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L2 regression problems 

We are interested in over-constrained L2 regression problems, n >> d. 

(Under-constrained problem, n << d, can also be handled in a similar manner.)    

 Typically, there is no x such that Ax = b. 

 Want to find the “best” x such that Ax ≈ b. 



Exact solution to L2 regression 

Cholesky Decomposition:  
 If A is full rank and well-conditioned,  

 decompose ATA = RTR, where R is upper triangular, and  

 solve the normal equations: RTRx = ATb. 

 

QR Decomposition:  
 Slower but numerically stable, esp. if A is rank-deficient. 

 Write A = QR, and solve Rx = QTb. 

 

Singular Value Decomposition: 
 Most expensive, but best if A is very ill-conditioned. 

 Write A = UVT, in which case: xOPT = A
+b = V-1UTb. 

 

Complexity is O(nd2) , but constant factors differ. 

Projection of b on the 
subspace spanned by the 

columns of A 

Pseudoinverse of A 



Questions … 

Approximation algorithms: 

 Can we approximately solve L2 regression faster than “exact” methods? 

 (Sarlos FOCS 2006, Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath 2011) 

  
This talk: Core-sets (or induced sub-problems): 

 Can we find a small set of constraints such that solving the L2 regression 
on those constraints gives an approximation to the original problem? 

 If we can find those constraints efficiently, then we also get faster 
algorithms for L2 regression problems. 



Algorithm: Sampling for L2 regression 
(Drineas, Mahoney, & Muthukrishnan SODA 2006) 

Algorithm 

1. Fix a set of probabilities pi, i=1…n, 
summing up to 1.  

2. Pick the i-th row of A and the i-th 
element of b with probability 

   min {1, rpi}, 

 and rescale both by (1/min{1,rpi})
1/2. 

3. Solve the induced problem. 

Note: in expectation, at most r rows of A 
and r elements of b are kept. 



The result 

If the pi satisfy a condition, then with probability at least 1-,  

The sampling complexity is 



SVD: formal definition 

: rank of A 

U (V): orthogonal matrix containing the left (right) singular vectors of A. 

: diagonal matrix containing the singular values of A. 

     Let 1 ¸ 2 ¸ … ¸  be the entries of . 

 Standard methods for the SVD take O(min{mn2 , m2n}) time.  

0 

0 



Notation 

: rank of A (at most d, since we assume n > d) 

U: orthogonal matrix containing the left singular vectors of A. 

U(i): i-th row of U 



Leverage scores 

The condition that the pi must satisfy is, for some   (0,1] : 

Notes: 

• O(nd2) time suffices (to compute probabilities and to construct a core-set).  

lengths of rows of matrix 
of left singular vectors of A 



Leverage scores 

The condition that the pi must satisfy is, for some   (0,1] : 

Notes: 

• O(nd2) time suffices (to compute probabilities and to construct a core-set).  

• Important question:  

Is O(nd2) necessary?  Can we compute the pi’s, or construct a core-set, faster? 

 

Better constructions (smaller coresets) exist, not using leverage scores. 

(With C. Boutsidis and M. Magdon-Ismail, building upon Boutsidis, Drineas, & Magdon-Ismail FOCS 2011) 

lengths of rows of matrix 
of left singular vectors of A 

Leverage scores 

(useful in statistics for 
outlier detection) 



Why leverage scores 

An old question: 

Given an orthogonal matrix, sample a subset of its rows and argue that 
the resulting matrix is almost orthogonal.  

What if we are allowed to sample rows of an orthogonal matrix (scaled 
appropriately) with respect to leverage scores? 

Then, in our case (n >> d), we can prove that: 

(see Drineas and Kannan FOCS 2001, Drineas, Kannan, and Mahoney 2006, Rudelson and Virshynin JACM 2006)  

Current state of the art: matrix Chernoff/Bernstein bounds; for an empirical and theoretical 
evaluation see Ipsen & Wentworth ArXiv 2012. 
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SVD decomposes a matrix as… 

Top k left singular vectors 

The SVD has strong 
optimality properties. 

 It is easy to see that X = Uk
TA. 

 SVD has strong optimality properties. 

 The columns of Uk are linear combinations of up to all columns of A. 



The CX decomposition 
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl 
Mahoney & Drineas (2009) PNAS 

c columns of A 

Carefully 
chosen X 

Goal: make (some norm) of A-CX small. 

Why? 

If A is a data matrix with rows corresponding to objects and columns to 
features, then selecting representative columns is equivalent to selecting 
representative features to capture the same structure as the top eigenvectors. 

We want c as small as possible! 



CX decomposition 

c columns of A 

Easy to prove that optimal X = C+A. (C+ is the Moore-Penrose pseudoinverse of C.) 

Thus, the challenging part is to find good columns of A to include in C. 

 

From a mathematical perspective, this is a hard combinatorial problem, closely 
related to the so-called Column Subset Selection Problem (CSSP). 

The CSSP has been heavily studied in Numerical Linear Algebra. 



Relative-error Frobenius norm bounds 
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl 

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks 

 

at most O( (k/ε2) log (k/ε) ) columns of A 

 

such that with probability at least .9 



The algorithm 

Sampling algorithm 

• Compute probabilities pj summing to 1. 

• Let c = O( (k/ε2) log (k/ε) ). 

• In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

• Let C be the matrix consisting of the chosen columns. 

Input:  m-by-n matrix A,  

  0 < ε < .5, the desired accuracy 

Output: C, the matrix consisting of the selected columns 



Subspace sampling (Frobenius norm) 

Remark:  The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not. 

Vk: orthogonal matrix containing the top 
k right singular vectors of A. 

 k: diagonal matrix containing the top k 
singular values of A. 



Subspace sampling (Frobenius norm) 

Remark:  The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not. 

Subspace sampling in O(mn2) time  

Vk: orthogonal matrix containing the top 
k right singular vectors of A. 

 k: diagonal matrix containing the top k 
singular values of A. 

Normalization s.t. the 
pj sum up to 1 

Leverage scores 

(useful in statistics for 
outlier detection) 



 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 

in
d
iv

id
ua

ls
 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

 Matrices including thousands of individuals and hundreds of thousands if SNPs are available. 

  Leverage scores: human genetics data 
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274 individuals, 12 populations, ~10,000 SNPs  

Shriver et al. (2005) Hum Genom 

Mala 

Worldwide data 

Puerto Rico 



SNPs by chromosomal order 

PC
A

-s
co
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* top 30 PCA-correlated SNPs 

Africa 

Europe 

Asia 

America 

Leverage scores of the columns of the 274-by-10,000 SNP matrix 

Paschou et al (2007; 2008) PLoS Genetics 

Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 



SNPs by chromosomal order 

PC
A

-s
co

re
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* top 30 PCA-correlated SNPs 

Africa 

Europe 

Asia 

America 

Afr 

Eur 

Asi 

Ame 

Selecting ancestry informative SNPs for individual assignment to four 
continents (Africa, Europe, Asia, America) 

Paschou et al (2007; 2008) PLoS Genetics 

Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 
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Leverage scores & effective resistances 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 



Leverage scores & effective resistances 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 
 
(each row has two non-zero 
entries and corresponds to 
an edge; pick arbitrary 
orientation and use +1 and -
1 to denote the “head” and 
“tail” node of the edge). 

Clearly, L = (BTW1/2)(W1/2B)= (BTW1/2)(BTW1/2)T. 



Leverage scores & effective resistances 

Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we. 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 



Leverage scores & effective resistances 

Formally, the effective resistances are the diagonal entries of the m-by-m matrix:  

R = BL+BT= B(BTWB)+BT 

 

Lemma: The leverage scores of the m-by-n matrix W1/2B are equal (up to a simple 
rescaling) to the effective resistances of the edges of G. 

(Drineas & Mahoney, ArXiv 2011) 

Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we. 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 



Why effective resistances? 

Effective resistances are very important!  

Very useful in graph sparsification (Spielman & Srivastava STOC 2008).  

Graph sparsification is a critical step in solvers for Symmetric Diagonally Dominant (SDD) 
systems of linear equations (seminal work by Spielman and Teng).  

 

Approximating effective resistances (Spielman & Srivastava STOC 2008) 

They can be approximated using the SDD solver of Spielman and Teng.  

 

Breakthrough by Koutis, Miller, & Peng (FOCS 2010, FOCS 2011):  

Low-stretch spanning trees provide a means to approximate effective resistances!  

This observation (and a new, improved algorithm to approximate low-stretch spanning trees) led 
to almost optimal algorithms for solving SDD systems of linear equations. 



Approximating leverage scores 
 

Are leverage scores a viable alternative to approximate effective resistances?  

 

Not yet! But, we now know the following: 

 

Theorem: Given any m-by-n matrix A with m > n, we can approximate its leverage scores  with 
relative error accuracy in  

O(mn polylog(m)) time, 

as opposed to the – trivial – O(mn2) time.  

(Clarkson, Drineas, Mahoney, Magdon-Ismail, & Woodruff ICML 2012, ArXiv 2012) 



Approximating leverage scores 
 

Are leverage scores a viable alternative to approximate effective resistances?  

 

Not yet! But, we now know the following: 

 

Theorem: Given any m-by-n matrix A with m > n, we can approximate its leverage scores  with 
relative error accuracy in  

O(mn polylog(m)) time, 

as opposed to the – trivial – O(mn2) time.  

(Clarkson, Drineas, Mahoney, Magdon-Ismail, & Woodruff ICML 2012, ArXiv 2012) 

 

Not good enough for W1/2B!  

This matrix is very sparse (2m non-zero entries).  We must take advantage of the sparsity and 
approximate the leverage scores/effective resistances in O(m polylog(m)) time.  

Our algorithm will probably not do the trick, since it depends on random projections that 
“densify” the input matrix. 



Conclusions 

• Leverage scores: a statistic on rows/columns of matrices that reveals the most 
influential rows/columns of a matrix. 
 

 
• Leverage scores: equivalent to effective resistances. 
 

 
• Additional Fact: Leverage scores can be “uniformized” by preprocessing the matrix via 

random projection-type matrices. 
  (E.g., random sign matrices, Gaussian matrices, or Fast JL-type transforms.) 
 

 
• Open (?) question: how fast can we approximate the leverage scores for sparse 

matrices? 


