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Why RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are:

 Massive 

(matrices so large that can not be stored at all, or can only be stored in slow memory devices)

 Computationally expensive or NP-hard 

(combinatorial optimization problems, such as the Column Subset Selection Problem, sparse PCA, 
sparse approximations, k-means, etc.)
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Randomized algorithms
• By (carefully) sampling rows/columns/elements of a matrix, we can construct new, smaller 
matrices that are close to the original matrix (w.r.t. matrix norms) with high probability. 

• By preprocessing the matrix using “random projection” matrices, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds.

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Applications in BIG DATA

(Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.)
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Applied Math

1. Numerical Linear Algebra  
(matrix computations, perturbation 

theory)

2. Probability theory
(esp. measure concentration for 

sums of random matrices)



G. Golub & RandNLA

 I first discussed randomized linear algebra with G. Golub in 2004 at an AIM 
workshop at Stanford in 2004.

 G. Golub, M.W. Mahoney, L.H. Lim (and I) co-organized the first Workshop 
on Algorithms for Modern Massive Datasets (MMDS) in 2006.

http://mmds-data.org/ (MMDS was also held in 2008, 2010, 2012, 2014, and 2016.)

 I. Ipsen, S. Gallopoulos, M. W. Mahoney (and I) organized the G. Golub
SIAM Summer School (G2S3) on Randomized Linear Algebra at Delphi 
(Δελφοί), Greece, June 2015.

 Randomized SVD was included in The Book (Section 10.4.5., 4th edition, 2013)

http://mmds-data.org/


Highlights of 20+ years of RandNLA
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 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).
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 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).

Why are these problems important?

 Both problems are fundamental in Data Science.

 Both problems are at the heart of multiple disciplines: Computer Science 
(Numerical Linear Algebra, Machine Learning), Applied Mathematics, and 
Statistics. 

 Both problems have a very rich history: Regression was introduced in the early 
1800s (Gauss, Legendre, etc.) and PCA was introduced in the early 1900s 
(Pearson, Hotelling, etc.)



Highlights of 20+ years of RandNLA
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 

 Structural results and conditions highlighting fundamental properties of such 
problems.

E.g., sufficient conditions that a sketching matrix should satisfy in order to guarantee, 
say, relative error approximations for under/over-constrained regression problems.



Highlights of 20+ years of RandNLA

11

Lessons learned (1)
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Lessons learned (1)

This is an oversimplification that both
helps and hurts the field.
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Lessons learned (1)

 Sketching  works! In theory and in practice.

 In problems that involve matrices, using a sketch of the matrix instead of the 
original matrix returns provably accurate results theoretically and works well 
empirically. 

(1) The sketch can be just a few rows/columns/elements of the matrix, selected 
carefully (or not).

(2) The sketch can be simply the product of a matrix with a few random Gaussian 
vectors.

(3) Better sketches (in terms of the accuracy vs. running time tradeoff to construct 
the sketch) have been heavily researched.
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Lessons learned (2)

 Using matrix sketches in downstream applications is highly non-trivial.
Understanding the impact of the error incurred by the approximation is both 
challenging and novel.

 Downstream applications include:

(1) All kinds of regression

(2) Low-rank approximations

(3) Clustering algorithms, such as k-means

(4) Support Vector Machines

(5) Interior Point Methods

(6) Other optimization algorithms

etc.



Highlights of 20+ years of RandNLA
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:

 A much better use of a sketch is as a preconditioner or to compute a starting 
point for an iterative process.

(1) As a preconditioner in iterative methods for regression problems, 
(pioneered by Blendenpik). 

(2) To compute a “seed” vector in subspace iteration for SVD/PCA, or 
to compute a Block Krylov subspace.

Neither (1) nor (2) are novel in Numerical Analysis, but the introduction of 
randomization to construct the sketch was/is/will be ground-breaking.
(Re (2): Drineas, Ipsen, Kontopoulou, & Magdon-Ismail SIMAX 2018; Drineas & Ipsen SIMAX 2019; building 
on ideas from Musco & Musco NeurIPS 2015.)



Lessons learned (4)

 Pre- or post-multiplying the (tall and thin) matrix 𝐴𝐴 by a “random-projection-
type” matrix 𝑋𝑋 (think random Gaussian matrix) spreads out the information in 
the (rows of the) matrix:

 This process “uniformizes” (in a very precise sense) the (row) leverage scores 
thus making the matrix “incoherent”.

 Selecting a few rows of 𝑋𝑋𝐴𝐴 uniformly at random is a sketch of 𝐴𝐴.

Highlights of 20+ years of RandNLA
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Highlights of 20+ years of RandNLA
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Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.
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Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.

 RandNLA has provided motivation for the development of matrix concentration 
inequalities and sketching tools, AND

 Matrix concentration inequalities have considerably simplified the analysis of 
RandNLA algorithms and sketching tools have resulted in more efficient 
RandNLA algorithms.



 Randomized Linear Algebra for regression

 Randomized Linear Algebra for Interior Point Methods in Linear Programming

Why start with regression?

 Regression is a fundamental primitive in Data Science.

 Regression is at the heart of multiple disciplines: Computer Science (Numerical 
Linear Algebra, Machine Learning), Applied Mathematics, and Statistics. 

 Regression has a very rich history: goes back to the 1800s and work by Gauss 
and Legendre.

 And also because randomized regression v1.0 was in my presentation in MMDS 
2006 in front of G. Golub.

This talk
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Problem definition and motivation

In data analysis applications one has 𝑛𝑛 observations of the form:

𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑 is an 𝑛𝑛 × 𝑑𝑑 “design matrix” (𝑛𝑛 ≫ 𝑑𝑑):

In matrix-vector notation,

Model 𝑦𝑦(𝑡𝑡) (unknown) as a linear combination of 𝑑𝑑 basis functions:
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Least-norm approximation problems

The linear measurement model:

In order to estimate 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑, solve:
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Application: data analysis in science

• First application: Astronomy

Predicting the orbit of the asteroid Ceres (in 1801!).

Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of “least squares optimization” and runs in 
𝑂𝑂(𝑛𝑛𝑑𝑑2) time!

• Data analysis: Fit parameters of a biological, chemical, economical, 
physical, astronomical, social, internet, etc. model to experimental data. 
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Least-squares problems

We start with over-constrained least-squares problems, 𝑛𝑛 ≫ 𝑑𝑑.
Notation alert: In NLA we prefer 𝑏𝑏 instead of 𝑦𝑦 for the response vector!

Typically, there is no 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏.

Want to find the “best” 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑏𝑏.
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Least-squares problems

We start with over-constrained least-squares problems, 𝑛𝑛 ≫ 𝑑𝑑.
Under-constrained (𝑛𝑛 ≪ 𝑑𝑑) and square (𝑛𝑛 ≈ 𝑑𝑑) problems will be discussed later.  

Typically, there is no 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏.

Want to find the “best” 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 such that 𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑏𝑏.
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Exact solution to L2 regression
(Gene Golub really liked this slide…)

Cholesky Decomposition: 
If 𝐴𝐴 is full rank and well-conditioned, 

decompose 𝐴𝐴𝑇𝑇𝐴𝐴 = 𝑅𝑅𝑇𝑇𝑅𝑅, where 𝑅𝑅 is upper triangular, and solve the normal equations: 𝑅𝑅𝑇𝑇𝑅𝑅𝑥𝑥 = 𝐴𝐴𝑇𝑇𝑏𝑏.

Squares the condition number; numerically unstable.

QR Decomposition: 
Slower but numerically stable, esp. if 𝐴𝐴 is rank-deficient.

Write 𝐴𝐴 = 𝑄𝑄𝑅𝑅 and solve 𝑅𝑅𝑥𝑥 = 𝑄𝑄𝑇𝑇𝑏𝑏.

Singular Value Decomposition (SVD):
Most expensive, but best if 𝐴𝐴 is very ill-conditioned.

Write 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇, in which case: xo𝑜𝑜𝑜𝑜 = A+b = VΣ𝑈𝑈𝑇𝑇𝑏𝑏.

Complexity is 𝑂𝑂(𝑛𝑛𝑑𝑑2), but constant factors differ.
26
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Projection of 𝑏𝑏 on the subspace 
spanned by the columns of 𝐴𝐴

𝐴𝐴𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑏𝑏
2

2
= 𝐴𝐴𝐴𝐴+𝑏𝑏 − 𝑏𝑏 2

2

= 𝑏𝑏 2
2 − 𝐴𝐴𝐴𝐴+𝑏𝑏 2

2



Algorithm: Sampling for L2 regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007, 
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

Algorithm

1. Compute a probability distribution over the 
rows of 𝐴𝐴 (𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1 …𝑛𝑛 summing up to one).

2. In 𝑟𝑟 i.i.d. trials pick 𝑟𝑟 rows of 𝐴𝐴 and the 
corresponding elements of 𝑏𝑏 with respect to 
the 𝑝𝑝𝑖𝑖.
(Rescale sampled rows of 𝐴𝐴 and sampled elements 
of 𝑏𝑏 by 1

𝑟𝑟𝑜𝑜𝑖𝑖
.)

3. Solve the induced problem.
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The 𝑝𝑝𝑖𝑖: our work introduced the notion of the leverage scores. 



Theorem
If the 𝑝𝑝𝑖𝑖 are the row leverage scores of 𝐴𝐴, then, with probability at least 0.8,

The sampling complexity (the value of 𝑟𝑟) is

30



Leverage scores: tall & thin matrices
Let 𝐴𝐴 be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑 whose SVD is:

31

 The matrix 𝑈𝑈 contains the left singular vectors of 𝑈𝑈. 

 The columns of 𝑈𝑈 are pairwise orthogonal and normal.

 This is NOT the case for rows of 𝑈𝑈 : all we know is that the Euclidean 
norms of its rows are between zero and one.



Leverage scores: tall & thin matrices

(Row) Leverage scores: 

i-th row of 𝑈𝑈

The (row) leverage scores can now be used to sample rows from 𝐴𝐴 to create a sketch.
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Let 𝐴𝐴 be a (full rank) 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑 whose SVD is:



Computing leverage scores
Drineas, Magdon-Ismail, Mahoney, and Woodruff ICML 2012, JMLR 2012

 Trivial: via the Singular Value Decomposition 

𝑂𝑂(𝑛𝑛𝑑𝑑2) time for 𝑛𝑛 × 𝑑𝑑 matrices with 𝑛𝑛 > 𝑑𝑑.

 Non-trivial: relative error approximations for all leverage scores.

Leverage scores can be computed in 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 ⋅ 𝑘𝑘 time:

Clarkson and Woodruff (STOC ’13): sparse random projection;

Mahoney and Meng (STOC ‘13): better analysis for the above result;

Nelson and Huy (FOCS ’13): best known analysis for the above result;

Boutsidis and Woodruff (STOC ‘14): applications to RandNLA problems;

33



Avoiding leverage scores
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

 Recall that the leverage scores can be uniformized by computing:

Then, sample rows of 𝑿𝑿𝑿𝑿 uniformly at random. 

34

 Possible constructions for 𝑿𝑿:

 Random Gaussians (with/without normalization).

 Random signs (up to normalization).

 The randomized Hadamard transform (and its variants).

 The Count Sketch input sparsity transform of Clarkson & Woodruff.



Proof: a structural result
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

Consider the over-constrained least-squares problem:

and the “sketched” (or “preconditioned”) problem

Recall: 𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑 matrix with 𝑛𝑛 ≫ 𝑑𝑑; 𝑋𝑋 is 𝑟𝑟 × 𝑛𝑛 matrix with r ≪ 𝑛𝑛. 

 Think of 𝑋𝑋𝐴𝐴 as a “sketch” of 𝐴𝐴. 

 Our approach (using the leverage scores) focused on sketches of 𝐴𝐴 that are 
created by sampling rows of 𝐴𝐴.

 More general matrices 𝑋𝑋 are possible and have been heavily studied.
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Proof: a structural result
(for details, see monographs by Drineas & Mahoney 2018; Woodruff 2014)

Let 𝑈𝑈𝐴𝐴 be the 𝑛𝑛 × 𝑑𝑑 matrix of the left singular vectors of 𝐴𝐴.

If 𝑋𝑋 satisfies (constants are somewhat arbitrary):

then, 

36



The “heart” of the proof

Then, we can prove that with probability at least 1 − 𝛿𝛿:

It follows that, for all 𝑖𝑖:

At the heart of proofs in this line of research lies the following observation:

𝑈𝑈𝐴𝐴 is an orthogonal matrix: 
𝑈𝑈𝐴𝐴𝑇𝑇𝑈𝑈𝐴𝐴 = 𝐼𝐼𝑑𝑑

𝑋𝑋𝑈𝑈𝐴𝐴 is a full-rank matrix!
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The “heart” of the proof (cont’d)

Prove: with probability at least 1 − 𝛿𝛿:

It follows that, for all 𝑖𝑖:

 The sampling complexity is 𝑟𝑟 = 𝑂𝑂(𝑑𝑑 log 𝑑𝑑).

 Proving the above inequality is (now) routinely done via matrix concentration 
inequalities (at least in most cases).

 Early proofs were very complicated and not user-friendly.
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Follow-up

Massive amount of follow-up work, including:

 Avron, Maymounkov, and Toledo SISC 2010: Blendenpik, a solver that uses the 
“sketch” 𝑋𝑋𝐴𝐴 as a preconditioner, combined with an iterative least-squares solver. 
Beats LAPACK by a factor of four in essentially all over-constrained least-
squares problems.

 Iyer, Avron, Kollias, Inechein, Carothers, and Drineas JCS 2016: an 
evaluation of Blendenpik on terascale matrices in Rensselaer’s BG/Q; again 
factor four-to-six speedups compared to Elemental’s QR-based solver.

 Drineas, Mahoney, Woodruff, and collaborators (SODA 2008, SIMAX 2009, 
SODA 2013, SIMAX 2016): general 𝑝𝑝-norm regression, beyond Euclidean norm.

 Clarkson and Woodruff STOC 2013: relative error algorithms for over-
constrained least-squares regression problems in input sparsity time using a 
novel construction for the sketching matrix.
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Follow-up
 Pilanci and Wainwright IEEE TIF 2015, JMLR 2016, SIOPT 2017: A novel 

iterative sketching-based method (Hessian sketch) to solve over-constrained 
least-squares regression problems over convex bodies.

 Paul, Magdon-Ismail, and Drineas NIPS 2015, Derezinski and Warmuth NIPS 
2017, AISTATS 2018, COLT 2018, JMLR 2018: Adaptive and volume sampling 
approaches to construct the sketching matrix.

 Alaoui and Mahoney NIPS 2015, Cohen, Musco, Musco, and collaborators STOC 
2015, SODA 2017, FOCS 2017: ridge leverage scores, a smooth and regularized 
generalization of the leverage scores.

 Chowdhuri, Yang, and Drineas ICML 2018, UAI 2019: a preconditioned 
Richardson solver for under-constrained problems; applications to regularized 
Linear Discriminant Analysis; check our papers for a detailed discussion on prior 
work for such under-constrained problems. 40



Under-constrained regression problems

Consider the under-constrained regression problem: 

41

 If 𝜆𝜆 = 0, then the resulting problem typically has many solutions achieving an 
optimal value of zero (w.l.o.g. let 𝐴𝐴 have full rank). 

 The regularization term places a constraint on the Euclidean norm of the 
solution vector; the resulting regularized problem is called ridge regression. 

 Other ways of regularization are possible, e.g., sparse approximations, LASSO, 
and elastic nets.

𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, 
with 𝑛𝑛 ≪ 𝑑𝑑



Under-constrained regression problems

Consider the under-constrained regression problem: 

42

𝐴𝐴 is 𝑛𝑛 × 𝑑𝑑, 
with 𝑛𝑛 ≪ 𝑑𝑑
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Richardson’s iteration with sketching
(notation alert: 𝑆𝑆 denotes the sketching matrix instead of 𝑋𝑋 )

sketching

Subtract the current 
“solution” from the 
response vector
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Our results
(notation alert: 𝑆𝑆 denotes the sketching matrix instead of 𝑋𝑋 )

Leverage Score 
Sampling

Ridge Leverage 
Score Sampling



Related work: the “square” case

45

The “square” case: solving systems of linear equations
• Almost optimal relative-error approximation algorithms for Laplacian and, more 

generally, Symmetric Diagonally Dominant (SDD) matrices 

• Pioneered by Spielman and Teng, major contributions later by Miller, Koutis, 
Peng, and many others.

• Roughly speaking, the proposed methods are iterative preconditioned solvers 
where the preconditioner is a sparse version of the original graph. 

• This sparse graph is constructed by sampling edges of the original graph with 
probability proportional to their leverage scores, which in the context of 
graphs are called effective resistances.

• Still open: progress beyond Laplacians. 

• Results by Peng Zhang and Rasmus Kyng (FOCS 2017) indicate that such 
progress might be challenging.

• Check Koutis, Miler, and Peng CACM 2012 for a quick intro.

• Connections between randomized approaches and multigrid methods are not well 
understood.



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

RandNLA and Linear Programming



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

• Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

• Goal: Use RandNLA approaches to design efficient preconditioners to approximately solve 
systems of linear equations that arise in IPMs faster.

RandNLA and Linear Programming



Path-Following IPMs

48

A broad classification of Interior Point Methods (IPM) for Linear Programming (LP):

IPM: Path Following Methods

 Long step methods (worse theoretically, fast in practice)

 Short step methods (better in theory, slow in practice)

 Predictor-Corrector (good in theory and practice)

 Can be further divided to feasible and infeasible methods (depending on starting 
point). 

Especially relevant in practice for long step and predictor corrector methods.

IPM: Potential-Reduction algorithms
Not explored in our work.



Standard Form Linear Programs
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Interior Point Methods (IPMs)



Interior Point Methods (IPMs)
(long-step, feasible)



Interior Point Methods (IPMs)
(long-step, feasible/infeasible)

Path-following IPMs, at every iteration, solve a system of linear equations :

normal 
equations



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.

 Remark: For feasible path-following IPMs, an additional design choice is whether 
we want the final solution to be feasible or approximately feasible.
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Standard form of primal LP:

Path-following, long-step IPMs: compute the Newton search direction; update 
the current iterate by following a (long) step towards the search direction. 

A standard approach involves solving the normal equations:

Vector of m unknowns

where

Use a preconditioned method to solve the above system: we analyzed 
preconditioned Conjugate Gradient solvers; preconditioned Richardson’s; and 
preconditioned Steepest Descent, all with randomized preconditioners.

Preconditioning in Interior Point Methods
(joint with H. Avron, A. Chowdhuri, G. Dexter, and P. London, NeurIPS 2020, Arxiv 2021)



Challenges

Immediate problem: even assuming a feasible starting point, approximate solutions 
do not lead to feasible updates.
• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably accurately correct the error 
induced by the approximate solution and guarantee convergence.



Details: the approximate solution violates critical equalities:

• The vector 𝑟𝑟𝑜𝑜 is the primal residual; for feasible long-step IPMs, it is the all-zero vector. 

• Standard analyses of long-step (infeasible/feasible) IPMs critically need the second 
inequality to be an equality. 

• Without the above equalities, in the case of feasible IPMs, we can not terminate with a 
feasible solution; we will end up with an approximately feasible solution.
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induced by the approximate solution and guarantee convergence.

and
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Results
(correction vector idea also in O’Neal and Monteiro 2003)

We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:

Then 𝟎𝟎𝒎𝒎



Results

• The vector 𝑟𝑟𝑜𝑜 is the primal residual; the vector 𝑟𝑟𝑑𝑑 is the dual residual. For feasible long-step 
IPMs, they are both all-zero vectors. 

• Our (sketching-based) “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 works with probability 1 − 𝛿𝛿 and can be 
constructed in time

• If sketching-based, randomized preconditioned solvers are used, then we only need mat-
vecs to construct 𝒗𝒗.

• Using this “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛, analyses of long-step (infeasible/feasible) IPMs work! 

We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:

Then 𝟎𝟎𝒎𝒎



Results: feasible, long-step IPMs

If the constraint matrix 𝑿𝑿 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of the PCG solver.

 Then, the feasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



Results: infeasible, long-step IPMs

If the constraint matrix 𝑿𝑿 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛2 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of the PCG solver.

 Then, the infeasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

Feasible Predictor-Corrector IPMs 
(joint work with G. Dexter, A. Chowdhuri, and H. Avron)



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

 Our work combines the prototypical PC algorithm (e.g., see Wright (1997)) 
with (preconditioned) inexact solvers.

 Major challenge: analyze inexact PC is to guarantee that the duality measure 
after each corrector step of the PC iteration decreases. 

(Standard analysis breaks; the (feasible) long-step proof was easier; we had to come up 
with new inequalities for an approximate version of the duality measure.)

Feasible Predictor-Corrector IPMs 
(joint work with G. Dexter, A. Chowdhuri, and H. Avron)



Structural Conditions for Inexact PC
 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 satisfies (sufficient conditions):

 Then, we prove that the Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, 
as expected.

 The final solution (and all intermediate iterates) are only approximately feasible.



 We modified the PC method using a correction vector 𝒗𝒗 to make iterates exactly
feasible. 

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 and 𝑣𝑣 satisfy (sufficient conditions):

 Then, we prove that this modified Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, as expected.

 The final solution (and all intermediate iterates) are exactly feasible.

Structural Conditions for Inexact PC 
using a correction vector 𝑣𝑣



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

Satisfying the structural conditions
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iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐷𝐷.

Satisfying the structural conditions



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
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 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴
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iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐷𝐷.

 Computing the error-adjustment vector 𝑣𝑣 is fast and can be done (combined with 
randomized preconditioners and PCG) in 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 log𝑛𝑛 time (just mat-vecs).

 Similar results can be derived for preconditioned steepest descent, preconditioned  
Chebyschev, and preconditioned Richardson solvers.

Satisfying the structural conditions



Open problems
 Can we prove similar results for infeasible predictor-corrector IPMs? Recall that  

such methods need 𝑂𝑂 𝑛𝑛 outer iterations (Yang & Namashita 2018).

 Are our structural conditions necessary? Can we derive simpler conditions?

 Could our structural conditions change from one iteration to the next? Could we 
use dynamic preconditioning or reuse preconditioners from one iteration to the 
next (e.g., low-rank updates of the preconditioners)?

 Connections with similar results in the TCS community (starting with Daitch & 
Spielman (2008)).

• Analyzed a short-step (dual) path-following IPM (LP not in standard form). 

• No “correction” vector; an approximately feasible solution was returned.

• Dependency on log 𝜅𝜅 𝑆𝑆 for the outer iteration -- can it be removed?
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