
Mining Massive Datasets: a (Randomized)
Linear Algebraic Approach

To access my web page:

Petros Drineas

Rensselaer Polytechnic Institute
Computer Science Department

drineas

Why linear algebra?

Data are represented by matrices (or tensors)

Numerous modern datasets are in matrix form.

Data in the form of tensors (multi-mode arrays) have become very common in the data
mining and information retrieval literature in the last few years.

Goal

Learn a model for the underlying “physical” system generating the data.

Toolbox

Linear algebra (and numerical analysis) provide the fundamental mathematical and
algorithmic tools to deal with matrix and tensor computations.

Tool: matrix decompositions

Matrix decompositions

(e.g., SVD, QR, SDD, CX and CUR, NMF, etc.)

• They use the relationships between the available data in order to identify
components of the underlying physical system generating the data.

• Some assumptions on the relationships between the underlying components
are necessary.

• Very active area of research; some matrix decompositions are more than
one century old, whereas others are very recent.

Randomized algorithms

Randomization and sampling allow us to design provably accurate algorithms for
problems that are:

 Massive

(e.g., matrices so large that can not be stored at all, or can only be stored in slow, secondary
memory devices)

 Computationally expensive or NP-hard

(e.g., combinatorial optimization problems such as the Column Subset Selection Problem and the
related CX factorization)

Randomized algorithms & Linear Algebra

• Randomized algorithms

• By (carefully) sampling rows/columns/entries of a matrix, we can construct new matrices
(that have smaller dimensions or are sparse) and have bounded distance (in terms of some
matrix norm) from the original matrix (with some failure probability).

• By preprocessing the matrix using random projections (*), we can sample rows/columns/
entries(?) much less carefully (uniformly at random) and still get nice bounds (with some
failure probability).

(*) Alternatively, we can assume that the matrix is “well-behaved” and thus uniform sampling will work.

• Randomized algorithms

• By (carefully) sampling rows/columns/entries of a matrix, we can construct new matrices
(that have smaller dimensions or are sparse) and have bounded distance (in terms of some
matrix norm) from the original matrix (with some failure probability).

• By preprocessing the matrix using random projections, we can sample rows/columns/
entries(?) much less carefully (uniformly at random) and still get nice bounds (with some
failure probability).

• Matrix perturbation theory

• The resulting smaller/sparser matrices behave similarly (in terms of singular values and
singular vectors) to the original matrices thanks to the norm bounds.

In this talk, I will illustrate some applications of the above ideas.

Randomized algorithms & Linear Algebra

Interplay

Theoretical Computer Science

Randomized and approximation
algorithms

Numerical Linear Algebra

 Matrix computations and Linear
Algebra (ie., perturbation theory)

(Data Mining) Applications

Biology & Medicine: population genetics (coming up…)

Electrical Engineering: testing of electronic circuits

Internet Data: recommendation systems, document-term data

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

 They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
d
iv

id
ua

ls
 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

 Matrices including thousands of individuals and hundreds of thousands if SNPs are available.

 Human genetics

HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The Human Genome Diversity Panel (HGDP)

HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

The Human Genome Diversity Panel (HGDP)

ASW, MKK,
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

We will apply SVD/PCA
on the (joint) HGDP and
HapMap Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)

Dense matrix:

over one billion entries

The Human Genome Diversity Panel (HGDP)

ASW, MKK,
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

4.0 4.5 5.0 5.5 6.0
2

3

4

5 Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return …

The Singular Value Decomposition (SVD)

4.0 4.5 5.0 5.5 6.0
2

3

4

5 Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return …

1st (right)
singular vector

1st (right) singular vector:

direction of maximal variance,

The Singular Value Decomposition (SVD)

4.0 4.5 5.0 5.5 6.0
2

3

4

5 Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return …

1st (right)
singular vector

1st (right) singular vector:

direction of maximal variance,

2nd (right)
singular vector

2nd (right) singular vector:

direction of maximal variance, after
removing the projection of the data
along the first singular vector.

The Singular Value Decomposition (SVD)

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right)
singular vector

2nd (right)
singular vector

Singular values

1: measures how much of the data variance
is explained by the first singular vector.

2: measures how much of the data variance
is explained by the second singular vector.

1

2

Principal Components Analysis (PCA) is done via the
computation of the Singular Value Decomposition
(SVD) of a (mean-centered) covariance matrix.

Typically, a small constant number (say k) of the
top singular vectors and values are kept.

SVD: formal definition

: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

SVD: formal definition

: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

 Let 1 , 2 , … ,  be the entries of S.

 Computing the SVD takes O(min{mn2 , m2n}) time.

 The top k left/right singular vectors/values can be computed faster using
iterative methods.

HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007), Nature

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)
The Human Genome Diversity Panel (HGDP)

ASW, MKK,
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

SVD/PCA
returns…

Africa

Middle East

South Central
Asia

Europe

Oceania

East Asia

America

Gujarati
Indians

Mexicans

• Top two Principal Components (PCs or eigenSNPs)

(Lin and Altman (2005) Am J Hum Genet)

• The figure renders visual support to the “out-of-Africa” hypothesis.

• Mexican population seems out of place: we move to the top three PCs.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet

Africa
Middle East

S C Asia &
Gujarati Europe

Oceania

East Asia

America

Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and – of course – can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet

Issues

• Computing large SVDs: computational time

• In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes.

• Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

• We compute the eigendecomposition of AAT.

• In a similar experiment, we computed 1,200 SVDs on matrices of dimensions (approx.)
1,200-by-450,000 (roughly speaking a full leave-one-out cross-validation experiment).

(Drineas, Lewis, & Paschou (2010) PLoS ONE)

• Obviously, running time is a concern.

• Machine-precision accuracy is NOT necessary!

• Data are noisy.

• Approximate singular vectors work well in our setting.

Issues (cont’d)

• Selecting good columns that “capture the structure” of the top PCs

• Combinatorial optimization problem; hard even for small matrices.

• Often called the Column Subset Selection Problem (CSSP).

• Not clear that such columns even exist.

Our perspective

The two issues are connected

• There exist “good” columns in any matrix that contain information about the
top principal components.

• We can identify such columns via a simple statistic: the leverage scores.

• This does not immediately imply faster algorithms for the SVD, but, combined
with random projections, it does!

SVD decomposes a matrix as…

Top k left singular vectors

The SVD has strong
optimality properties.

 It is easy to see that X = Uk
TA.

 SVD has strong optimality properties.

 The columns of Uk are linear combinations of up to all columns of A.

The CX decomposition
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl
Mahoney & Drineas (2009) PNAS

c columns of A

Carefully
chosen X

Goal: make (some norm) of A-CX small.

Why?

If A is an subject-SNP matrix, then selecting representative columns is
equivalent to selecting representative SNPs to capture the same structure
as the top eigenSNPs.

We want c as small as possible!

CX decomposition

c columns of A

Easy to prove that optimal X = C+A. (C+ is the Moore-Penrose pseudoinverse of C.)

Thus, the challenging part is to find good columns (SNPs) of A to include in C.

From a mathematical perspective, this is a hard combinatorial problem, closely
related to the so-called Column Subset Selection Problem (CSSP).

The CSSP has been heavily studied in Numerical Linear Algebra.

(Frieze, Kannan, & Vempala FOCS 1998, Drineas, Frieze, Kannan, Vempala & Vinay SODA ’99, Drineas,
Kannan, & Mahoney SICOMP ’06)

Algorithm: given an m-by-n matrix A, let A(i) be the i-th column of A.

• Sample s columns of A in i.i.d. trials (with replacement), where in each
trial

• Form the m-by-s matrix C by including A(i) as a column of C.

Error bound:

A much simpler statistic

Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Original matrix Sampling (s=140 columns)

1. Sample s (=140) columns of the original matrix A and form a 512-by-c
matrix C.

2. Project A on CC+ and show that A-CC+A is “small”.

(C+ is the pseudoinverse of C)

Approximating singular vectors

Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Original matrix Sampling (s=140 columns)

1. Sample s (=140) columns of the original matrix A and form a 512-by-c
matrix C.

2. Project A on CC+ and show that A-CC+A is “small”.

(C+ is the pseudoinverse of C)

Approximating singular vectors

Approximating singular vectors (cont’d)

Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

A

Remark 1: Selecting the columns in this setting is trivial and can be
implemented in a couple of (sequential) passes over the input matrix.

Remark 2: The proof is based on matrix perturbation theory and a
probabilistic argument to bound AAT – ĈĈT (where Ĉ is a rescaled C).

CC+A

Is this a good bound?

Problem 1: If s = n, we still do not get zero error.

That’s because of sampling with replacement.

(We know how to analyze uniform sampling without replacement, but we have no bounds on non-
uniform sampling without replacement.)

Problem 2: If A had rank exactly k, we would like a column selection procedure
that drives the error down to zero when s=k.

This can be done deterministically simply by selecting k linearly independent columns.

Problem 3: If A had numerical rank k, we would like a bound that depends on the
norm of A-Ak and not on the norm of A.

A lot of prior work in the Numerical Linear Algebra community for the spectral norm case
when s=k; the resulting bounds depend (roughly) on (k(n-k))1/2||A-Ak||2

Relative-error Frobenius norm bounds
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks

at most O((k/ε2) log (k/ε)) columns of A

such that with probability at least .9

The algorithm

Sampling algorithm

• Compute probabilities pj summing to 1.

• Let c = O((k/ε2) log (k/ε)).

• In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with
probability pj.

• Let C be the matrix consisting of the chosen columns.

Input: m-by-n matrix A,

 0 < ε < .5, the desired accuracy

Output: C, the matrix consisting of the selected columns

Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Vk: orthogonal matrix containing the top
k right singular vectors of A.

S k: diagonal matrix containing the top k
singular values of A.

Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Subspace sampling in O(mn2) time

Vk: orthogonal matrix containing the top
k right singular vectors of A.

S k: diagonal matrix containing the top k
singular values of A.

Normalization s.t. the
pj sum up to 1

Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Subspace sampling in O(mn2) time

Vk: orthogonal matrix containing the top
k right singular vectors of A.

S k: diagonal matrix containing the top k
singular values of A.

Normalization s.t. the
pj sum up to 1

Leverage scores

(useful in statistics for
outlier detection)

SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

BACK TO POPULATION GENETICS DATA
Selecting PCA SNPs for individual assignment to four continents

(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics

Paschou et al (2010) J Med Genet

Drineas et al (2010) PLoS One

SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

Afr

Eur

Asi

Ame

Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics

Paschou et al (2010) J Med Genet

Drineas et al (2010) PLoS One

Approximating leverage scores

Can we approximate the leverage scores fast?

Theorem: Given any m-by-n matrix A with m > n, we can approximate its leverage
scores with relative error accuracy in

O(mn log m) time,

as opposed to the – trivial – O(mn2) time.

(Drineas, Mahoney, Magdon-Ismail, & Woodruff ICML ’12)

Recent improvement by Clarkson and Woodruff (ArXiv ’12): relative-error approximation in
(roughly) O(nnz(A)) time!

Problem

How many columns do we need to include in the matrix C in order to get relative-error
approximations ?

Recall: with O((k/ε2) log (k/ε)) columns, we get (subject to a failure probability)

Deshpande & Rademacher (FOCS ’10): with exactly k columns, we get

What about the range between k and O(k log(k))?

Selecting fewer columns

Selecting fewer columns (cont’d)

(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011)

Question:

What about the range between k and O(k log(k))?

Answer:

A relative-error bound is possible by selecting s=3k/ε columns!

Technical breakthrough;

A combination of sampling strategies with a novel approach on column selection,
inspired by the work of Batson, Spielman, & Srivastava (STOC ’09) on graph sparsifiers.

• The running time is O((mnk+nk3)ε-1).

• Simplicity is gone…

Phase 1:

Compute exactly (or, to improve speed, approximately) the top k right singular
vectors of A and denote them by the n-by-k matrix .

Construct an n-by-r sampling-and-rescaling matrix S such that

A two-phase algorithm

Phase 1:

Compute exactly (or, to improve speed, approximately) the top k right singular
vectors of A and denote them by the n-by-k matrix .

Construct an n-by-r sampling-and-rescaling matrix S such that

Phase 2:

Compute:

Compute: and sample (s-r) columns with respect to the pi‘s.

Output: Return the columns of A that correspond to the columns sampled in the
phase 1 and phase 2.

A two-phase algorithm

The analysis

For simplicity, assume that we work with the exact top-k right singular vectors Vk.

A structural result:

It is easy to see that setting r = O(k/ε), we get a (2+ε)-multiplicative approximation.

The analysis

For simplicity, assume that we work with the exact top-k right singular vectors Vk.

A structural result:

It is easy to see that setting r = O(k/ε), we get a (2+ε)-multiplicative approximation.

Phase 2 reduces this error to a (1+ε)-multiplicative approximation; the analysis is
similar to adaptive sampling.

(Deshpande, Rademacher, & Vempala SODA 2006).

Our full analysis accounts for approximate right singular vectors and works in
expectation.

Spectral-Frobenius sparsification

Let V be an n-by-k matrix such that VTV=I, with k < n, let B be an \ell-by-n
matrix, and let r be a sampling parameter with r>k.

This lemma is inspired by the Spectral Sparsification result in (Batson, Spielman, & Srivastava,
STOC 2009); there, it was used for graph sparsification.

Our generalization requires the use of a new barrier function which controls the Frobenius and
spectral norm simultaneously.

Lower bounds and alternative approaches

Deshpande & Vempala, RANDOM 2006

A relative-error approximation necessitates at least k/ε columns.

Guruswami & Sinop, SODA 2012

Alternative approaches, based on volume sampling, guarantee

 (r+1)/(r+1-k) relative error bounds.

This bound is asymptotically optimal (up to lower order terms).

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the
randomized algorithm runs in O(rnm2) time and achieves the bound in expectation.

Guruswami & Sinop, FOCS 2011

Applications of column-based reconstruction in Quadratic Integer Programming.

Random projections: the JL lemma

Johnson & Lindenstrauss (1984)

Lower bounds and alternative approaches

Deshpande & Vempala, RANDOM 2006

A relative-error approximation necessitates at least k/ε columns.

Guruswami & Sinop, SODA 2012

Alternative approaches, based on volume sampling, guarantee

 (r+1)/(r+1-k) relative error bounds.

This bound is asymptotically optimal (up to lower order terms).

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the
randomized algorithm runs in O(rnm2) time and achieves the bound in expectation.

Guruswami & Sinop, FOCS 2011

Applications of column-based reconstruction in Quadratic Integer Programming.

Random projections: the JL lemma

Johnson & Lindenstrauss (1984)

Random projections: the JL lemma

Johnson & Lindenstrauss (1984)

• We can represent S by an m-by-n matrix A, whose rows correspond to points.

• We can represent all f(u) by an m-by-s Ã.

• The “mapping” corresponds to the construction of an n-by-s matrix R and computing

Ã = AR

(The original JL lemma was proven by projecting the points of S to a random k-dimensional subspace.)

Different constructions for R

• Frankl & Maehara (1988): random orthogonal matrix

• DasGupta & Gupta (1999): matrix with entries from N(0,1), normalized

• Indyk & Motwani (1998): matrix with entries from N(0,1)

• Achlioptas (2003): matrix with entries in {-1,0,+1}

• Alon (2003): optimal dependency on n, and almost optimal dependency on 

Construct an n-by-s matrix R such that:

Return:

O(mns) = O(mn logm / ε2) time computation

Fast JL transform
Ailon & Chazelle (2006) FOCS, Matousek (2006)

Normalized Hadamard-Walsh transform matrix

(if n is not a power of 2, add all-zero columns to A)

Diagonal matrix with Dii set to +1 or -1 w.p. ½.

Applying PHD on a vector u in Rn is fast, since:

• Du : O(n), since D is diagonal,

• H(Du) : O(n log n), using the Hadamard-Walsh algorithm,

• P(H(Du)) : O(log3m/ε2), since P has on average O(log2n) non-zeros per row
(in expectation).

Fast JL transform, cont’d

Back to approximating singular vectors
(Drineas, Mahoney, Muthukrishnan, & Sarlos Num Math 2011)

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Observations:

1. The left singular vectors of ADH span the same space as the left singular vectors of A.

2. The matrix ADH has (up to log n factors) uniform leverage scores .

 (Thanks to VTHD having bounded entries – the proof closely follows JL-type proofs.)

3. We can approximate the left singular vectors of ADH (and thus the left singular vectors of A)
by uniformly sampling columns of ADH.

orthogonal matrix

Back to approximating singular vectors
(Drineas, Mahoney, Muthukrishnan, & Sarlos Num Math 2011)

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Observations:

1. The left singular vectors of ADH span the same space as the left singular vectors of A.

2. The matrix ADH has (up to log n factors) uniform leverage scores .

 (Thanks to VTHD having bounded entries – the proof closely follows JL-type proofs.)

3. We can approximate the left singular vectors of ADH (and thus the left singular vectors of A)
by uniformly sampling columns of ADH.

4. The orthonormality of HD and a version of our relative-error Frobenius norm bound (involving
approximately optimal sampling probabilities) suffice to show that (w.h.p.)

orthogonal matrix

Running time

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Running time:

1. Trivial analysis: first, uniformly sample s columns of DH and then compute their product with A.

 Takes O(mns) = O(mnk polylog(n)) time, already better than full SVD.

2. Less trivial analysis: take advantage of the fact that H is a Hadamard-Walsh matrix

 Improves the running time O(mn polylog(n) + mk2polylog(n)).

orthogonal matrix

See also Ipsen & Wentworth ArXiv 2012 for an experimental evaluation of the condition number of
sub-sampled orthogonal matrices as a function of their coherence (the largest leverage score).

Also, Clarkson & Woodruff ArXiv 2012 improves the above running times to only depend on the
number of non-zero entries in the input matrix.

 Selecting columns/rows from a matrix

• Additive error low-rank matrix approximation
 Frieze, Kannan, Vempala FOCS 1998, JACM 2004
 Drineas, Frieze, Kannan, Vempala, Vinay SODA 1999, JMLR 2004.

• Relative-error low-rank matrix approximation and least-squares problems
 Via leverage scores (Drineas, Mahoney, Muthukrishnan SODA 2006, SIMAX 2008)
 Via volume sampling (Deshpande, Rademacher, Vempala, Wang SODA 2006)

• Efficient algorithms with relative-error guarantees (theory)
 Random Projections and the Fast Johnson-Lindenstrauss Transform
 Sarlos FOCS 2006, Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath 2011

• Efficient algorithms with relative-error guarantees (numerical implementations)
 Solving over- and under-constrained least-squares problems 4x faster than current state-of-the-art.
 Tygert & Rokhlin PNAS 2007, Avron, Maymounkov,Toledo SISC 2010, Meng, Saunders, Mahoney ArXiv 2011

• Optimal relative-error guarantees with matching lower bounds
 Relative-error accuracy with asymptotically optimal guarantees on the number of sampled columns.
 (Boutsidis, Drineas, Magdon-Ismail FOCS 2011; see also Guruswami and Sinop SODA 2012)

• Reviews

Mahoney, ArXiv 2011, Halko, Martinsson, & Tropp, SIREV 2011

Sampling rows/columns: the past 15 years

Conclusions

• Randomization and sampling can be used to solve problems that are massive and/or
computationally expensive.

• By (carefully) sampling rows/columns/entries of a matrix, we can construct new
sparse/smaller matrices that behave like the original matrix.

• Can entry-wise sampling be made competitive to column-sampling in terms of accuracy and speed?
See Achlioptas and McSherry (2001) STOC, (2007) JACM.
• We improved/generalized/simplified it .
See Nguyen, Drineas, & Tran (2011), Drineas & Zouzias (2010).
• Exact reconstruction possible using uniform sampling for constant-rank matrices that satisfy
certain (strong) assumptions.
See Candes & Recht (2008), Candes & Tao (2009), Recht (2009).

• By preprocessing the matrix using random projections, we can sample rows/ columns much
less carefully (even uniformly at random) and still get nice “behavior”.

RandNLA
Randomized Numerical Linear Algebra: Theory & Practice

One-day workshop on RandNLA in FOCS 2012
(Organizers: Haim Avron, Christos Boutsidis, and Petros Drineas)

Goal: expose the participants to recent progress on developing
randomized numerical linear algebra algorithms, as well as on the
application of such algorithms to a variety of disciplines and domains.

Key question: How can randomization and sampling be leveraged in
order to design faster numerical algorithms?

Visit http://www.cs.rpi.edu/~drinep/RandNLA for details.

http://www.stanford.edu/group/mmds/
http://www.stanford.edu/group/mmds/
http://www.stanford.edu/group/mmds/

