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20+ years of RandNLA
(Randomized Numerical Linear Algebra)

3

 Sketching  works! In theory and in practice.

 In problems that involve matrices, using a sketch of the matrix instead of the 
original matrix returns provably accurate results theoretically and works well 
empirically. 

(1) The sketch can be just a few rows/columns/elements of the matrix, selected 
carefully (or not).

(2) The sketch can be simply the product of a matrix with a few random Gaussian 
vectors.

(3) Better sketches (in terms of the accuracy vs. running time tradeoff to construct 
the sketch) have been heavily researched.



Highlights of 20+ years of RandNLA
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 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:



Highlights of 20+ years of RandNLA
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 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:

 A much better use of a sketch is as a preconditioner or to compute a starting 
point for an iterative process.

(1) As a preconditioner in iterative methods for regression problems, 
(pioneered by Blendenpik). 

(2) To compute a “seed” vector in subspace iteration for SVD/PCA, or 
to compute a Block Krylov subspace.

Neither (1) nor (2) are novel in Numerical Linear Algebra; the introduction of 
randomization to analyze the sketch was/is/will be ground-breaking.
(Re (2): Drineas, Ipsen, Kontopoulou, & Magdon-Ismail SIMAX 2018; Drineas & Ipsen SIMAX 2019; building 
on ideas from Musco & Musco NeurIPS 2015.)



Using Haim Avron’s slide:
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Season 1 

Episode 3
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The real highlight of RandNLA



S1 E3



This talk
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 Randomized Numerical Linear Algebra (sketching) for ridge regression
 This is what I had originally planned to talk about back in 2020

 Randomized Numerical Linear Algebra for Interior Point Methods
 Blame (?) the two-year COVID delay



Under-constrained regression problems

Consider the under-constrained regression problem: 
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 If 𝜆𝜆 = 0, then the resulting problem typically has many solutions achieving an 
optimal value of zero (w.l.o.g. let 𝐴𝐴 have full rank). 

 The regularization term places a constraint on the Euclidean norm of the 
solution vector; the resulting regularized problem is called ridge regression. 

 Other ways of regularization are possible, e.g., sparse approximations, LASSO, 
and elastic nets.

𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, short and fat
i.e., 𝑛𝑛 ≪ 𝑑𝑑



Under-constrained regression problems

Consider the under-constrained regression problem: 
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𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, short and fat
i.e., 𝑛𝑛 ≪ 𝑑𝑑
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Richardson’s iteration with sketching

sketching

Subtract the current 
“solution” from the 
response vector



Leverage Scores 
Let A be a (full rank) n-by-d matrix with d>>n:

i-th column of VT or 
i-th row of V

𝑛𝑛 × 𝑑𝑑 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑑𝑑



Ridge Leverage Scores 
Let A be a (full rank) n-by-d matrix with d>>n:

𝑛𝑛 × 𝑑𝑑 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑑𝑑



Ridge Leverage Scores 
Let A be a (full rank) n-by-d matrix with d>>n:

𝑛𝑛 × 𝑑𝑑 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑛𝑛 𝑛𝑛 × 𝑑𝑑

d𝜆𝜆 = Σ𝜆𝜆 𝐹𝐹
2

Effective Degrees 
of Freedom :
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Our results
(notation: 𝑆𝑆 denotes the sketching matrix)

Leverage Score 
Sampling

Ridge Leverage 
Score Sampling
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Our results and follow-up work
(Chowdhuri, Yang, Drineas ICML 2018)

 Leverage score sampling (feature selection) 
 Number of selected features depends on 𝑛𝑛 (number of observations).
 Returns relative error guarantees.

 Ridge leverage score sampling (feature selection)
 Number of selected features depends on the effective degrees of freedom 𝑑𝑑𝜆𝜆 < 𝑛𝑛.
 Returns relative-additive error guarantees.

 Improvements & Extensions
 Improvements (sketching) by Meier & Nakatsukasa ArXiv 2022. 

Congratulations for the Best Poster Award!
 See also Kacham & Woodruff ICML 2022.
 Linear Discriminant Analysis (LDA): Chowdhuri, Yang, Drineas UAI 2019 .
 Projection cost-preserving sketching: Chowdhuri, Yang, Drineas LAA 2019.

 Linear systems
 Sketched GMRES by Nakatsukasa & Tropp, 2022.



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

RandNLA and Linear Programming



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

• Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

RandNLA and Linear Programming



Path-Following IPMs
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A broad classification of Interior Point Methods (IPM) for Linear Programming (LP):

IPM: Path Following Methods

 Long step methods (worse theoretically, fast in practice)

 Short step methods (better in theory, slow in practice)

 Predictor-Corrector (good in theory and practice)

 Can be further divided to feasible and infeasible methods (depending on starting 
point). 

Especially relevant in practice for long step and predictor corrector methods.

IPM: Potential-Reduction algorithms
Not explored in our work.



Standard Form Linear Programs
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Interior Point Methods (IPMs)



Interior Point Methods (IPMs)
(long-step, feasible)



Interior Point Methods (IPMs)

Path-following IPMs, at every iteration, solve a system of linear equations :

normal 
equations



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.

 Remark: For feasible path-following IPMs, an additional design choice is whether 
we want the final solution to be feasible or approximately feasible.
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Standard form of primal LP:

Path-following, long-step IPMs: compute the Newton search direction; update 
the current iterate by following a (long) step towards the search direction. 

A standard approach involves solving the normal equations:

Vector of m unknowns

where

Use a preconditioned method to solve the above system: we analyzed 
preconditioned Conjugate Gradient solvers; preconditioned Richardson’s; and 
preconditioned Steepest Descent, all with randomized preconditioners.

Preconditioning in Interior Point Methods
(joint with H. Avron, A. Chowdhuri, G. Dexter, and P. London, NeurIPS 2020)



Challenges

Immediate problem: even assuming a feasible starting point, approximate solutions 
do not lead to feasible updates.
• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably correct the error induced by the 
approximate solution and guarantee convergence.



Details: the approximate solution violates critical equalities:

• The vector 𝑟𝑟𝑝𝑝 is the primal residual; for feasible long-step IPMs, it is the all-zero vector. 

• Standard analyses of long-step (infeasible/feasible) IPMs critically need the second 
inequality to be an equality. 

• Without the above equalities, in the case of feasible IPMs, we can not terminate with a 
feasible solution; we will end up with an approximately feasible solution.

Challenges

Immediate problem: even assuming a feasible starting point, approximate solutions 
do not lead to feasible updates.
• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably correct the error induced by the 
approximate solution and guarantee convergence.

and 𝟎𝟎𝒎𝒎



Results: feasible, long-step IPMs

If the constraint matrix 𝑨𝑨 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of a randomized PCG solver.

 Then, the feasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



Results: infeasible, long-step IPMs

If the constraint matrix 𝑨𝑨 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛2 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of a randomized PCG solver.

 Then, the infeasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

Feasible Predictor-Corrector IPMs 
(joint with H. Avron, A. Chowdhuri, G. Dexter ICML 2022; long paper)



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

 Our work combines the prototypical PC algorithm (e.g., see Wright (1997)) 
with (preconditioned) inexact solvers.

 Major challenge: analyze inexact PC is to guarantee that the duality measure 
after each corrector step of the PC iteration decreases. 

(Standard analysis breaks; the (feasible) long-step proof was easier; we had to come up 
with new inequalities for an approximate version of the duality measure.)

Feasible Predictor-Corrector IPMs 
(joint with H. Avron, A. Chowdhuri, G. Dexter ICML 2022; long paper)



Predictor-corrector Algorithm Overview

Alternates between predictor and corrector 
steps

● Predictor step greatly decreases the duality 
measure, while deviating from the central 
path (centering parameter 𝜎𝜎 = 1).

● Corrector step keeps the duality measure 
constant but returns iterate to near central 
path (centering parameter 𝜎𝜎 = 0).

● Alternates between two neighborhoods of the 
central path 𝑁𝑁2(0.25) and 𝑁𝑁2(0.5).



Solving the linear system

At each iteration of the Predictor-Corrector IPM, we need to solve the 
following linear system:

Note that the last two equations only involve matrix-vector products. 
Therefore, we only focus on solving the first equation efficiently.



Structural Conditions for Inexact PC

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 satisfies (sufficient conditions):

 Then, we prove that the Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, 
as expected.

 The final solution (and all intermediate iterates) are only approximately feasible.



 We modified the PC method using a correction vector 𝒗𝒗 to make iterates exactly
feasible. 

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 and 𝑣𝑣 satisfy (sufficient conditions):

 Then, we prove that this modified Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, as expected.

 The final solution (and all intermediate iterates) are exactly feasible.

Structural Conditions for Inexact PC 
using a correction vector 𝑣𝑣
(correction vector idea also in O’Neal and Monteiro 2003)



 We modified the PC method using a correction vector 𝒗𝒗 to make iterates exactly
feasible. 

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 and 𝑣𝑣 satisfy (sufficient conditions):

 Then, we prove that this modified Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, as expected.

 The final solution (and all intermediate iterates) are exactly feasible.

Structural Conditions for Inexact PC 
using a correction vector 𝑣𝑣
(correction vector idea also in O’Neal and Monteiro 2003)

𝒗𝒗 is user 
controlled!!



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

Satisfying the structural conditions



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐴𝐴.

Satisfying the structural conditions



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐴𝐴.

 Computing the error-adjustment vector 𝑣𝑣 is fast and can be done (combined with 
randomized preconditioners and PCG) in 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 log𝑛𝑛 time (just mat-vecs).

 Similar results can be derived for preconditioned steepest descent, preconditioned  
Chebyschev, and preconditioned Richardson solvers.

Satisfying the structural conditions



Open problems
 Can we prove similar results for infeasible predictor-corrector IPMs? Recall that  

such methods need 𝑂𝑂 𝑛𝑛 outer iterations (Yang & Namashita 2018).

 Are our structural conditions necessary? Can we derive simpler conditions?

 Could our structural conditions change from one iteration to the next? Could we 
use dynamic preconditioning or reuse preconditioners from one iteration to the 
next (e.g., low-rank updates of the preconditioners)?

 Connections with similar results in the TCS community (starting with Daitch & 
Spielman (STOC 2008)).

• Analyzed a short-step (dual) path-following IPM (LP not in standard form). 

• No “correction” vector; an approximately feasible solution was returned.

• Dependency on log 𝜅𝜅 𝑆𝑆 for the outer iteration -- can it be removed?



Relevant literature

G. Dexter, A. Chowdhuri, H. Avron, and P. Drineas, On the convergence of Inexact Predictor-
Corrector Methods for Linear Programming, ICML 2022.

A. Chowdhuri, G. Dexter, P. London, H. Avron, and P. Drineas, Faster Randomized Interior Point 
Methods for Tall/Wide Linear Programs, under review, 2022.

A. Chowdhuri, P. London, H. Avron, and P. Drineas, Speeding up Linear Programming using 
Randomized Linear Algebra, NeurIPS 2020.

R. Monteiro and J. O’Neal, Convergence analysis of a long-step primaldual infeasible interior-
point LP algorithm based on iterative linear solvers, 2003.

D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, FTTCS 2014.

M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra, CACM 2016.

P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra, Amer. Math. 
Soc., 2018.
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