can be taken anymore, even if the process crashes
- A majority of confirmations of v are gathered in phase 2, which means that every other process has observed some message with v
 - It retains the value in its est
- Since v results from a majority, there can not be another value

Termination

- How can we not get a majority of same values?
 - If a minority of processes fails, and the live majority does not all “happen to” propose the same value
 - Flip coins (note that both values are valid)
 - Thus probabilistic guarantee
- With $n^{1/2}$ failures we get constant average time
Binary Consensus provides only two possible inputs/outputs
- Most decisions require a choice from a larger set
 - E.g., which message to deliver first?
 - In general case, the set is not bound a priori

Can we construct a Multivalued Consensus
- Assuming we have a Binary Consensus algorithm?
- Lets start from the deterministic case
Proposition [MRT’00]

init
val ← (⊥, …, ⊥)
decided ← false
k ← 0

upon deliver(v) from p_j:
 val[j] ← v

upon propose(v):
 broadcast(v)
 while not decided do
 k ← k + 1
 prop ← (val[k mod n] ≠ ⊥)
 propose_B(k, prop)
 r s.t. decide_B(k, r)
 if r then wait until (val[k mod n] ≠ ⊥)
 decided ← true
 decide(val[k mod n])
Assessment

➤ Idea
 – Every process broadcasts proposition to everybody
 – Binary consensus is used to decide who’s proposition to adopt
 ▪ Sequence of consensus instances started, first one (k-th consensus) to decide true yields the process (k-th process)

➤ What guarantees do we get?
 – Uniform Agreement?
 – Termination?

➤ Broadcast?
 – Implementable?
Can we use the previous scheme to implement a *randomized* multivalued approach?

With Binary 1-Consensus?

Succinct proposition [EMR’01]
For Process p_i

init
 $val \leftarrow (\bot, \ldots, \bot)$; $decided \leftarrow false$

upon deliver$_U (val, v)$ from p_j:
 $val[j] \leftarrow v$

upon deliver$_U (dec, v)$:
 decide(v)

upon propose(v): // invocation of decide stops all tasks/input
 broadcast$_U (val, v); r \leftarrow 0, est \leftarrow v$ // current round and estimate

while true do
 $r \leftarrow r + 1$
 send(phase1, r, est) to all processes // phase 1
 wait for (receive(phase1, r, u) from majority of processes)
 if all u are same then $est \leftarrow u$
 else then $est \leftarrow \bot$
 send(phase2, r, est) to all processes // phase 2
 wait for (receive(phase2, r, u) from majority of processes)
 if all $u \neq \bot$ are same then
 broadcast$_U (dec, u); stop$
 else if at least one $u \neq \bot$ then $est \leftarrow u$
 else then $est \leftarrow val[random(1,n)]$
Assessment

► Guarantees?

► Why Uniform Reliable Broadcast?

► Optimization
 – Pick value ≠ \bot from process with smallest index starting at random index (cycle when reaching \(n \))
 – Can accelerate establishment of majority value
