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lWhy RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for
problems that are:

> Massive
(matrices so large that can not be stored at all, or can only be stored in slow memory devices)
» Computationally expensive or NP-hard

(combinatorial optimization problems, such as the Column Subset Selection Problem)



lRandNLA in a slide

Randomized algorithms

* By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that
are close to the original matrix (w.r.t. matrix norms) with high probability.

Example:
Randomized
Matrix A ' B ~ N ( i )
Multiplication

* By preprocessing the matrix using "random projection” matrices, we can sample rows/columns
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

* The resulting smaller matrices behave similarly (e.g., in ferms of singular values and singular
vectors) to the original matrices thanks to the norm bounds.



}In’rer‘p lay
Applications in BIG DATA

(Data Mining, Information Retrieval,
Machine Learning, Bioinformatics, etc.)

N

Applied Math

1. Numerical Linear Algebra

Theoretical Computer Science (matrix computations, perturbation
theory)

Randomized and approximation .
algorithms 2. Probability theory

(esp. measure concentration for
sums of random matrices)




| Roadmap

, (Drineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018)

> RandNLA approaches for regression problems

» RandNLA approaches for Principal Component Analysis (PCA)

(was also discussed in Andreas Stathopoulos’ talk on Monday)



| Roadmap

l(br'ineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018)

> RandNLA approaches for regression problems

» RandNLA approaches for Principal Component Analysis (PCA)
(was also discussed in Andreas Stathopoulos’ talk on Monday)
Why regression and PCA?

Both problems are of paramount importance in Big (as well as in Tiny, Small,
Medium, Massive, etc.) Data analysis.

Both problems are at the heart of multiple disciplines: Computer Science
(Numerical Linear Algebra, Machine Learning), Applied Mathematics, and Statistics.

Both problems have a very rich history:
> Regression was introduced in the 1800s (Gauss, Legendre, etc.)
» PCA was introduced in the 1900s (Pearson, Hotelling, etc.)



lProblem definition and motivation

In data analysis applications one has n observations of the form:

yi =y(t;),i=1,...,n
Model y(t) (unknown) as a linear combination of d basis functions:

y(t) = x191(t) + -+ + 2q04(t)

A is an n-by-d "design matrix" (n >> d):
Aij = ¢;(t;)

In matrix-vector notation,

y ~ Ax



}Leasf—nor‘m approximation problems

The linear measurement model:

y are the measurements

Yy = Axr + ¢ {:c is the unknown

€ 1S an error Process

In order to estimate x, solve:

r = argmin ||y — Az||



l Application: data analysis in science

* First application: Astronomy
Predicting the orbit of the asteroid Ceres (in 1801l).
Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of "least squares optimization” and runs in
O(nd?) timel

» Data analysis: Fit parameters of a biological, chemical, economical,
physical, astronomical, social, internet, etc. model to experimental data.



}Nor‘ms of common interest

Let y = b and define the residual: » = Az — b € R"
Least-squares approximation:

minimize: ||Az —b||5 =7+ 15+ +12
Chebyshev or mini-max approximation:

minimize: ||Ax — b||o = max{|ri|,...,|r|}

Sum of absolute residuals approximation:
minimize: |[Axz — b||; = |r| + |ro| + -+ - + |74

10



lLeasT—squares problems

2 : A2 A 2 , : ~
25 = min, |b— Ax||5 = [[b— Argpl; q A (.tom ) ~|,

\

\
nxd , n>d

We are interested in over-constrained least-squares problems, n >> d.

We will briefly discuss under-constrained (n << d) and square (n = d) problems later.
Typically, there is no x,,; such that Ax,,, = b.
Want to find the "best” x,,; such that Ax,,, % b.

11



lExac’r solution to L, regression

Cholesky Decomposition:

If A is full rank and well-conditioned,

TA = RT i i
decompose ATA = RTR, where R is upper triangular, and Projection of b on the

solve the normal equations: RTRx = ATb. subspace spanned by the
columns of A
o4 § 2
QR Decomposition: Z3 = |bll3 — ||[AATb]|;

Slower but numerically stable, esp. if A is rank-deficient.

* P— / +
Topt = ATD
Write A = QR, and solve Rx = QTb. opt

Pseudoinverse of A

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.
Write A = UZVT, in which case: x,,; = A*b = VZ-1UTb.

Complexity is O(nd?) , but constant factors differ.
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Algorithm: Sampling for L, regression

\

n X d,

/

n >>d

Lopt

(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007,
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

2 . y 2 ) 2
reRd
/ \ Algorithm
1. Compute a probability distribution over the
rows of A (p;, i=1..n, summing up to one).
N 2. Inri.id. trials pick r rows of A and the
s corresponding elements of b with respect to
the p;.
(Rescale sampled rows of A and sampled elements
\ / of b by (1/(rp)V2.)
nx1 3. Solve the induced problem.
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Algorithm: Sampling for L, regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007,
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

=

r X d

59 .
Zo = min

Lopt

rcRd

()

b - _z’il Az

= -
et — A t )

2 P2

Algorithm

1. Compute a probability distribution over the
rows of A (p;, i=1..n, summing up to one).

2. Inri.id. trials pick r rows of A and the
corresponding elements of b with respect to
the p;.
(Rescale sampled rows of A and sampled elements
of b by (1/(rp,)/2.)

3. Solve the induced problem.
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. Algorithm: Sampling for L, regression

(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007,
l Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

- - - 12 - - 2
Zo = min |[|b— Az|| = Hb — AT opt )
reRd 2 2
Algorithm
1. Compute a probability distribution over the
( \ ( \ rows of A (p;, i=1..n, summing up to one).
- 2. Inri.id. trials pick r rows of A and the
A 7 ~ b corresponding elements of b with respect to
Lopt ~
the p;.
(Rescale sampled rows of A and sampled elements
\ \ / of b by (1/(rp;)'/2)
rxd " 3. Solve the induced problem.

We will now discuss the p;'s: our work introduced the notion of the leverage scores.
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lLeverage scores: tall & thin matrices

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:

(N ()

S AN

nxd , n>d nxd

» The matrix U contains the left singular vectors of A.
» The columns of U are pairwise orthogonal and normal.

> This is NOT the case for rows of U: all we know is that the Euclidean
norms of its rows are between zero and one.



}Leverage scores: tall & thin matrices

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:

(N ()

i-th row of U

2 2
|Uielly _ NIUixll5
U3 d

(Row) Leverage scores: P; =

The (row) leverage scores can now be used to sample rows from A to create a sketch.

17



Computing leverage scores

Drineas, Magdon-Ismail, Mahoney, and Woodruff ICML 2012, TMLR 2012

» Trivial: via the Singular Value Decomposition

O(nd?) time for n-by-d matrices with n>d.

» Non-trivial: relative error (1+&) approximations for all leverage scores.

Tall & thin matrices:

[ )

Running time: O(nde? polylog(n/e)).

nxd , n>d

18



}Theor‘em

If the p; are the row leverage scores of A, then, with probability at least 0.8,

Hb o AmOprQ g Hb o Aj:optHQ S (1 + 6) Hb o AmoptHQ

The sampling complexity (the value of r) is

’r:O(g—f—dlnd)

19



lPr'oof: a structural result

Consider the over-constrained least-squares problem:

Z5 = min ||b— fl;tfH% = ||b— A;tfoptH%
reR?

and the "sketched" (or "preconditioned”) problem

25 = min [|X (b= Az)[[3 = [ Xb— X Aoy
reR

Recall: A is n-by-d with n > d; X is r-by-n with r <« n.
» Think of XA as a "sketch” of A.

» Our approach (using the leverage scores) focused on sketches of A that consist of
(rescaled) rows of A.

» More general matrices X are possible and have been heavily studied.
20



}Proof: a structural result

Z5=min [|b— Azl = [|b— Azopll; Z3 = min | X (b— A2)|2 = | Xb— X AZ o
rcRd reRd

Let U, be the n-by-d matrix of the left singular vectors of A.

If X satisfies (constants are somewhat arbitrary):
2
bt —=p— U4U£b T min (XUA) > 1/\/§
—> 2
|UEXTXbH| < ez2/2

then,
HAL%Opt _bHQ < (1+€)ZQ
- 1
Hil?opt — iUo-piHQ S O'-m.z‘n(A) \/EZZ

21



l Constructions for X

» If X is a sampling-and-rescaling matrix formed using the row leverage scores of
the matrix A, then both conditions are satisfied.

(I.e., an r-by-n matrix whose t-th row has a single non-zero entry indicating,
and rescaling, the row of A that was sampled at the -th trial.)

> Interestingly, many other matrices X satisfy both conditions: e.g., X can be a
matrix whose entries are:

» Random Gaussians (up to normalization).

» Random signs (up to normalization).

» The randomized Hadamard transform and its variants.
» The input sparsity transform of Clarkson & Woodruff.

22



}The "heart” of the proof

At the heart of all proofs in this line of research lies the following observation:

( \ XU, is a full-rank matrix!

U, is an orthogonal matrix: U4 |:> XUy
UpTUp = I
r X d

\ ) r= Q0 (% In ( od ))
nXd n>d € €2v/6

?

Then, we can prove that with probability at least 1-6:

[UAUA = U X" XUL||, = [T -ULX"XU4||, < e

It follows that, foralli: V1 —e < o0; (XU4) < V1+¢
23



}The "heart” of the proof (cont'd)

Recall: with probability at least 1-8:

[UAUA —UAX"XUL||, = |[I - UAX"XU4||, <=

It follows that, forallii V1 —¢ <0; (XUy) <V1+¢

» The sampling complexity is r=O(d In d).

> Proving the above inequality is (now) routinely done via matrix concentration
inequalities (at least in most cases).

> Early proofs were very complicated and not user-friendly.

24



l Follow-up

A lot of follow-up work, including:

» Avron, Maymounkov, and Toledo SISC 2010: Blendenpik, a solver that uses the
"sketch” XA as a preconditioner, combined with an iterative least-squares solver.
Beats LAPACK by a factor of four in essentially all over-constrained least-
squares problems.

» Iyer, Avron, Kollias, Inechein, Carothers, and Drineas JCS 2016: an
evaluation of Blendenpik on terascale matrices in Rensselaer's B6/Q; again
factor four-to-six speedups compared to Elemental's QR-based solver.

» Drineas, Mahoney, Woodruff, and collaborators (SODA 2008, SIMAX 2009,
SODA 2013, SIMAX 2016): general p-norm regression, beyond Euclidean norm.

» Clarkson and Woodruff STOC 2013: relative error algorithms for over-
constrained least-squares regression problems in input sparsity fime using a

novel construction for the sketching matrix X.
25



l Follow-up (cont'd)

» Pilanci and Wainwright IEEE TIF 2015, JMLR 2016, SIOPT 2017: A novel
iterative sketching-based method (Hessian sketch) to solve over-constrained
least-squares regression problems over convex bodies.

» Paul, Magdon-Ismail, and Drineas NIPS 2015, Derezinski and Warmuth NIPS
2017, AISTATS 2018, COLT 2018, JMLR 2018: Adaptive and volume sampling
approaches to construct the sketching matrix X.

» Alaoui and Mahoney NIPS 2015, Cohen, Musco, Musco, and collaborators STOC
2015, SODA 2017, FOCS 2017: ridge leverage scores, a smooth and regularized
generalization of the leverage scores.

» Chowdhuri, Yang, and Drineas ICML 2018: structural conditions for under-
constrained problems (n << d case); a preconditioned Richardson-like solver for
such problems; check our paper for a detailed discussion on prior work for such
under-constrained problems. 26



l Related work: the "square” case

The “square” case: solving systems of linear equations

» Almost optimal relative-error approximation algorithms for Laplacian and, more
generally, Symmetric Diagonally Dominant (SDD) matrices

« Pioneered by Spielman and Teng, major contributions later by Miller, Koutis,
Peng, and many others.

* Roughly speaking, the proposed methods are iterative preconditioned solvers
where the preconditioner is a sparse version of the original graph.

« This sparse graph is constructed by sampling edges of the original graph with
probability proportional to their leverage scores, which in the context of
graphs are called effective resistances.

« Still open: progress beyond Laplacians.

* Results by Peng Zhang and Rasmus Kyng (FOCS 2017) indicate that such
progress might be challenging.

« Check Koutis, Miler, and Peng CACM 2012 for a quick intro.

27



, Roadmap

» RandNLA approaches for Principal Component Analysis (PCA)

28



PCA: An example in human genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the

genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases

(alleles) are observed (out of A, C, G, T).

SNPs

/.-..AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AACC AAGG TT AG|CT
..GGTTTT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AAGG AACCAACCAAGGTT AA|ITT
..GGTTTT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AACC AAGG TT AG|CT
..GGTTTT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AACC CCAG GG CCACCCAACGAAGGTTAG|CT
..GGTTTT GG TT CC CC CC CC GG AA GG GG GG AACT AAGG GG CT GG AACCACCGAACCAAGGTT GG Cd
..GGTTTT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AACC AAGT TT AG|CT|

individuals

.- GGTTTT GG TT CC CC CC CC GG AA AG AG AG AATT AA GG GG CC AG AG CG AACC AACG AAGG TT AA[TT

CG CG CG
GG GG GG
CG CG CG
CG CG CG
CG CG Cg
CG CG CG

AT
TT|
AT
AT
AT
AT

GG GG GG

CT CT AG CT AG GG GT GA AG$

TTCCGGTT GG GG TT GG AA ...
CT CT AG CT AG GG GT GAAG ...
CT CT AG CT AG GT GT GAAG ...
CTCTAGCTAGGGTT GG AA ...
CTCTAGCTAGGGTT GG AA ...

TT|

TTCCGGTTGGGTTTGGAAy

Typical sizes: tens of thousands of individuals and hundreds of thousands of SNPs.

29



HGDP data

+ 1,033 samples

* 7 geographic regions
+ 52 populations

HapMap Phase 3 data
+ 1,207 samples

+ 11 populations

‘LWK, & YRI Matrix dimensions:

2,240 subjects (rows)
447 143 SNPs (columns)

HapMap Phase 3
The Human Genome Diversity Panel (HGDP)

Africans Europeans Western Asians Eastern Asians Oceanians
iBantu 46 Melanesian :
2 Mandenka 17 Druze 47 Papuan We W|" apply
3 Yoruba 10 Russian 18 Palestinian 30 Dai :
4 San 11 Basque 31 Daur PCA (i.e., SVD
5 Mbuti pygmy 12 French 32 Hezhen . . H
6 Biaka 13 North Itafian ~ Central and 33 Lahu Natie Americens — ON @ Suitably
7 Mozabite 14 Sardinian Southemn Asians 34 Miao _
15 Tuscan 19 Balochi 35 Orogen 50 Colombi rescaled
20 Brahui 36 She Sy covariance
, 21 Makrani 37 Tujia 51 Maya
Cavalli-Sforza (2005) Nat Genet Rev aKkrani ) 52 Pima .
. 22 Sindhi 38 Tu matrix) to
Rosenberg et al. (2002) Science 23 Pathan 39 ¥ibo
Li et al. (2008) Science 24 Burusho 40 Vi ViSUG' ize
The International HapMap C ti e Ty nongola
e International HapMap Consortium 42 Naxi
(2003, 2005, 2007), Nature g? %%‘;L 43 Cambodian and/or analyze
44 Japanese the data.

45 Yakut



lSVD: formal definition

ey

m X n m X p P Xp P XN

p: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

2.: diagonal matrix containing the singular values of A.

Let oy, 65, .., o, be the entries of X.

Computing the SVD takes O(min{mn? , m?n}) time.

The top k left/right singular vectors/values can be computed faster using
iterative methods.



‘LWK, & YRI

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Africans

2 Mandenka

3 Yoruba

4 San

5 Mbuti pygmy
6 Biaka

7 Mozabite

Europeans

‘ l !USSIEH

11 Basque

12 French

13 North [talian
14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007), Nature

Western Asians

Vo

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians

31 Daur

32 Hezhen
33 Lahu

34 Miao

35 Orogen
36 She

37 Tujia

38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

HGDP data

+ 1,033 samples

* 7 geographic regions
+ 52 populations

HapMap Phase 3 data
- 1,207 samples

+ 11 populations

Matrix dimensions:
2,240 subjects (rows)
447 143 SNPs (columns)

Oceanians

46 Melanesian
47 Papuan

PCA on the
above data
returns:

Native Americans

50 Colombian
51 Maya
52 Pima



Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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* Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* Very good correlation between geography and the top two eigenSNPs.

» Mexican population seems out of place: we move to the top three PCs.



EigenSNP 3

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and - of course - can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.



Paschou, Drineas, et. al. (2014) PNAS
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« PCA plots of genetic data from multiple populations around the Mediterranean Sea
indicate that the Mediterranean acted as a "barrier” during the colonization of

Europe from our species.

» Using PCA (and many other analyses) we proposed what is a called a maritime route

for the colonization of Europe.

» Interpreting the singular vectors is, again, tricky; we identified SNPs (and genes)
that capture the information in the singular vectors.
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Genetics of the peloponnesean populations and
the theory of extinction of the medieval

peloponnesean Greeks
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PCA identifies and extracts
genetic micro-structure at

very local levels and small

geographical distances.

Consider, for example,
Peloponnesos.
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lSVD: computational time

- Computing large SVDs: computational time

* In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes.

+ Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs
out-of-memory in MatLab); we compute the eigendecomposition of AAT.

* In 2010, we had to compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-by-
450,000 for a full leave-one-out cross-validation experiment.

(Drineas, Lewis, & Paschou (2010) PLoS ONE)

* To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices.

(Hughey, Paschou, Drineas, et al. (2013) Nat Comm)

 Current population genetics datasets generate 1,000,000-by-1,000,000 matrices
(Bose et al. (2018) TeraPCA package.)



l SVD: computational time

- Computing large SVDs: computational time

* In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes.

+ Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs
out-of-memory in MatLab); we compute the eigendecomposition of AAT.

* In 2010, we had to compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-by-
450,000 for a full leave-one-out cross-validation experiment.

(Drineas, Lewis, & Paschou (2010) PLoS ONE)

* To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices.

(Hughey, Paschou, Drineas, et al. (2013) Nat Comm)

 Current population genetics datasets generate 1,000,000-by-1,000,000 matrices.
(Bose et al. (2018) TeraPCA package.)

 Running time is always a concern, but machine-precision is not necessary!

* Data are noisy and approximate singular vectors work well in many settings.



}SVD decomposes a matrix as...

me X T 17 X A..

A ~ U-k X The SVD has S'I'r'ong
' optimality properties.

Top k left singular vectors

> It is easy to see that X = £,V," = U, TA.
» SVD has strong optimality properties.

> The columns of U, are linear combinations of up to all columns of A.



. The CX decomposition

Drineas, Mahoney, & Muthukrishnan (2008) STAM J Mat Anal Appl

‘ Mahoney & Drineas (2009) PNAS

mXxXn mxc Carefully
chosen X
CcXn /
A ~ c ( X ) Goal: make (some norm) of A-CX small.

¢ columns of A

Why?

If Aisan subject-SNP matrix, then selecting representative columns is
equivalent to selecting representative SNPs to capture the same structure
as the top eigenSNPs.

We want ¢ as small as possible!



lCX decomposition

m xXn m X c

¢ columns of A

Easy to prove that optimal X = C*A. (C* is the Moore-Penrose pseudoinverse of C.)
Thus, the challenging part is to find good columns (SNPs) of A to include in C.

From a mathematical perspective, this is a hard combinatorial problem, closely
related to the so-called Column Subset Selection Problem (CSSP).

The CSSP has been heavily studied in Numerical Linear Algebra.



Relative-error Frobenius horm bounds

Drineas, Mahoney, & Muthukrishnan (2008) STAM J Mat Anal Appl

Given an m-by-n matrix A, there exists an O(mn?) algorithm that picks
at most O( (k/¢€?) log (k/€)) columns of A

such that with probability at least .9

1A — OX|p = HA _ CCTAHF <(1+2) [|A— Akl p

Notation: || X% = ZX%
,]



l’l‘he algorithm

Input: m-by-n matrix A,
O < e<.5, the desired accuracy

Output: €, the matrix consisting of the selected columns

Sampling algorithm

» Compute probabilities p; summing to 1.

* Let c = O( (k/¢€?) log (k/¢€) ).

* Inci.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with
probability p;.

* Let C be the matrix consisting of the chosen columns.



}Subspace sampling (Frobenius norm)

V¢ orthogonal matrix containing the top
AL — U, . >, . VkT k right singular vectors of A.

¥+ diagonal matrix containing the top k

singular values of A.

m X n m X k k x k kXxXn

Remark: The rows of V. are orthonormal vectors, but its columns (V,")® are not.

Leverage score sampling:

||
pi=—7"

Normalization s.t. the
p; sum up to 1



}Subspace sampling (Frobenius norm)

V¢ orthogonal matrix containing the top
AL — U, . >, . VkT k right singular vectors of A.

¥+ diagonal matrix containing the top k

singular values of A.

m X n m X k k x k kXxXn

Remark: The rows of V. are orthonormal vectors, but its columns (V,")® are not.

Leverage score sampling:

)2

T\ (7)
Leverage scores H (Lk ) H
(useful in statistics for ) P =

outlier detection)
vN\lor'mallzcmon s.t. the
p; sum up to 1




BACK TO POPULATION GENETICS DATA

Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africalil

Europe

Asia

America

* top 30 PCA-correlated SNPs

PCA-scores

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One
Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

WL L R

i

i L

* top 30 PCA<correfated SNPs

1 I | | g

PCA-scores

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One

Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



}Appr‘oxima’ring leverage scores

Can we approximate the leverage scores fast?

Theorem: Given any m-by-n matrix A with m > n, we can approximate its leverage scores
(where k is the target rank) with relative error accuracy in

O(mnk log m) time,
as opposed to the - trivial - O(mn?) time.
(Drineas, Mahoney, Magdon-Ismail, & Woodruff ICML '12 JMLR '12)

Improvement: leverage scores can be computed in O(nnz(A) k) timel
Clarkson and Woodruff (STOC '13): introduced a sparse random projection;
Mahoney and Meng (STOC '13): provided a better analysis for the above result;
Nelson and Huy (FOCS '13): provided the best known analysis for the above result;
Boutsidis and Woodruff (STOC '14): applications to many RandNLA problems.
Sobczyk and Gallopoulos ‘17: block iterative methods for fast estimation



lSelec’ring fewer columns

Problem

How many columns do we need to include in the matrix C in order to get relative-error
approximations ?

Recall: with O( (k/€?) log (k/¢)) columns, we get (subject to a failure probability)

HA CC‘LAH (1+6)[|A— Ay

Deshpande & Rademacher (FOCS '10): with exactly k columns, we get

What about the range between k and O(k log(k))?



lSelec‘ring fewer columns (cont'd)

(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011 and SICOMP 2014)

Question:
What about the range between k and O(k log(k))?

Answer:

A relative-error bound is possible by selecting s=2k/e columns!

Technical breakthrough;

A combination of sampling strategies with a novel approach on column selection,
inspired by the work of Batson, Spielman, & Srivastava (STOC '09) on graph sparsifiers.

« The running time is O((mnk+nk3)e-1).
« Simplicity is gone...



lLower bounds and alternative approaches

Deshpande & Vempala, RANDOM 2006
A relative-error approximation necessitates at least k/e columns.
Guruswami & Sinop, SODA 2012

Alternative approaches, based on volume sampling, guarantee

(r+1)/(r+1-k) relative error bounds.
This bound is asymptotically optimal (up to lower order terms).

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the
randomized algorithm runs in O(rnm?) time and achieves the bound in expectation.

Guruswami & Sinop, FOCS 2011

Applications of column-based reconstruction in Quadratic Integer Programming.

Musco, Musco, Cohen, Woodruff, and collaborators

Multiple articles in STOC, FOCS, SODA, NIPS, ICML in 2016 and 2017 on ridge
leverage scores and other approaches.




. Tterative methods for PCA

(Drineas, Ipsen, Kontopoulou, and Magdon-Ismail SIMAX 2018

l Drineas and Ipsen, under review SIMAX 2018)

To get highly accurate approximations to sinqular vectors, use iterative methods.

1. Block subspace iteration

Given an m-by-n matrix A and a positive integer g, compute
K = (AAT)" AX

where X is an n-by-p (with p # k) random matrix, e.g., a random Gaussian matrix.

Compute the best rank-k approximation to A within the subspace spanned by the columns
of K (much easier to do than it sounds...): denote it by A;.



lI’rem’rive methods for PCA (cont'd)

1. Block subspace iteration

Given an m-by-n matrix A and a positive integer g, compute

K = (AAT)" AX

where X is an n-by-p (with p # k) random matrix, e.g., a random Gaussian matrix.

Compute the best rank-k approximation to A within the subspace spanned by the columns
of K (much easier to do than it sounds...): denote it by 4;.

B Strong bounds can be proven for the Frobenius and spectral norms of the matrix 4 — 4,.

B We implemented block subspace iteration to approximate the top singular vectors of tera-
scale matrices arising in population genetics in:

A. Bose, V. Kalantzis, E. Kontopoulou, M. Elkadi, P. Paschou, and P. Drineas, "TeraPCA: a fast and

scalable method to study genetic variation in tera-scale genotypes”, under review, Genome
Biology, 2018.



lI’rer‘aTive methods for PCA

2. Block Krylov methods

Given an m-by-n matrix A (of rank p) and a positive integer q, compute

K = [AX, (AAT) AX, (AAT)7AX, ..., (AAT)" AX]|

where X is an n-by-p (with p & k) random matrix, e.g., a random Gaussian matrix.

Compute the best rank-k approximation to A within the subspace spanned by the columns
of K (much easier to do than it sounds): denote it by 4.

B Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed):

o> (14+9)og+1 >0



lI’rer‘aTive methods for PCA

2. Block Krylov methods

Given an m-by-n matrix A (of rank p) and a positive integer q, compute

K = [AX, (AAT) AX, (AAT)7AX, ..., (AAT)" AX]|

where X is an n-by-p (with p & k) random matrix, e.g., a random Gaussian matrix.

Compute the best rank-k approximation to A within the subspace spanned by the columns
of K (much easier to do than it sounds): denote it by 4.

B Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed):

o > (14+9g)oge1 >0
Bottom p-k singular
B Also assume (y; and v, are constants): vectors of A
T 2 2
Omin (Vi X) 21 and Vil X || <2500 — k)

min



}I’rer‘a’rive methods for PCA

2. Block Krylov methods

Given an m-by-n matrix A (of rank p) and a positive integer q, compute log (p/e)
. 49=0 ( )
2 g V9
K = {AX, (AAT) AX, (AAT)? AX, ..., (AAT) AX]
where X is an n-by-p (with p & k) random matrix, e.g., a random Gaussian matrix.

Compute the best rank-k approximation to A within the subspace spanned by the columns
of K (much easier to do than it sounds): denote it by 4. Then,

IA

‘A_Ak:‘ |A — Akl + €041

‘A—Ak

VAN

|A — Ag|ly + €0p41



l RandNLA and optimization

* Primal dual interior point methods necessitate solving least-squares problems (projecting
the gradient on the null space of the constraint matrix in order fo remain feasible).

(Dating back to the mid/late 1980's and work by Karmarkar, Ye, Freund)

« Can we solve these least squares problems approximately using random sampling/random
projections?

* Modern approaches: primal/dual interior point methods iterate along an approximation to
the Newton direction and tolerate (mild) infeasibilities. A system of linear equations must
be solved.

(inexact interior point methods: work by Bellavia, Steihaug, etc.)

« Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

« Goal: Use sampling/random projection approaches to design efficient precoditioners to
solve systems of linear equations that arise in primal-dual interior point methods faster.

Progress by Roosta & Mahoney (ArXiv 2016, 2017 multiple papers on subsampled
second-order methods).



}RandNLA events

"Randomization is arguably the most exciting and innovative idea to have hit
linear algebra in a long time.” (Avron et al. (2010) SISC)

» RandNLA workshop, Simons Institute for the Theory of Computing, UC

Berkeley, Foundations of Data Science, Sep 2018
https://simons.berkeley.edu/data-science-2018-1

data »>RandNLA course, PCMI Summer School on Mathematics of Data, Jul 2016
Drineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018
%
*\é’ % > Highlighted at the Workshops on Algorithms for Modern Massive Datasets
§ e —— (MMDS) 2006, 2008, 2010, 2012, 2014, and 2016.
» &’6 http://mmds-data.org/
V)

> Gene Golub SIAM Summer School (6253), AcAgoi, Greece, June 2015
http://scgroupl9.ceid.upatras.gr/q2s32015/

> Invited tutorial at STAM ALA 2015

» RandNLA workshop in FOCS 2012
http://ieee-focs.org/focs2012/workshops/RandomNLA/



http://mmds-data.org/
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