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We are quite similar, but we are
different...

The average genome (~2x3 billion base pairs) contains:

- 4-5 million single nucleotide variations, compared to the
reference sequence (Single Nucleotide Polymorphisms - SNPs)

- ~0.5 million small insertions or deletions ‘indels’ (1-100bp)
- ~5,000 larger insertions or deletions (>100bp)

Variation across all (~23,000) genes - the ‘exome’ r—
~18,000 variants

~8-9,000 functional variants

~95% of variants are common
~500-1000 genes with new mutations
~100-200 knock-out mutations
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Genetic variation is shaped by
evolutionary forces

* Mutation

« Genetic drift
* Population structure (inbreeding, mating patterns)
« Gene flow and admixture
* Natural selection




Early Homo sapiens sapiens

in Africa
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Kidd Lab, Yale University, http://info.med.yale.edu/genetics/kkidd/point.html
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‘ PCA for human genetic data analysis

Fact:

Linear Dimensionality Reduction techniques (such as Principal Components
Analysis - PCA) separate different populations and result in plots that
correlate well with geography or geo-demographics.

r? = 0.77 for PC1 vs Latitude
r? = 0.78 for PC2 vs Longitude

Novembre et al. (Nature 2008)




lPCA for human genetic data analysis

The success of PCA in (human) genetics is remarkable!

» PCA has been around for over a century (Pearson 1901, Hotelling 1933).

» PCA in human genetics goes back to (at least) Menozzi, Piazza, & Cavalli-Sforza
(Science 1978).

> Algorithms for PCA (meaning algorithms for SVD and eigendecompositions) have been
a topic of intense research in numerical linear algebra and applied math for 70+ years.



l PCA for human genetic data analysis

The success of PCA in (human) genetics is remarkable!

» PCA has been around for over a century (Pearson 1901, Hotelling 1933).

» PCA in human genetics goes back to (at least) Menozzi, Piazza, & Cavalli-Sforza
(Science 1978).

> Algorithms for PCA (meaning algorithms for SVD and eigendecompositions) have been
a topic of intense research in numerical linear algebra and applied math for 70+ years.

» PCA has been very (?) successful in many domains:

» Imaging: remember Eigenfaces?
» Document-term data: remember Latent Semantic Indexing (LSI)?
> Web search: remember HIITS and pagerank?

BUT the aforementioned domains have concluded that other (typically very non-

linear) dimensionality reduction techniques are better in extracting structure in
their respective modern datasets!



}PCA for human genetic data analysis

Fact:

Linear Dimensionality Reduction techniques (such as Principal Components
Analysis - PCA) separate different populations and result in plots that
correlate well with geography or geo-demographics.

Leverage this observation:

While we invariably use many other statistical fechniques and software
tools to analyze human genetic data, PCA plots are always the starting point
and they often "set the tone" for other analyses.



. Why do we care about and population

‘ structure?

= Population genetics & histories of human populations

= Mapping causative genes for common complex disorders — ==

Correcting stratification in Genome-Wide Association
Studies (GWAS)

= Conservation studies _ i,_BHE';Km_ﬁ_..._____
1{_519_ an Genetic-_Va;ji On

e =
- =

m Forensics

= Genealogy




l Overview

« Scaling PCA to millions of samples/markers

+ Selecting Ancestry Informative Markers (AIMs)

« PCA and Geodemographics

Mathematical apparatus:

Subspace iteration vs. Krylov subspace methods to approximate principal components

From the Singular Value Decomposition (SVD) to the CX decomposition, the Column
Subset Selection Problem (CSSP), and beyond



Single Nucleotide Polymorphisms (SNPs)

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases

(alleles) are observed (out of A, C, G, T).
SNPs
/.-..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGG'ITAGCTCGCGCGATCTCTAGCTAGGGGTGAAG$

‘_Cni ..GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACTAAGGGGCCGGAAGGAACCAACCAAGGTTAAITTIGGGGGETT|TTCCGGTTGG GG TT GG AA ...
_8 ..GGTTTTGGTTCCCCCCCCGGAAAGAGAAAGCTAAGGGGCCAGAGCGACCCAACCAAGGTTAGICT|ICGCGCGI|ATICTCTAGCTAGGGGTGAAG ...
; ..GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTTAGICTICGCGCGIATICTCTAGCTAGGTGTGAAG ...
.-C_) ..GGTTTTGGTTCCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGGTTGGCCCGCGCHGATCTCTAGCTAGGGTT GG AA ...
<

...GGTTTT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CCCC CG AACCAAGT TT AG|CT|CG CG CG|AT|CTCTAGCTAGGG TT GG AA ...
N GGTTTT GG TT CC CC CC CC GG AA AG AG AGAATT AA GG GG CCAG AG CG AACCAACGAAGG TT AA(TT|GG GG GG TT|TT CC GG TT GG GTTI'GGAA_y

There are millions of SNPs in the human genome, so this matrix could have millions of columns.



Two copies of a chromosome
(father, mother)

Focus at a specific locus and assay
the observed nucleotide bases
(alleles).

SNP: exactly two alternate alleles
appear.




%> Focus at a specific locus and
n assay the observed alleles.

/ SNP: exactly fwo alternate
C T alleles appear-.

Two copies of a chromosome
(father, mother)

An individual could be:

- Heterozygotic (in our study, CT = TC)

SNPs L

A

/.-..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTFAGCTCGCGCGATCTCTAGCTAGGGGTGAAG$

...GGTTTT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AAGGAACCAACCAAGGTTAATT GG GG GGTTTTCCGG TT GG GG TT GG AA ...
...GGTTTT GG TT CC CC CC CC GG AA AG AG AAAG CT AAGG GGCCAGAGCGACCCAACCAAGGTTA G CG CG AT CT CT AG CT AG GG GT GAAG ...
...GGTTTTGG TT CCCC CC CC GG AAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTT AS CGCGATCTCTAGCTAGGT GT GAAG ...
...GGTTTT GG TT CC CC CC CC GG AA GG GG GG AA CT AAGG GG CT GGAACCACCGAACCAAGGTTGGCCCGCGCGATCTCTAGCTAGGGTT GG AA ...
...GGTTTTGGTT CCCCCG CCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAGCTCGCGCGATCTCTAGCTAGGGTT GG AA ...
\...GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAA'I—I'AAGGGGCCAGAGCGAACCAACGAAGG'I'I'AA'I'I'GGGGGG'I'I"I'I'CCGGTI'GGGT'ITGGAA_y

individuals




" %> Focus at a specific locus and

assay the observed alleles.
/ SNP: exactly fwo alternate
C C alleles appear.

Two copies of a chromosome
(father, mother)

An individual could be:

- Heterozygotic (in our studies, CT = TC)
- Homozygotic at the first allele, e.g., C

A

SNPs L

/.-..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTFAGCTCGCGCGATCTCTAGCTAGGGGTGAAG$

...GGTTTT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AAGG AACCAACCAAGGTTAATTGGGGGGTTTTCCGGTT GG GG TT GG AA ...
...GGTTTT GG TT CC CC CC CC GG AAAG AG AAAG CT AAGG GGCCAGAGCGACCCAACCAAGGTTAGCTCGCGCGATCTCTAGCTAGGGGT GAAG ...
...GG'IT'ITGG'ITCCCCCCCCGGAAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTI'ACGCGATCTCTAG CT AG GT GTGAAG ...

individuals

...GGTTTT GG TT CC CC CC CC GG AA GG GG GG AACT AAGG GG CT GGAACCACCGAACCAAGGTTG GCGCGATCTCTAGCTAGGGTT GG AA ...
..GGTTTTGGTT CCCCCG CCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTA CGCGATCTCTAGCTAGGGTT GG AA ...
\...GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAATI'AAGGGGCCAGAGCGAACCAACGAAGG'I'I'AA'I'I'GGGGGG'I'I"I'I'CCGGTI'GGGT'I'I'GGAA_y




" %> Focus at a specific locus and

assay the observed alleles.
/ SNP: exactly fwo alternate
T T alleles appear.

Two copies of a chromosome
(father, mother)

An individual could be:

- Heterozygotic (in our studies, CT = TC) - Encodeas 1
- Homozygotic at the first allele,e.q.,C > Encode as O
- Homozygotic at the second allele, e.g., T = Encode as 2

SNPs L

N

.. AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GAAG ... )
..GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA ...
GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG ...
..GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG ...
...GG TTTT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA ...
... GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AGaacG CG CG AT CT CT AG CT AG GG TT GG AA ...
\...GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAA'I‘I’AAGGGGCCAGAGCGAACCAACGAAGG'I‘I’GGGG'I'I"I'I'CCGG'I'I'GGGT'I‘I’GGAAJ

individuals




‘LWK, & YRI

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Africans Europeans
3 Yoruba
4 San 11 Basque
5 Mbuti pygmy 12 French
6 Biaka 13 North ltalian
7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

|! !I"L.IZB

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians

31 Daur

32 Hezhen
33 Lahu

34 Miao

35 Orogen
36 She

37 Tujia

38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

Oceanians

47 Papuan

Native Americans

! !o‘om!lan

51 Maya
52 Pima

HGDP data

+ 1,033 samples

* 7 geographic regions
+ 52 populations

HapMap Phase 3 data

+ 1,207 samples
+ 11 populations



‘LWK, & YRI

HapMap Phase 3
The Human Genome Diversity Panel (HGDP)

Africans Europeans
1Bantu

2 Mandenka

3 Yoruba ussian

4 San 11 Basque

5 Mbuti pygmy 12 French

6 Biaka 13 North ltalian

7 Mozabite 14 Sardinian

15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

Vo

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians

Oceanians

46 Melanesian
47 Papuan

31 Daur
32 Hezhen
33 Lahu
34 Miao

35 Oroq
sl 50 Colombian

- 51 Maya
e 52 Pima
39 Xibo
40 Yi
41 Mongola
42 Naxi
43 Cambodian
44 Japanese
45 Yakut

Native Americans

HGDP data

+ 1,033 samples

* 7 geographic regions
+ 52 populations

HapMap Phase 3 data

+ 1,207 samples
+ 11 populations

We will apply SVD/PCA
on the (joint) HGDP and
HapMap Phase 3 data.

Matrix dimensions:
2,240 subjects (rows)
447 143 SNPs (columns)

Dense matrix:

over one billion entries



}The Singular Value Decomposition (SVD)

5
4 OO o -
2 T I I
40 45 50 55

6.0

Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return ...



}The Singular Value Decomposition (SVD)

5 Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return ...

1st (right) sinqular vector:

direction of maximal variance,

singular vector
@)

2
4.0 4.5 5.0 5.5 6.0




}The Singular Value Decomposition (SVD)

5 Let the blue circles represent m
data points in a 2-D Euclidean space.
2nd (right)
singular vector o Then, the SVD of the m-by-2 matrix

of the data will return ...

1st (right) sinqular vector:

direction of maximal variance,

2nd (right) sinqular vector:

singular vector
@)

direction of maximal variance, after
removing the projection of the data
along the first singular vector.

2
4.0 4.5 5.0 5.5 6.0




lSingular values

5

o,- measures how much of the data variance
is explained by the first singular vector.

2nd (right) )
singular vector O

o, measures how much of the data variance
is explained by the second singular vector.

Principal Components Analysis (PCA) is done via the
computation of the Singular Value Decomposition
(SVD) of a (mean-centered) covariance matrix.

Typically, a small constant number (say k) of the

Si
top singular vectors and values are kept.




lSVD: formal definition

m X n m X p P Xp P XN
p: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

2.: diagonal matrix containing the singular values of A.

Let oy, 65, .., o, be the entries of X.

Exact computation of the SVD takes O(min{mn?, m?n}) time.

The top k left/right singular vectors/values can be computed faster using
iterative methods.



lRank—k approximations via the SVD

A

features

objects

U

>

VT

significant

noise

significant




}Rank—k approximations (A;)

m X n m X k k xk kxXn

Uy (V,): orthogonal matrix containing the top k left (right) singular vectors of A.

¥, diagonal matrix containing the fop k singular values of A.
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HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Africans

2 Mandenka
3 Yoruba

4 San

5 Mbuti pygmy
6 Biaka

7 Mozabite

Europeans

11 Basque

12 French

13 North [talian
14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007), Nature

Western Asians

Vo

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians

31 Daur

32 Hezhen
33 Lahu

34 Miao

35 Orogen
36 She

37 Tujia

38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

HGDP data

+ 1,033 samples

* 7 geographic regions
+ 52 populations

HapMap Phase 3 data

+ 1,207 samples
+ 11 populations

Matrix dimensions:
2,240 subjects (rows)
447 143 SNPs (columns)

Oceanians
Gy SVD/PCA
retfurns...

Native Americans

50 Colombian
51 Maya
52 Pima



Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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EigenSNP 3

-0.06

-0.08

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and - of course - can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.



lIssues: computational time

Computing large SVDs: computational time

* In commodity hardware (e.g., a 32G6B RAM, i7 laptop), using MatLab R2021, the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 4 minutes.

« Computing this SVD is not a one-liner, since we (I?) could not load the whole matrix in
RAM (runs out-of-memory in MatLab R2021); we compute the eigendecomposition of AAT.

* Current needs: we need to compute SVDs on biobank scale data (0.5M-1M samples
genotyped on millions of SNPs).




l Issues: computational time

Computing large SVDs: computational time

* In commodity hardware (e.g., a 32G6B RAM, i7 laptop), using MatLab R2021, the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 5 minutes.

« Computing this SVD is not a one-liner, since we (I?) could not load the whole matrix in
RAM (runs out-of-memory in MatLab R2021); we compute the eigendecomposition of AAT.

* Current needs: we need to compute SVDs on biobank scale data (0.5M-1M samples
genotyped on millions of SNPs).

Running time will always be a concern, but: we only need the top few principal
components; machine-precision accuracy is not necessary!

« Data are noisy.

« Approximate singular vectors suffice.

Iterative methods with random starting points are well-explored in numerical linear algebra.
« Subspace iteration, Krylov subspace methods, etc.

« Careful implementations that scale are important.



Growing scale of Sequencing

Cost of sequencing and genotyping has
gone down exponentially in recent years.
Number of individuals sequenced has
thus resulted in an exponential growth.

Moore's Law

From the start of Human Genome

project, to Human Genome Diversity

Panel (1043 individuals, 660K SNPs) to

NIH) P now, UK Biobank having 500K individuals
and ~95 million SNPs.

genome.gov/sequencingcosts

i

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Biotech companies such as 23andMe,

AncestryDNA, etfc. have successfully
sequenced around 2 million individuals
and about 20-30 million (M) SNPs.

Bose et al. "TeraPCA: a fast and scalable software package to study
genetic variation in tera-scale genotypes," Bioinformatics, 2019



Subspace Iteration: Methods

Subspace Iteration method is essentially a generalization of power
method to approximate a k-dimensional (k > 1) invariant subspace,
rather than one eigenvector at a time.

For a square matrix, B € R™™", a positive integer p and a basis matrix
Xo € R™S of an initial subspace, the subspace iteration computes the
matrix: X = BPX,.

Xo is our initial guess matrix, for which we choose it to be random
Gaussian vectors i.i.d from an N(0,1) distribution.

Given A € R™", X, and p , Subspace Iteration computes X = (AAT)PX,.



Subspace Iteration: Algorithm

Input: A € R™* ™", p > 0, initial guess Xy € R™* and k < min{m, n}.
Dutput Qe IFE’“"I‘

2: repeat

3: Fori =2top do _

4: Q = orth(C) Computational
5. C = A(ATQ) Hotspots

b:

Fis

8: :

8: M=Q"C

9: Compute eigenvalue decomposition M = PDPT
10: C=QP

10: until convergence

11: return



The problem is RAM, not running time...
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Computing A(47X,)

g N a8 o ™~ —

1
CeRM™S | = b{ bg b%ﬂ ...... bg,' b, X, € Rm*s

b

- - S —

A € pmxn
b
- F _J
AT € mixm

We compute C as follows: C = b{ by Xy_y + b} by X—y + bibaXy_; + ...+ by bpX)_y, where f is the
number of blocks.
So, we can write C = Zf=1 bl (b:X)



Experiments

We compared the performance of TeraPCA with current industry standard, flashPCA2, as it
performs the best out of the available packages. We used both real and simulated data sets

to show that TeraPCA performs better than FlashPCA2 with or without invoking
multithreading. We ran the following experiments:

" bwwses [ Swe T Dimensons

HGDP 6 GB 1,043 individuals, 107,468 markers
1000 Genomes 38 GB 2,504 individuals, 808,647 markers
5K -by- 1M 19 GB 5,000 individuals, 1,000,000 markers
10K -by- 1M 38 GB 10,000 individuals, 1,000,000 markers
100K -by- 1M 373GB 100,000 individuals, 1,000,000 markers
S00K -by- 1M 1.9TB 500,000 individuals, 1,000,000 markers

1M -by- 1M 3.7TB 1,000,000 individuals, 1,000,000 markers



TeraPCA: Performance Comparisons

FlashPCA2 Speedup
1.3

Dataset

26.2mins 33.3mins
39.3mins 87.5mins 2.2
6.99hrs 35.64hrs 4.5
7.3hrs n/a* eo
13.2hrs nfa* oo
39.46mins 141.1mins 3.6
m 6.45secs 7.7secs 1.2
1000Genomes 4.2 mins 3.9 mins 0.9

* nfa: not applicable as FlashPCAZ2 did not terminate in 75 hrs



Bose et al. "TeraPCA: a fast and scalable software package to study
genetic variation in tera-scale genotypes," Bioinformatics, 2019

Speedup

2 4 6 8 10 12
Number of threads

TeraPCA scales "decently” with increasing number of threads.
(C++, MPTI and multithreaded implementations using Intel's OpenMP library)



Back to interpretability...

- Selecting good columns (SNPs) that “"capture the structure” of the top PCs
- Combinatorial optimization problem; hard even for small matrices.
 Often called the Column Subset Selection Problem (CSSP).

- Not clear that such columns even exist.

EEEEEEEEE



}SVD decomposes a matrix as...

mxmn m X k

A ~ er X The SVD has STr‘ong
| optimality properties.

Top k left singular vectors

> It is easy to see that X = £,V," = U, TA.
» SVD has strong optimality properties.

> The columns of U, are linear combinations of up to all columns of A.



. The CX decomposition

Drineas, Mahoney, & Muthukrishnan (2008) STAM J Mat Anal Appl
‘ Mahoney & Drineas (2009) PNAS

"X e Carefully
chosen X
CcXn /
A ~ C ( X ) Goal: make (some norm) of A-CX small.

¢ columns of A

Why?

If Ais asubject-SNP matrix, then selecting representative columns is

equivalent to selecting representative SNPs to capture the same structure
as the top eigenSNPs.

We want ¢ as small as possible!



lCX decomposition

m Xn m X c

A

Q

Q
—

>

¢ columns of A

Easy to prove that optimal X = C*A. (C* is the Moore-Penrose pseudoinverse of C.)
Thus, the challenging part is to find good columns (SNPs) of A to include in C.

From a mathematical perspective, this is a hard combinatorial problem, closely
related to the so-called Column Subset Selection Problem (CSSP).

The CSSP has been heavily studied in Numerical Linear Algebra.



Relative-error Frobenius horm bounds

Drineas, Mahoney, & Muthukrishnan (2008) STAM J Mat Anal Appl

Given an m-by-n matrix A, there exists an O(mn?) algorithm that picks
at most O( (k/¢€?) log (k/€)) columns of A
such that with probability at least .9

|4-CX|lp = [|[A-cCtal| < (1+¢) 4 - Al

Notation: [|X[|7 =Y X7
]




l’l‘he algorithm

Input: m-by-n matrix A,
O < e<.5, the desired accuracy

Output: €, the matrix consisting of the selected columns

Sampling algorithm

» Compute probabilities p; summing to 1.

* Let c = O( (k/¢€?) log (k/¢€) ).

* Inci.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with
probability p;.

* Let C be the matrix consisting of the chosen columns.



}Subspace sampling (Frobenius norm)

V¢ orthogonal matrix containing the top
AL — U, . >, . VkT k right singular vectors of A.
¥+ diagonal matrix containing the top k
singular values of A.

m X n m X k k x k kXxXn

Remark: The rows of V,T are orthonormal vectors, but its columns (V, ") are not.



}Subspace sampling (Frobenius norm)

V¢ orthogonal matrix containing the top
AL — U, . >, . VkT k right singular vectors of A.
¥+ diagonal matrix containing the top k
singular values of A.

m X n m X k k x k kXxXn

Remark: The rows of V,T are orthonormal vectors, but its columns (V, ") are not.

Subspace sampling in O(mn?) time

||
pi=—7"

Normalization s.t. the
p; sum up to 1



}Subspace sampling (Frobenius norm)

¥+ diagonal matrix containing the top k

V¢ orthogonal matrix containing the top
AL — U, . >, . VkT k right singular vectors of A.
singular values of A.

m X n m X k k x k kXxXn

Remark: The rows of V,T are orthonormal vectors, but its columns (V, ") are not.

Subspace sampling in O(mn?) time

(VT) (7) 2
Leverage scores L )
(useful in statistics for ) P —
outlier detection)
v\\lor'mallzcmon s.t. the

p; sum up to 1



‘ Deterministic variant of CX

Paschou et al (2007) PLoS Genetics

Input:  m-by-n matrix A, Mahoney and Drineas (2009) PNAS
integer k, and

¢ (number of SNPs to pick)
Output:  the selected SNPs

CX algorithm
» Compute the scores p;

* Pick the columns (SNPs) corresponding o the top ¢ scores



}De’rerminis’ric variant of CX (cont'd)

Paschou et al (2007) PLoS Genetics

Lnput: m-by-n matrix A, Mahoney and Drineas (2009) PNAS
integer k, and

¢ (number of SNPs to pick)
Output:  the selected SNPs: Ancestry Informative Markers

CX algorithm

» Compute the scores p;
* Pick the columns (SNPs) corresponding o the top ¢ scores

In order to estimate k for SNP data, we developed a permutation-based test to determine
whether a certain principal component is significant or not.

(A similar test was presented in Patterson et al (2006) PLoS Genetics)



Worldwide data

TR

European

South AItalans ,|"I erlcans

African
America

T Puerto Rico
*f%%

~ > {

@ Africa @ Europe @ EAsia @ America

Spanlsh

j Chinese . I| g'ﬁapanese

274 individuals, 12 populations, ~10,000 SNPs using the Affymetrix array



Selecting PCA Informative SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africa

I
A

B AP

Sl

Europ

Asia ;

America

* top 30 PCA-correlated SNPs

PCA-scores

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One
Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



Selecting PCA Informative SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africa

Europe

15 .16 .17. 18 1920 . 2122

Asia
. . . 12 . 13 .14 .

=] v . a

America
* top 30 PCA<correfated SNPs

'1

PCA-scores

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One
Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



EigenSNP 3

A large world-wide sample: ALFRED data
(K.K. Kidd's lab @ Yale)

A total of 3,567 samples from 92 populations and 442,516 common SNPs
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}Highes’r scoring "genes"”

Gene Function (RefSeq)

EDAR* Ectodermal development, hair follicle formation.

PTK6 Intracellular signal transducer in epithelial tissues. Sensitization of cells to
epidermal growth factor.

SPATA20* Associated with spermatogenesis.

MCHR1 Plasma membrane protein which binds melanin-concentrating hormone. Probably
involved in the neuronal regulation of food consumption.

FOXP1* Forkhead box transcription factors play important roles in the regulation of
tissue- and cell type-specific gene ftranscription during both development and
adulthood.

PSCD3* Involved in the control of Golgi structure and function.

OCA2* Skin/Hair/Eye pigmentation.

EGFR* This protein is a receptor for members of the epidermal growth factor family.
Associated with the melanin pathway.

*Barreiro et al (2008) Nat Genet
*Sabeti et al (2007) Nature
*The International HapMap Consortium (2007) Nature




} A problem with the CX decomposition

Input: m-by-n matrix A, integer k, and ¢ (number of SNPs to pick)
Output:  the selected PCA Informative Markers or PCAIMs

CX algorithm
- Compute the scores p;
* Pick the columns (SNPs) corresponding to the top c scores.

Problem:

Highly correlated SNPs (a.k.a., SNPs that are in LD) get similar - high - scores,
and thus the deterministic variant would select redundant SNPs,

How do we remove this redundancy?



. Rank-Revealing QR factorization

Paschou et al (2008) PLoS Genetics

l Boutsidis, Mahoney, & Drineas (2009) SODA

We use a standard greedy approach (the Rank-Revealing QR factorization).

The algorithm performs k iterations:

In the first iteration, the top PCAIM is picked:;

In the second iteration, a PCAIM is picked that is as uncorrelated to with the
previously selected PCAIM as possible;

In the third iteration the chosen PCAIM has to be as uncorrelated as possible
with the first two previously selected PCAIMs;

And so on... L : : .
Efficient implementations are available, and run in a

couple of minutes for typical values of m, ¢, and k.



lSelec’ring fewer columns

Problem

How many columns do we need to include in the matrix C in order to get relative-error
approximations ?

Recall: with O( (k/€?) log (k/¢)) columns, we get (subject to a failure probability)

HA CG‘LAH (1+€)[|A— Ay

Deshpande & Rademacher (FOCS '10): with exactly k columns, we get

What about the range between k and O(k log(k))?



lSelec‘ring fewer columns (cont'd)

(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011 and SICOMP 2014)
Question:
What about the range between k and O(k log(k))?

Answer:

A relative-error bound is possible by selecting s=2k/e columns!

Technical breakthrough;

A combination of sampling strategies with a novel approach on column selection,
inspired by the work of Batson, Spielman, & Srivastava (STOC '09) on graph sparsifiers.

« The running time is O((mnk+nk3)e-1).
« Simplicity is gone...



lCSSP: Lower bounds & other approaches

Guruswami & Sinop, SODA 2012

Alternative approaches, based on volume sampling, guarantee

(r+1)/(r+1-k) relative error bounds.
This bound is asymptotically optimal (up to lower order terms).

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the
randomized algorithm runs in O(rnm?) time and achieves the bound in expectation.

Guruswami & Sinop, FOCS 2011

Applications of column-based reconstruction in Quadratic Integer Programming.

Very large body of followup work in the Theoretical Computer Science



lCSSP

Massive body of follow-up work on the CSSP, including the NeurIPS 2020 best
paper award for:

Michal Derezinski, Rajiv Khanna, Michael W. Mahoney, "Improved guarantees and a
multiple-descent curve for the Column Subset Selection Problem and the Nystrém
method”, NeurIPS 2020.

(See discussion and references in the above paper for a summary of theoretical
and applied work on the CSSP.)



We also use genetics analyses to elucidate population relationships and provide
answers to historical questions of relevance to archeology and paleocanthropology.

Again, PCA plots are quite telling.

Multiple examples from our own work:

« A maritime path for the colonization of Europe.
(Paschou et al. PNAS 2014)
« The origins of the Minoan civilization.
(Hughey et al. Nat Comms 2013)

 Disproving Fallmerayer's hypothesis (~1830s) that Byzantine and medieval
Greeks (esp. Peloponneseans) were extinguished by Slavic invaders and replaced
by Slavic settlers during the 6th century CE.

(Stamatoyannopoulos et al. Eur J Hum Gen 2017; Drineas et al. Hum Gen 2019)

We started collecting data to investigate these hypotheses since 2011; joint work with P. Paschou (Purdue),
J. Stamatoyannopoulos (U Washington), and 6. Stamatoyannopoulos 2U Washington).



Greece at the crossroads of Neolithic
migrations into Europe

* Possible routes of migration:

 Anatolia to Bosporus to
Thrace
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e Maritime route from the
coast of Anatolia to the
Aegean islands to
Southeast Europe




Greece at the crossroads of Neolithic
migrations into Europe

* Possible routes of migration:

 Anatolia to Bosporus to
Thrace

e Maritime route from the
coast of Anatolia to the
Aegean islands to
Southeast Europe

« Middle East to the
Aegean to Europe




GENOMAP.GR

A The Data

964 samples from 32 populations genotyped across 75,194
SNPs across all autosomes

Crete, Dodecanese (Aegean islands)

3 populations from mainland A
Greece

Cappadocia (Anatolia)

*14 populations from Northern
and Southern Europe .

*7 populations from North Africa ° o
5 populations from Middle East




Population genetic structure
around the Mediterranean
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The Mediterranean as a barrier in gene flow

Druze Figure S3b
Palestine Cappadocia
Egypt

Analysis using BARRIER
Dodecanese sofTwar‘e (combina'rion Of
Crete genetic and geographic
= . SE Laconia distances

Peloponnese

North Morocco Basque



Constructing gene flow networks

The islands of Crete and the Dodecanese as a bridge connecting
Anatolia o the Southern Peloponnese and the rest of Europe

lizhy Chuwash
Siily p Sarbia Russia
Tuscany Hmia Hunigary
Dodecandss -E' Finland

\ Laconis
"8 _Northern Europe
F‘al-’nnese Ireland

C :
North Africa il

Mozabits Druze Peloponnese .
: . asqus
North_Mficco | "= Middle East
o ¢ Egypt—— Palestinian Crete
South_Mamcco :
e Sardinia

Sahara OCC




Neolithic migrations to Europe via a maritime route

* The islands of the Aegean
and Crete are important nodes
of migration fowards Europe
in the Neolithic Era.

* The Mediterranean acted as
a barrier for migrations to
Europe from Northern Africa.

Paschou, Drineas, et al. PNAS 2014
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PCA of Europeans: Genes mirroring Geography

Novembre et al (Nature, 2008) showed
the Pearson correlation coefficient,

r’ between the geographical coordinates
fand the principal components for
197,146 SNPs in 1,387 samples (POPRES
project) collected across Europe to be:

0.77 for PCl v/s Latitude
0.78 for PC2 v/s Longitude

Also in Paschou et al. (PLoS Genet,, 2010, PNAS 2013);
Drineas et al. (PLoS One, 2010), Lao et al, (AJHG 2008))




What about India?

Bose et al. "Integrating linguistics, social structure, and geography fo
model genetic diversity within India,” Mol Bio & Evo, 2021



Data collection

Combining data from various sources:

Number of Samples Number of Populations “

142 20 Metspalu et al. (2011)
26 10 Chaubey et al. (2010)
15 4 Behar et al. (2010)
132 10 Reich et al. (2009)
188 20 Moaorjani et al. (2013)

367 20 Basu et al. (2016)
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Location of Samples

Map showing the locations of the 835 Indian
samples (from 84 well-defined population groups)
that were used as the starting point in our study.
After QC, a total of 48,373 SNPs were included.
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INDIA: SOCIOLINGUISTICS

Indo-European (IE)
Dravidian (DR}
Tibeto-Burmese (TB)
Austro-Asiatic [AA)

]
]
| IR LS ot ]
W e Vil m ke
]

* Social stratification in terms of Caste System was

According to 2001 census, 29 languages have more documented first around 300 BC.
than a million native speakers, of which 22 * There are 4,635 well-defined endogamous populations in

languages are recognized as official, with a total of India with 532 tribal communities constituting ~8% (2001
1,652 mother tongues spoken across the country. Census, Govt. of India) of the total population.




PC2

0.10

0.05

" EXTIEXIIFY.

Aanaga
Bhil
Efiymij
Barhar
Chamar
Changapa
lrula

yer
Jarnatia
Eanjars
Kashmir_Pandit

S0 Ad0+)

Kharia
Khasi
Karky
Karwa
Kahatriya
Euruchiyan
Madiga
Manipuri_Brahrmin
M arwe Bsl
Meghawal
Mumda

® -+ TAdesedml

Haga
Hwsha
Sahariva
Eakilli
Eanthal
Sherpe
Subba
Tharus
Tibet-refugees
Triguri
Wysya

0.00

—0.05

—0.10
—0.050 —0.025 0.000 0.025 0.050 0.075 0.100 0.125

PC1



max Corr
Eh]

eigenS NP

o |m]
1]

Formally:

-

Latitude

Longitude

max Corr (
[}

Forward
Castes
(SGA)

||,G4

Backward
Cnsles
(SGB)

[
U,_ZL‘I'.!"Gf

=1

Tribals

{5&:}

)

AA

where [ € R", is the vector corresponding to the eigenSNPs.
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a = () is the unknown vector of coefficients for each feature.
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A closed form solution exists for the COGG optimization problem: @ = [Var [U ] - Cov [Gt-: G j]]_l - Cov [U ; Gi]



Distribartion of cormelation walwes showing stabistical significance for PC1
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Statistical significance of the COGG output (using random permutations). Clearly, COGG is statistically
significant for both the first and the second principal components.

Plugging in the value of a,,,,, we get:

0.93 for eigenSNP1 v/s G
0.86 for eigenSNP2 v/s G

For more details: Bose et al. Mol Bio & Evo (2021)



l Open questions

Unsupervised dimensionality reduction techniques are NOT successful in separating cases
from controls in GWAS studies.

» Why? Because the disease signhal is oo "weak".
> Potential remedies? Supervised techniques, e.g., GLMs, SVMs, Deep Learning, etc.

> Goal? Supervised dimensionality reduction techniques that identify axes that
separate cases from controls. Then, identify SNPs (and genes) that span the same
subspace as those axes.

> Looks challenging, especially if the objective is to separate cases and controls (too
stringent).

> Maybe relax the objective? Separating averages is too ndive; is there something
more interesting?
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