CS505: Distributed Systems

Lecture 10: Consensus
Consensus impossibility result

Consensus with $\diamond S$

Consensus with Ω
Consensus

Most famous problem in distributed computing

Intuitively: a group of processes need to reach agreement on a common value
 - E.g., total order broadcast: next message(s) to deliver

Still “light form” of agreement; “harder” problems exist, e.g.,
 - Non-blocking atomic commit (for distributed transactions)
 - Leader election (for passive replication)
 - Mutual exclusion (for distributed critical sections)
Definition of (Binary) Consensus

- Defined by two primitives
 - propose
 - decide

- Processes propose either 0 or 1

- Processes decide on same value
Properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Validity</td>
</tr>
<tr>
<td></td>
<td>Any value decided is a value proposed</td>
</tr>
<tr>
<td>II.</td>
<td>Integrity</td>
</tr>
<tr>
<td></td>
<td>No process decides twice</td>
</tr>
<tr>
<td>III.</td>
<td>Agreement</td>
</tr>
<tr>
<td></td>
<td>No two correct processes decide differently</td>
</tr>
<tr>
<td>IV.</td>
<td>Termination</td>
</tr>
<tr>
<td></td>
<td>Every correct process eventually decides</td>
</tr>
</tbody>
</table>
[FLP’87] states there is no deterministic solution to consensus in asynchronous systems if even one single process can fail.

- Any fault-tolerant algorithm solving consensus has runs that never terminate.
- These runs can be very unlikely (“probability zero”).
- Yet they imply that we can’t find a totally correct solution.
- And so “consensus is impossible” (“not always possible”).
Execution, Configuration, Events

- Set of processes p_i, each process with a state

- Configuration
 - Set of states of all processes at some moment

- Events
 - send and receive
 - Can change the state at a process
 - In particular latter can be delayed locally

- Execution
 - Sequence of configuration and events; schedules
Configuration C

Event $e'=(p', m')$

Event $e''=(p'', m'')$

Schedule $s=(e', e'')$

Equivalent
Commutative Schedules

Schedule s1 and s2 involve disjoint sets of receiving processes.
We can classify configurations as

- **Bivalent**
 - Decision is not already (pre-)determined, outcome is unpredictable; can be 0 or 1

- **Univalent**
 - 0 - *valent*, will result in deciding 0
 - 1 - *valent*, will result in deciding 1
Proof Sketch

- The goal is to construct an execution that does not decide, showing that the protocol remains forever indecisive.

- Start with an initially bivalent state, identify an execution that would lead to a univalent state, let’s say 0-valent.

- The switch from bivalent to univalent is due to an event $e = (p, m)$ in which some process p receives some message m.
We will delay the \(e \) event for a while
- Delivery of \(m \) would make the run univalent but \(m \) is delayed (fair-game in an asynchronous system)

Since the protocol is indeed fault-tolerant (\(p \) can fail) there must be a run that leads to the other univalent state
- \(e \) can be “lost” if \(p \) fails
- Since the configuration is bivalent, both outcomes must still be possible

Now let \(m \) be delivered, this will bring the system back in a bivalent state
Proof: More Details

- **Lemma 1**: There exists an initial configuration that is bivalent.
- **Lemma 2**: Starting from a bivalent configuration C and an event $e = (p, m)$ applicable to C, consider C the set of all configurations reachable from C without applying e and D the set of all configurations obtained by applying e to the configurations from C, then D contains a bivalent configuration.

Theorem: There is always a sequence of events in an asynchronous distributed system such that the group of processes never reach consensus.
Lemma 1: Proof Sketch

Lemma 1: There exists an initial configuration that is bivalent.

Assume by contradiction that there is no bivalent initial configuration. List all initial configurations. There must be both 0-valent and 1-valent initial configurations. (Why?)

Consider a 0-valent initial configuration C_0 adjacent to a 1-valent configuration C_1: they differ only in the value corresponding to process p.
Lemma 1: There exists an initial configuration that is bivalent

Let this process p crash

Note that both C_0 and C_1 will lead to the same final configuration with the exception of internal state of p (they were identical, the only difference was determined by p)

If decision reached is 1, then C_0 must be bivalent, if decision is 0 then C_1 must be bivalent

Thus, there exists an initial configuration that is bivalent
Lemma 2

A bivalent config.

Let $e=(p,m)$ be an applicable event to this config.

Let C be the set of configs. reachable without applying e.
Lemma 2 (2)

A bivalent config.

Let \(e = (p, m) \) be an applicable event to the config.

Let \(C \) be the set of configs. reachable without applying \(e \).

Let \(\mathcal{D} \) be the set of configs. obtained by applying \(e \) to a config. in \(C \).
Claim. \mathcal{D} contains a bivalent config.

Proof. By contradiction. \Rightarrow assume there is no bivalent config in \mathcal{D}

\triangleright There are adjacent configs. C_0 and C_1 in C such that

$C_1 = C_0$ followed by e'

\triangleright and

- $e' = (p', m')$
- $D_0 = C_0$ followed by $e = (p, m)$
- $D_1 = C_1$ followed by $e = (p, m)$
- D_0 is 0-valent, D_1 is 1-valent (if not, C_0 would be univalent $\Rightarrow D$)

i-valent config E_i reachable from C exists (because C is bivalent)

- If E_i in C, then $F_i = e(E_i)$
- Else e was applied reaching E_i

Either way there exists F_i in \mathcal{D} for $i = 0$ and 1 both
Proof. (contd.)

- Case I: p' is not p
- Case II: p' same as p
Proof. (contd.)

- Case I: p' is not p

- Case II: p' same as p

But A is then bivalent!
Consensus with ◊S

Rotating coordinator paradigm [CT’96]
- Algorithm proceeds in “unsynchronized” rounds
- Requires majority of correct processes
 - ◊S only eventually (weakly) accurate
 - False suspicions could lead to two or more subsets of \(\prod \) with different decisions

Early termination [MR’99]
For Process p_i

upon propose(v):
 $r \leftarrow 0$ // current round
 while not decided do
 $c \leftarrow (r \text{ mod } n) + 1$ // current coordinator
 $u \leftarrow \bot$ // value received from coordinator p_c or \bot if none
 if $i = c$ then send(PROPOSE, r, v) to all
 wait for receive(PROPOSE, r, v') from p_c or $p_c \in D_i$
 if (PROPOSE, r, v') was received then $u \leftarrow v'$
 send(VOTE, r, u) to all
 wait for receive(VOTE, r, u') from majority of processes
 $U \leftarrow$ set of values received in VOTE messages
 if $U = \{u'\}$ for some $u' \neq \bot$ then send(DECIDE, u') to all
 else if $U = \{u', \bot\}$ then v $\leftarrow u'$
 $r \leftarrow r + 1$

upon receive(DECIDE, v):
 if (not decided)
 decided \leftarrow true
 send(DECIDE, v) to all
 decide(v)
Agreement

1. If two servers decide in the same round, then they decide the same value.

2. Suppose some server decides v' in round r. Then the value v' is contained in the propose message of round r and has been “locked” in the sense that it is not possible for any server in round $r' > r$ to decide $u' \neq v'$ or to assign $u' \neq v'$ to its v because every two sets of a majority of processes intersect.
1. If some server decides, then every other correct server eventually decides
 - Cf. Reliable Broadcast, and 2.

2. There is some round in which the coordinator p_c is not suspected by any server
 - By the failure detector properties
 - All correct servers decide in this round
Discussion

- How about uniformity?
 - V. Uniform Agreement
 No two (correct or faulty) processes decide differently

- Fairness?

- Reliable Broadcast?
Leader-based consensus [MR’01]
- Uses leader oracle

Idea
- Rotating coordinator “tries to look for a leader”
- If oracle is a corresponding abstraction solution can be more effective
For Process p_i

upon propose(v):
 $r \leftarrow 0$ // current round
 $u \leftarrow v$ // current estimate
 while not decided do
 $r \leftarrow r + 1$
 send(PHASE1, r, u) to all // phase 1
 wait for (receive(PHASE1, r, v') from p_l s.t. l=leader$_i$)
 $u \leftarrow v'$
 send(PHASE2, r, u) to all // phase 2
 wait for (receive(PHASE2, r, u') from majority of processes)
 $U \leftarrow$ set of values u' received in vote messages
 if $U = \{u\}$ for some $u' \neq \bot$ then aux $\leftarrow u'$
 else aux $\leftarrow \bot$
 send(PHASE3, r, aux) to all // phase 3
 wait for (receive(PHASE3, r, aux') from majority of processes)
 if (received (PHASE3, r, aux’) with aux’ = v’ \neq ⊥) then u \leftarrow v'
 if (all (PHASE3, r, aux’) messages are such that aux’ \neq ⊥) then
 broadcast(DECIDE, u); decided \leftarrow true
 upon deliver(DECIDE, v):
 decided \leftarrow true
 decide(v)
1. No correct process blocks forever in a round
 - Phase 1: since there is eventually a correct leader
 - Phase 2 and 3: every process sends to all, so majority is received

2. Every correct process decides
 - Eventual leader and 1. imply that there is round r such that a correct process is leader and is seen by every correct process
 - Phase 1: all get estimate of leader
 - Phase 2 and 3: they exchange that estimate, and thus decide
Agreement

No two processes decide different values

- A process decides \(v \) during \(r \)
- At the end of phase two, \(aux \) must have been \(v \) or \(\perp \) for any process (there can only be one majority)
- A process only decides if it received same \(aux \neq \perp \) from majority; since sets overlap, at least one such message was received by other (non-faulty at that time) processes, which thus updated its \(u \)
Performance

[UHSK’04]

- Paxos (leader-based) outperforms rotating coordinator (four phases [CT’96]) with at least one crash
- Also with large number of processes and no crashes

References

