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Why RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are:

 Massive 

(matrices so large that can not be stored at all, or can only be stored in slow memory devices)

 Computationally expensive or NP-hard 

(combinatorial optimization problems, such as the Column Subset Selection Problem, sparse PCA, 
sparse approximations, k-means, etc.)
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Randomized algorithms
• By (carefully) sampling rows/columns/elements of a matrix, we can construct new, smaller 
matrices that are close to the original matrix (w.r.t. matrix norms) with high probability. 

• By preprocessing the matrix using “random projection” matrices, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds.

Basic RandNLA principles

Example:
Randomized

Matrix 
Multiplication
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Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Applications in BIG DATA

(Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.)
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Applied Math

1. Numerical Linear Algebra  
(matrix computations, perturbation 

theory)

2. Probability theory
(esp. measure concentration for 

sums of random matrices)



IBM and RandNLA
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IBM researchers have made numerous contributions to RandNLA. Here is a 
sample:

• K. Clarkson & D. Woodruff: matrix sketching and applications

• H. Avron: matrix sketching and preconditioning, trace estimators, etc.

• C. Boutsidis: randomized algorithms for matrix decompositions

• D. Malioutov: log-determinant estimators via Chebyshev polynomials

• A. Zouzias & P. Kambadur: log-determinant estimators via Taylor series

• S. Ubaru & J. Chen: approximating the trace of matrix functions

• V. Kalantzis: HPC implementations of subspace iteration & matrix decompositions



My talk today
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• Estimating the Von Neumann Entropy (VNE) of a matrix
(Kontopoulou, Dexter, Szpankowski, Grama & Drineas 

Transactions on Information Theory 2020 & ISIT 2018)

• Express the entropy as the trace of a matrix function.

• Use Taylor series/Chebyshev polynomials to approximate matrix functions.

• Use a nice primitive to approximate the matrix trace.

• Use matrix sketching for a special case of the VNE.

• Works very well in practice (synthetic data); (the first two approaches) can 
be generalized to complex matrices.

• Estimating the log-determinant of a matrix
(Boutsidis, Drineas, Kambadur, Kontopoulou & Zouzias LAA 2017)



Disclaimer
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Disclaimer
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Λυδία is Greek as well…



Von Neumann Entropy (VNE)

10

• Typically defined for quantum systems.

• Applications in Information Theory, Quantum Mechanics, etc.

• Extension of Gibbs/Shannon entropy concept in quantum mechanics; special case 
of the Rényi entropy (as 𝛼𝛼 → 1).

• History: Described by Von-Neumann in Mathematische Grundlagen der 
Quantenmechanik (1932).

• Fundamental notion: Density Matrix.



Von Neumann Entropy: definition
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• Density matrix:

• It represents the so-called statistical mixture of the pure states of the system 
and has the form:

• The n-dimensional vectors yi represent the pure states of a system and are 
pairwise orthogonal and normal. 

• The pi correspond to the probabilities of each state and satisfy:



Von Neumann Entropy: definition
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• Density matrix:

• It represents the so-called statistical mixture of the pure states of the system 
and has the form:

• The columns of the matrix Y are the (pairwise orthogonal and normal) vectors yi.

• The density matrix R is symmetric positive definite, by definition! 

• Its eigenvalues are the probabilities pi (strictly positive, thus guaranteeing that R
has full rank).  

Singular Value Decomposition 
(SVD) of R



Von Neumann Entropy: definition
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• Density matrix:

• It represents the so-called statistical mixture of the pure states of the system 
and has the form:

• Formal definition of Von Neumann Entropy:

• Computational complexity: O(n3), prohibitive for large n.
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• Density matrix:

• We can express the Von Neumann Entropy as a trace of a matrix function!

• Consider the function:

• Applying a function on symmetric (more generally, Hermitian) matrices is simple: 
one applies the function on the eigenvalues of the matrix. 

Expressing the VNE as a trace
(of a matrix function)
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• Density matrix:

• We can express the Von Neumann Entropy as a trace of a matrix function!

• Consider the function:

• Applying a function on symmetric (more generally, Hermitian) matrices is simple: 
one applies the function on the eigenvalues of the matrix. 

• Formally:

• We apply the function h entry-wise to the diagonal matrix of the eigenvalues.

Expressing the VNE as a trace
(of a matrix function)



Expressing the VNE as a trace
(of a matrix function)
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• Density matrix:

• We can express the Von Neumann Entropy as a trace of a matrix function!

• Recall: 

• After 3-4 lines of elementary algebra, we get

Von Neumann Entropy Matrix Trace: 
sum of its diagonal entries



Approximating the VNE
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• Density matrix:

Recall: 

Von Neumann Entropy

Approach: 

Step 1: Approximate the function h(x) using Taylor series or Chebyshev 
polynomials. Thus, we are approximating the VNE by the trace of a (matrix) 
polynomial function. 

Step 2: Recall that the trace is a linear function (e.g., Tr(A+B) = Tr(A)+Tr(B)). 
Approximate the trace of each term in the resulting polynomial. 



Approximating the VNE
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• Density matrix:

Recall: 

Advantages:

The approach is straight-forward.

It uses a very elegant (randomized) primitive for trace estimation.

Also uses “standard” properties of Taylor series and Chebyshev polynomials.

Von Neumann Entropy



Approximating the VNE: Taylor series 

19



Approximating the VNE: Taylor series 
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Approximating the VNE: Taylor series 
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0
1

For simplicity, we can just use 
u=1 (still need ℓ though).



Approximating the VNE: Taylor series 
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• We will truncate the Taylor series by keeping the first m terms only.

• Computing the trace of R(I-R)k needs O(n3) time.

• Therefore, we will estimate the traces instead of computing them exactly. 



Trace Estimators
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Given an n-by-n symmetric matrix A, we can estimate its trace as follows:

The gi are random n-dimensional vectors and could be:

• Random sign vectors (+1 or -1 with equal probability, often called Rademacher 
vectors), or

• Random Gaussian vectors (independent standard normal variables), etc.



Trace Estimators
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Given an n-by-n symmetric matrix A, we can estimate its trace as follows:

The gi are random n-dimensional vectors and could be:

• Random sign vectors (+1 or -1 with equal probability, often called Rademacher 
vectors), or

• Random Gaussian vectors (independent standard normal variables), etc.

Notice that we only access A via matrix-vector products, which take O(nnz(A))
time to compute.

Larger values of s decrease the variance of the estimator.



Trace Estimators
(Avron & Toledo JACM 2011, Roosta & Ascher FOCM 2014)
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The estimator was pioneered by Hutchinson in 1990.

The original approach used random sign vectors; Hutchinson proved that the 
estimator works in expectation and has bounded variance.

Given an n-by-n symmetric matrix A, we can estimate its trace as follows:



Trace Estimators
(Avron & Toledo JACM 2011, Roosta & Ascher FOCM 2014)
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The estimator was pioneered by Hutchinson in 1990.

The original approach used random sign vectors; Hutchinson proved that the 
estimator works in expectation and has bounded variance.

Avron & Toledo JACM 2011: proposed the use of Gaussian random vectors gi and 
provided relative error bounds for SPD matrices A.

Also proved that random sign vectors result in slightly weaker bounds; was later 
improved by Roosta & Ascher FOCM 2014.

Given an n-by-n symmetric matrix A, we can estimate its trace as follows:
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relative error 
approximation

Gaussian Trace Estimator
(Avron & Toledo JACM 2011, Roosta & Ascher FOCM 2014)
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relative error 
approximation

Gaussian Trace Estimator
(Avron & Toledo JACM 2011, Roosta & Ascher FOCM 2014)

A nice application of such estimators: We recently used such estimators to design 
and analyze randomized rounding algorithms for a Semi-Definite Programming 
relaxation of the Sparse Principal Components Analysis (SPCA) problem.

(Chowdhuri, Drineas, Woodruff & Zhu ArXiv 2020)



Approximating the VNE: algorithm

29



Approximating the VNE: algorithm

30

approximate
VNE

exact 
VNE
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Two sources of error: 

(i) From the truncation of the Taylor series (only m terms are kept).

(ii) From the approximation of the trace using s random Gaussian vectors.

Approximating the VNE: algorithm
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We analyze and bound them separately:

(i) The first one is mostly matrix algebra, and

(ii) the second one is (almost) immediate from Avron & Toledo (JACM 2011).

Approximating the VNE: algorithm



Final bound
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Final bound
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Approximating the VNE: Chebyshev
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Similar approach to the previous one:

(i) Approximate h(x) (and thus h(R)) using Chebyshev polynomials of the first kind.

(ii) Bound the error due to the approximation using “standard” theory.

(iii) Estimate the trace for each term of the polynomial.

• Density matrix:

Recall: 

Von Neumann Entropy



Approximating the VNE: Chebyshev
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• Tt(x): Chebyshev polynomials of the first kind.

• Coefficients of the overall polynomial can be 
computed efficiently using Clenshaw’s algorithm.

• Density matrix:

Recall: 

Von Neumann Entropy



Final bound
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Final bound
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Using random projections (outline)
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Density matrix:

Both previous approaches necessitated that all pi > 0. What if only k<<n of the pi are 
strictly positive?



Using random projections (outline)
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Density matrix:

Both previous approaches necessitated that all pi > 0. What if only k<<n of the pi are 
strictly positive?

• We can use random projections (e.g., the Count-Min sketch by Clarkson & 
Woodruff STOC 2013) to approximate all the non-zero singular values of R up to 
relative error in time proportional to nnz(R).

• The above fact seems to be well-known in the RandNLA community and can be 
proven in various ways.

• This implies relative error approximations for each pi for i=1…k. 

• The final bound for the VNE approximation has an additive error term: it is not a 
relative error bound.



Using random projections (outline)
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Density matrix:

Both previous approaches necessitated that all pi > 0. What if only k<<n of the pi are 
strictly positive?

Still open: what if we have k < n strictly positive pi with k = Ω(n)?



Related work
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Ubaru, Chen & Saad (SIMAX 2017): stochastic Lanczos quadrature approach to 
estimate the trace of any matrix function.

Works well in theory (comparable to the Chebyshev bounds, up to 
logarithmic factors) and in practice.

Musco, Netrappali, Sidford, Ubaru, & Woodruff (ITCS 2018): compute an 
approximate histogram of the matrix spectrum faster than matrix multiplication.

Relative error approximation to the VNE subject to a condition number 
assumption.

Running time does not depend on the condition number of the density 
matrix.

Mostly of theoretical interest (?).



Related work (cont’d)
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Wihler, Bessire & Stefanov (Journal of Physics A 2014): approximates the 
entropy of a density matrix using Chebyshev polynomials. 

Weak bounds on the accuracy of the approach.

Choi, He, He & Shi (LAA 2020, CSIP 2018): approximating the VNE via low-rank 
approximations.



Experiments
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Experiments
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Experiments (cont’d)
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Experiments (cont’d)
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Experiments (cont’d)



Log-determinant estimation
(Boutsidis, Drineas, Kambadur, Kontopoulou, Zouzias, LAA 2017)

Consider the following problem: 

Given an n-by-n symmetric, positive definite matrix A compute its log determinant.

 All the eigenvalues of A are strictly positive and thus the determinant of A is 
strictly positive.

 The best exact algorithm for the above problem simply computes the 
determinant of A in cubic time and takes its logarithm. 

48



Log-determinant estimation

Consider the following problem: 

For the sake of simplicity, assume that the singular values of the n-by-n symmetric, 
positive definite matrix A lie in the interval (θ1,1) with 0 < θ1 < 1.

 The (upper bound) assumption can (and has) been removed, but the error bound 
worsens.

Let C = I – A; then,
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Proof

Let C = I – A, with A an SPD matrix with eigenvalues in the interval interval (θ1,1) 
with 0 < θ1 < 1. Then,

First, note that:
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Proof

Let C = I – A, with A an SPD matrix with eigenvalues in the interval interval (θ1,1) 
with 0 < θ1 < 1. Then,

First, note that:

Then,

We used the Taylor expansion for log (I-C); true for any symmetric matrix C with 
eigenvalues in the interval (-1,1):
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Algorithmic implications

Let C = I – A, with A an SPD matrix with eigenvalues in the interval interval (θ1,1) 
with 0 < θ1 < 1. Then,

We can approximate the logdet by approximating the above sum. Two tools:

• Truncate the above summation to include only the first m terms.

• Estimate the trace of Ck using random projections

This results in a fast approximation algorithm for the logdet of symmetric positive 
definite matrices (with eigenvalues in the interval (θ1,1) with 0 < θ1 < 1).
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The algorithm

Taylor series 
(truncated)

Trace estimator
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Analysis

Two sources of error:

• First, the Taylor series was truncated to include only the first m terms; we need 
to bound the contribution of the remaining terms.

• Trace estimation introduces (relative) error as well.

After some algebra, we get:

Our lower bound on the smallest eigenvalue of A (at least θ1) implies:

Setting                                    guarantees a relative error approximation.
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Running time

The running time of the algorithm is

The running time depends on: 

 the target accuracy (better accuracy implies higher running time), 

 the failure probability (lower failure probability implies higher running time), 

 the bound on the smallest eigenvalue (small eigenvalues imply higher running 
times), and 

 the sparsity of the input matrix (denser matrices imply higher running times).
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“Randomization is arguably the most exciting and innovative idea to have hit 
linear algebra in a long time.” (Avron et al. (2010) SISC)

RandNLA events

DIMACS Workshop on RandNLA, DIMACS, Sep 2019.

RandNLA workshop, Simons Institute for the Theory of Computing, UC 
Berkeley, Foundations of Data Science, Sep 2018

RandNLA course, PCMI Summer School on Mathematics of Data, Jul 2016

 Highlighted at the Workshops on Algorithms for Modern Massive Datasets 
(MMDS) 2006, 2008, 2010, 2012, 2014, and 2016. 

http://mmds-data.org/

 Gene Golub SIAM Summer School (G2S3), Δελφοί, Greece, June 2015

 Invited tutorial at SIAM ALA 2015 

 RandNLA workshop in FOCS 2012
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http://mmds-data.org/


RandNLA review articles

P. G. Martinsson and J. A. Tropp, Randomized Numerical Linear Algebra: Foundations & Algorithms, 
Acta Numerica, 2020.

P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra, Amer. Math. Soc., 
2018.

M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra, Communications of 
the ACM, 2016.

D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and Trends in Theoretical 
Computer Science, 2014.

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends in Machine 
Learning, 2011.

N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms 
for Constructing Approximate Matrix Decompositions, SIAM Review, 2011.
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