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Why RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are:

 Massive 

(matrices so large that can not be stored at all, or can only be stored in slow memory devices)

 Computationally expensive or NP-hard 

(combinatorial optimization problems, such as the Column Subset Selection Problem, sparse PCA, 
sparse approximations, k-means, etc.)
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Randomized algorithms
• By (carefully) sampling rows/columns/elements of a matrix, we can construct new, smaller 
matrices that are close to the original matrix (w.r.t. matrix norms) with high probability. 

• By preprocessing the matrix using “random projection” matrices, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds.

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Applications in BIG DATA

(Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.)
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Applied Math

1. Numerical Linear Algebra  
(matrix computations, perturbation 

theory)

2. Probability theory
(esp. measure concentration for 

sums of random matrices)



Highlights of 20+ years of RandNLA

5

 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal ComponentAnalysis (PCA).
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 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal ComponentAnalysis (PCA).

Why are these problems important?

 Both problems are fundamental in Data Science.

 Both problems are at the heart of multiple disciplines: Computer Science 
(Numerical Linear Algebra, Machine Learning), Applied Mathematics, and 
Statistics. 

 Both problems have a very rich history: Regression was introduced in the early 
1800s (Gauss, Legendre, etc.) and PCA was introduced in the early 1900s 
(Pearson, Hotelling, etc.)



Highlights of 20+ years of RandNLA
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 

 Structural results and conditions highlighting fundamental properties of such 
problems.

E.g., sufficient conditions that a sketching matrix should satisfy in order to guarantee, 
say, relative error approximations for under/over-constrained regression problems.



Highlights of 20+ years of RandNLA
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Lessons learned (1)
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Lessons learned (1)

This is an oversimplification that both
helps and hurts the field.
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Lessons learned (1)

 Sketching  works! In theory and in practice.

 In problems that involve matrices, using a sketch of the matrix instead of the 
original matrix returns provably accurate results theoretically and works well 
empirically. 

(1) The sketch can be just a few rows/columns/elements of the matrix, selected 
carefully (or not).

(2) The sketch can be simply the product of a matrix with a few random Gaussian 
vectors.

(3) Better sketches (in terms of the accuracy vs. running time tradeoff to construct 
the sketch) have been heavily researched.



Highlights of 20+ years of RandNLA
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Lessons learned (2)

 Using matrix sketches in downstream applications is highly non-trivial.
Understanding the impact of the error incurred by the approximation is both 
challenging and novel.

 Downstream applications include:

(1) All kinds of regression

(2) Low-rank approximations

(3) Clustering algorithms, such as k-means

(4) Support Vector Machines

(5) Interior Point Methods

(6) Other optimization algorithms

etc.



Highlights of 20+ years of RandNLA
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:

 A much better use of a sketch is as a preconditioner or to compute a starting 
point for an iterative process.

(1) As a preconditioner in iterative methods for regression problems, 
(pioneered by Blendenpik). 

(2) To compute a “seed” vector in subspace iteration for SVD/PCA, or 
to compute a Block Krylov subspace.

Neither (1) nor (2) are novel in Numerical Analysis, but the introduction of 
randomization to construct the sketch was/is/will be ground-breaking.
(Re (2): Drineas, Ipsen, Kontopoulou, & Magdon-Ismail SIMAX 2018; Drineas & Ipsen SIMAX 2019; building 
on ideas from Musco & Musco NeurIPS 2015.)



Lessons learned (4)

 Pre- or post-multiplying the (tall and thin) matrix 𝐴𝐴 by a “random-projection-
type” matrix 𝑋𝑋 (think random Gaussian matrix) spreads out the information in 
the (rows of the) matrix:

 This process “uniformizes” (in a very precise sense) the (row) leverage scores.

 Selecting a few rows of 𝑋𝑋𝑋𝑋 uniformly at random is a sketch of 𝐴𝐴.

Highlights of 20+ years of RandNLA
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Highlights of 20+ years of RandNLA
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Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.
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Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.

 RandNLA has provided motivation for the development of matrix concentration 
inequalities and sketching tools, AND

 Matrix concentration inequalities have considerably simplified the analysis of 
RandNLA algorithms and sketching tools have resulted in more efficient 
RandNLA algorithms.



Why focus on regression in this talk? 

Because Gunnar will talk about low-rank approximations and their specializations.

And also because:

 Regression is a fundamental primitive in Data Science.

 Regression is at the heart of multiple disciplines: Computer Science (Numerical 
Linear Algebra, Machine Learning), Applied Mathematics, and Statistics. 

 Regression has a very rich history: goes back to the 1800s and work by Gauss 
and Legendre.

RandNLA and regression
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Problem definition and motivation

In data analysis applications one has 𝑛𝑛 observations of the form:

𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑 is an 𝑛𝑛 × 𝑑𝑑 “design matrix” (𝑛𝑛 ≫ 𝑑𝑑):

In matrix-vector notation,

Model 𝑦𝑦(𝑡𝑡) (unknown) as a linear combination of 𝑑𝑑 basis functions:
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Least-norm approximation problems

The linear measurement model:

In order to estimate 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑, solve:
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Application: data analysis in science

• First application: Astronomy

Predicting the orbit of the asteroid Ceres (in 1801!).

Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of “least squares optimization” and runs in 
𝑂𝑂(𝑛𝑛𝑑𝑑2) time!

• Data analysis: Fit parameters of a biological, chemical, economical, 
physical, astronomical, social, internet, etc. model to experimental data. 
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Least-squares problems

We start with over-constrained least-squares problems, 𝑛𝑛 ≫ 𝑑𝑑.
Notation alert: TCS/NLA: use 𝑏𝑏 instead of 𝑦𝑦 for the response vector!

Typically, there is no 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏.

Want to find the “best” 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑏𝑏.
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Least-squares problems

We start with over-constrained least-squares problems, 𝑛𝑛 ≫ 𝑑𝑑.
Under-constrained (𝑛𝑛 ≪ 𝑑𝑑) and square (𝑛𝑛 ≈ 𝑑𝑑) problems will be discussed later.  

Typically, there is no 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏.

Want to find the “best” 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑏𝑏.
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Exact solution to L2 regression

Cholesky Decomposition: 
If 𝐴𝐴 is full rank and well-conditioned, 

decompose 𝐴𝐴𝑇𝑇𝐴𝐴 = 𝑅𝑅𝑇𝑇𝑅𝑅, where 𝑅𝑅 is upper triangular, and solve the normal equations: 𝑅𝑅𝑇𝑇𝑅𝑅𝑅𝑅 = 𝐴𝐴𝑇𝑇𝑏𝑏.

Squares the condition number; numerically unstable.

QR Decomposition: 
Slower but numerically stable, esp. if 𝐴𝐴 is rank-deficient.

Write 𝐴𝐴 = 𝑄𝑄𝑄𝑄 and solve 𝑅𝑅𝑥𝑥 = 𝑄𝑄𝑇𝑇𝑏𝑏.

Singular Value Decomposition:
Most expensive, but best if 𝐴𝐴 is very ill-conditioned.

Write 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇, in which case: xo𝑝𝑝𝑝𝑝 = A+b = VΣ𝑈𝑈𝑇𝑇𝑏𝑏.

Complexity is 𝑂𝑂(𝑛𝑛𝑑𝑑2), but constant factors differ.
25



Algorithm: Sampling for L2 regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007, 
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

Algorithm

1. Compute a probability distribution over the 
rows of 𝐴𝐴 (𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1 …𝑛𝑛 summing up to one).

2. In 𝑟𝑟 i.i.d. trials pick 𝑟𝑟 rows of 𝐴𝐴 and the 
corresponding elements of 𝑏𝑏 with respect to 
the 𝑝𝑝𝑖𝑖.
(Rescale sampled rows of 𝐴𝐴 and sampled elements 
of 𝑏𝑏 by 1

𝑟𝑟𝑝𝑝𝑖𝑖
.)

3. Solve the induced problem.
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Algorithm: Sampling for L2 regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007, 
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

Algorithm

1. Compute a probability distribution over the 
rows of 𝐴𝐴 (𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1 …𝑛𝑛 summing up to one).

2. In 𝑟𝑟 i.i.d. trials pick 𝑟𝑟 rows of 𝐴𝐴 and the 
corresponding elements of 𝑏𝑏 with respect to 
the 𝑝𝑝𝑖𝑖.
(Rescale sampled rows of 𝐴𝐴 and sampled elements 
of 𝑏𝑏 by 1

𝑟𝑟𝑝𝑝𝑖𝑖
.)

3. Solve the induced problem.
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The 𝑝𝑝𝑖𝑖: our work introduced the notion of the leverage scores. 



Theorem
If the 𝑝𝑝𝑖𝑖 are the row leverage scores of 𝐴𝐴, then, with probability at least 0.8,

The sampling complexity (the value of 𝑟𝑟) is
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Leverage scores: tall & thin matrices
Let 𝐴𝐴 be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑 whose SVD is:
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 The matrix 𝑈𝑈 contains the left singular vectors of 𝑈𝑈. 

 The columns of 𝑈𝑈 are pairwise orthogonal and normal.

 This is NOT the case for rows of 𝑈𝑈 : all we know is that the Euclidean 
norms of its rows are between zero and one.



Leverage scores: tall & thin matrices

(Row) Leverage scores: 

i-th row of 𝑈𝑈

The (row) leverage scores can now be used to sample rows from 𝐴𝐴 to create a sketch.
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Let 𝐴𝐴 be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑 whose SVD is:



Computing leverage scores
Drineas, Magdon-Ismail, Mahoney, and Woodruff ICML 2012, JMLR 2012

 Trivial: via the Singular Value Decomposition 

𝑂𝑂(𝑛𝑛𝑑𝑑2) time for 𝑛𝑛 × 𝑑𝑑 matrices with 𝑛𝑛 > 𝑑𝑑.

 Non-trivial: relative error approximations for all leverage scores.

Leverage scores can be computed in 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 ⋅ 𝑘𝑘 time:

Clarkson and Woodruff (STOC ’13): sparse random projection;

Mahoney and Meng (STOC ‘13): better analysis for the above result;

Nelson and Huy (FOCS ’13): best known analysis for the above result;

Boutsidis and Woodruff (STOC ‘14): applications to RandNLA problems;
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Avoiding leverage scores
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

 Recall that the leverage scores can be uniformized by computing:

Then, sample rows of 𝑿𝑿𝑿𝑿 uniformly at random. 

32

 Possible constructions for 𝑿𝑿:

 Random Gaussians (with/without normalization).

 Random signs (up to normalization).

 The randomized Hadamard transform (and its variants).

 The Count Sketch input sparsity transform of Clarkson & Woodruff.



Proof: a structural result
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

Consider the over-constrained least-squares problem:

and the “sketched” (or “preconditioned”) problem

Recall: 𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑; 𝑋𝑋 is 𝑟𝑟 × 𝑛𝑛 matrix with r ≪ 𝑛𝑛. 

 Think of 𝑋𝑋𝑋𝑋 as a “sketch” of 𝐴𝐴. 

 Our approach (using the leverage scores) focused on sketches of 𝐴𝐴 that are 
created by sampling rows of 𝐴𝐴.

 More general matrices 𝑋𝑋 are possible and have been heavily studied.

33



Proof: a structural result
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

Let 𝑈𝑈𝐴𝐴 be the 𝑛𝑛 × 𝑑𝑑 matrix of the left singular vectors of 𝐴𝐴.

If 𝑋𝑋 satisfies (constants are somewhat arbitrary):

then, 
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The “heart” of the proof

Then, we can prove that with probability at least 1 − 𝛿𝛿:

It follows that, for all 𝑖𝑖:

At the heart of proofs in this line of research lies the following observation:

𝑈𝑈𝐴𝐴 is an orthogonal matrix: 
𝑈𝑈𝐴𝐴𝑇𝑇𝑈𝑈𝐴𝐴 = 𝐼𝐼𝑑𝑑

𝑋𝑋𝑈𝑈𝐴𝐴 is a full-rank matrix!
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The “heart” of the proof (cont’d)

Prove: with probability at least 1 − 𝛿𝛿:

It follows that, for all 𝑖𝑖:

 The sampling complexity is 𝑟𝑟 = 𝑂𝑂(𝑑𝑑 log 𝑑𝑑).

 Proving the above inequality is (now) routinely done via matrix concentration 
inequalities (at least in most cases).

 Early proofs were very complicated and not user-friendly.
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Follow-up

Massive amount of follow-up work, including:

 Avron, Maymounkov, and Toledo SISC 2010: Blendenpik, a solver that uses the 
“sketch” 𝑋𝑋𝑋𝑋 as a preconditioner, combined with an iterative least-squares solver. 
Beats LAPACK by a factor of four in essentially all over-constrained least-
squares problems.

 Iyer, Avron, Kollias, Inechein, Carothers, and Drineas JCS 2016: an 
evaluation of Blendenpik on terascale matrices in Rensselaer’s BG/Q; again 
factor four-to-six speedups compared to Elemental’s QR-based solver.

 Drineas, Mahoney, Woodruff, and collaborators (SODA 2008, SIMAX 2009, 
SODA 2013, SIMAX 2016): general 𝑝𝑝-norm regression, beyond Euclidean norm.

 Clarkson and Woodruff STOC 2013: relative error algorithms for over-
constrained least-squares regression problems in input sparsity time using a 
novel construction for the sketching matrix.
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Follow-up
 Pilanci and Wainwright IEEE TIF 2015, JMLR 2016, SIOPT 2017: A novel 

iterative sketching-based method (Hessian sketch) to solve over-constrained 
least-squares regression problems over convex bodies.

 Paul, Magdon-Ismail, and Drineas NIPS 2015, Derezinski and Warmuth NIPS 
2017, AISTATS 2018, COLT 2018, JMLR 2018: Adaptive and volume sampling 
approaches to construct the sketching matrix.

 Alaoui and Mahoney NIPS 2015, Cohen, Musco, Musco, and collaborators STOC 
2015, SODA 2017, FOCS 2017: ridge leverage scores, a smooth and regularized 
generalization of the leverage scores.

 Chowdhuri, Yang, and Drineas ICML 2018, UAI 2019: a preconditioned 
Richardson solver for under-constrained problems; applications to regularized 
Linear Discriminant Analysis; check our papers for a detailed discussion on prior 
work for such under-constrained problems. 38
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Details coming up…



Under-constrained regression problems

Consider the under-constrained regression problem: 

40

 If 𝜆𝜆 = 0, then the resulting problem typically has many solutions achieving an 
optimal value of zero (w.l.o.g. let 𝐴𝐴 have full rank). 

 The regularization term places a constraint on the Euclidean norm of the 
solution vector; the resulting regularized problem is called ridge regression. 

 Other ways of regularization are possible, e.g., sparse approximations, LASSO, 
and elastic nets.

𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, 
with 𝑛𝑛 ≪ 𝑑𝑑



Under-constrained regression problems

Consider the under-constrained regression problem: 
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𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, 
with 𝑛𝑛 ≪ 𝑑𝑑
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Richardson’s iteration with sketching

sketching

Subtract the current 
“solution” from the 
response vector
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Our results Leverage Score 
Sampling

Ridge Leverage 
Score Sampling



Leverage Scores 

i-th column 𝑉𝑉𝑇𝑇 or 
i-th row of 𝑉𝑉

𝑛𝑛 × 𝑑𝑑 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑑𝑑

Let A be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑑𝑑 ≫ 𝑛𝑛:



Ridge Leverage Scores 
Let A be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑑𝑑 ≫ 𝑛𝑛:

𝑛𝑛 × 𝑑𝑑 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑑𝑑



Leverage or Ridge Leverage Scores 

Given 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑, a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑑𝑑 ≫ 𝑛𝑛, we can “sketch” 𝐴𝐴
by sampling columns of 𝐴𝐴 with probabilities proportional to the leverage 
or ridge leverage scores.



Related work: the “square” case

47

The “square” case: solving systems of linear equations
• Almost optimal relative-error approximation algorithms for Laplacian and, more 

generally, Symmetric Diagonally Dominant (SDD) matrices 

• Pioneered by Spielman and Teng, major contributions later by Miller, Koutis, 
Peng, and many others.

• Roughly speaking, the proposed methods are iterative preconditioned solvers 
where the preconditioner is a sparse version of the original graph. 

• This sparse graph is constructed by sampling edges of the original graph with 
probability proportional to their leverage scores, which in the context of 
graphs are called effective resistances.

• Still open: progress beyond Laplacians. 

• Results by Peng Zhang and Rasmus Kyng (FOCS 2017) indicate that such 
progress might be challenging.

• Check Koutis, Miler, and Peng CACM 2012 for a quick intro.



• Primal dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Can we solve these least squares problems approximately using random sampling/random 
projections?

• Modern approaches: primal/dual interior point methods iterate along an approximation to 
the Newton direction and tolerate infeasibilities. A system of linear equations must be 
solved.

(inexact interior point methods: work by Bellavia, Steihaug, etc.)

• Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

• Goal: Use sampling/random projection approaches to design efficient precoditioners to 
solve systems of linear equations that arise in primal-dual interior point methods faster.

RandNLA and linear programming



Standard form of primal LP:

Preconditioning in Interior Point Methods
(Chowdhuri, Dexter, London, Avron, & Drineas NeurIPS 2020 and more in 2021)
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Standard form of primal LP:

Focus on short-and-fat LPs: 𝑛𝑛 ≫ 𝑚𝑚, under-constrained problem.

Path-following, long-step IPMs: compute the Newton search direction; update 
the current iterate by following a (long) step towards the search direction. 

Skipping details, a standard approach involves solving the normal equations:

Vector of m unknowns

where

Preconditioning in Interior Point Methods
(Chowdhuri, Dexter, London, Avron, & Drineas NeurIPS 2020 and more in 2021)
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Standard form of primal LP:

Focus on short-and-fat LPs: 𝑛𝑛 ≫ 𝑚𝑚, under-constrained problem.

Path-following, long-step IPMs: compute the Newton search direction; update 
the current iterate by following a (long) step towards the search direction. 

Skipping details, a standard approach involves solving the normal equations:

Vector of m unknowns

where

Use a preconditioned method to solve the above system: we analyzed 
preconditioned Conjugate Gradient solvers; preconditioned Richardson’s; and 
preconditioned Steepest Descent, all with randomized preconditioners.

Preconditioning in Interior Point Methods
(Chowdhuri, Dexter, London, Avron, & Drineas NeurIPS 2020 and more in 2021)



Immediate problem: approximate solutions do not lead to feasible updates.

• As a result, standard analyses of the convergence of IPMs (which assume feasibility) are not 
applicable.

• We use RandNLA approaches to efficiently and provably accurately correct the error 
induced by the approximate solution and guarantee convergence.

• Our approach guarantees that the number of iterations of IPM methods does not increase, 
despite the use of approximate solvers, for both feasible and infeasible long-step IPMs.

Preconditioning in Interior Point Methods
(Chowdhuri, Dexter, London, Avron, & Drineas NeurIPS 2020 and more in 2021)



Immediate problem: approximate solutions do not lead to feasible updates.

• As a result, standard analyses of the convergence of IPMs (which assume feasibility) are not 
applicable.

• We use RandNLA approaches to efficiently and provably accurately correct the error 
induced by the approximate solution and guarantee convergence.

• Our approach guarantees that the number of iterations of IPM methods does not increase, 
despite the use of approximate solvers, for both feasible and infeasible long-step IPMs.

The “devil” is always in the details:

• Fixing the error in each iteration without increasing the computational cost: very novel.

• We analyzed long-step methods vs. predictor-corrector methods: the former work better 
in practice, the latter have better theoretical guarantees.

• Empirical evaluations on ℓ1-reguralized SVMs that are solved via LPs.

Preconditioning in Interior Point Methods
(Chowdhuri, Dexter, London, Avron, & Drineas NeurIPS 2020 and more in 2021)



“Randomization is arguably the most exciting and innovative idea to have hit 
linear algebra in a long time.” (Avron et al. (2010) SISC)

RandNLA events

DIMACS Workshop on RandNLA, DIMACS, Sep 2019.

RandNLA workshop, Simons Institute for the Theory of Computing, UC 
Berkeley, Foundations of Data Science, Sep 2018

RandNLA course, PCMI Summer School on Mathematics of Data, Jul 2016

 Highlighted at the Workshops on Algorithms for Modern Massive Datasets 
(MMDS) 2006, 2008, 2010, 2012, 2014, and 2016. 

http://mmds-data.org/

 Gene Golub SIAM Summer School (G2S3), Δελφοί, Greece, June 2015

 Invited tutorial at SIAM ALA 2015 

 RandNLA workshop in FOCS 2012

http://mmds-data.org/


RandNLA review articles

P. G. Martinsson and J. A. Tropp, Randomized Numerical Linear Algebra: Foundations & Algorithms, 
Acta Numerica, 2020.

P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra, Amer. Math. Soc., 
2018.

M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra, Communications of 
the ACM, 2016.

D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and Trends in Theoretical 
Computer Science, 2014.

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends in Machine 
Learning, 2011.

N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms 
for Constructing Approximate Matrix Decompositions, SIAM Review, 2011.
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