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Randomized algorithms
• By (carefully) sampling rows/columns/elements of a matrix, we can construct new, smaller 
matrices that are close to the original matrix (w.r.t. matrix norms) with high probability. 

• By preprocessing the matrix using “random projection” matrices, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds.

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Applications in BIG DATA

(Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.)
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Applied Math

1. Numerical Linear Algebra  
(matrix computations, perturbation 

theory)

2. Probability theory
(esp. measure concentration for 

sums of random matrices)



RandNLA in the movies! 

Season 1 

Episode 3
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Highlights of 20+ years of RandNLA
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 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).



Highlights of 20+ years of RandNLA
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 RandNLA approaches for regression problems

 RandNLA approaches for matrix decompositions 

E.g, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).

Why are these problems important?

 Both problems are fundamental in Data Science.

 Both problems are at the heart of multiple disciplines: Computer Science 
(Numerical Linear Algebra, Machine Learning), Applied Mathematics, and 
Statistics. 

 Both problems have a very rich history: Regression was introduced in the early 
1800s (Gauss, Legendre, etc.) and PCA was introduced in the early 1900s 
(Pearson, Hotelling, etc.)



Highlights of 20+ years of RandNLA
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 



Highlights of 20+ years of RandNLA
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 

Also useful in quantum computing! 

Chepurko, Clarkson, Horesh, & Woodruff (2020) “Quantum-Inspired Algorithms 
from Randomized Numerical Linear Algebra”



Highlights of 20+ years of RandNLA
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What did RandNLA contribute? 

 Faster (typically randomized) approximation algorithms for the aforementioned 
problems. 

 Novel methods to identify significant rows/columns/elements of matrices involved 
in regression/PCA problems.

E.g., leverage and ridge-leverage scores to identify influential rows/columns and 
even elements of a matrix; as well as volume sampling for rows/columns and its 
connections to leverage scores. 

 Structural results and conditions highlighting fundamental properties of such 
problems.

E.g., sufficient conditions that a sketching matrix should satisfy in order to guarantee, 
say, relative error approximations for under/over-constrained regression problems.



Highlights of 20+ years of RandNLA
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Lessons learned (1)

 Sketching  works! In theory and in practice.

 In problems that involve matrices, using a sketch of the matrix instead of the 
original matrix returns provably accurate results theoretically and works well 
empirically. 

(1) The sketch can be just a few rows/columns/elements of the matrix, selected 
carefully (or not).

(2) The sketch can be simply the product of a matrix with a few random Gaussian 
vectors.

(3) Better sketches (in terms of the accuracy vs. running time tradeoff to construct 
the sketch) have been heavily researched.



Highlights of 20+ years of RandNLA
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Lessons learned (2)

 Using matrix sketches in downstream applications is highly non-trivial.
Understanding the impact of the error incurred by the approximation is both 
challenging and novel.

 Downstream applications include:

(1) All kinds of regression

(2) Low-rank approximations

(3) Clustering algorithms, such as k-means

(4) Support Vector Machines

(5) Interior Point Methods

(6) Other optimization algorithms

etc.



Highlights of 20+ years of RandNLA
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:



Highlights of 20+ years of RandNLA
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Lessons learned (3)

 Sketches can be used as a proxy of the matrix in the original problem (e.g., in 
the streaming or pass-efficient model), BUT:

 A much better use of a sketch is as a preconditioner or to compute a starting 
point for an iterative process.

(1) As a preconditioner in iterative methods for regression problems, 
(pioneered by Blendenpik). 

(2) To compute a “seed” vector in subspace iteration for SVD/PCA, or 
to compute a Block Krylov subspace.

Neither (1) nor (2) are novel in Numerical Analysis, but the introduction of 
randomization to construct the sketch was/is/will be ground-breaking.
(Re (2): Drineas, Ipsen, Kontopoulou, & Magdon-Ismail SIMAX 2018; Drineas & Ipsen SIMAX 2019; building 
on ideas from Musco & Musco NeurIPS 2015.)



Lessons learned (4)

 Pre- or post-multiplying the (tall and thin) matrix 𝐴𝐴 by a “random-projection-
type” matrix 𝑋𝑋 (think random Gaussian matrix) spreads out the information in 
the (rows of the) matrix:

 This process “uniformizes” (in a very precise sense) the (row) leverage scores 
thus making the matrix “incoherent”.

 Selecting a few rows of 𝑋𝑋𝐴𝐴 uniformly at random is a sketch of 𝐴𝐴.

Highlights of 20+ years of RandNLA
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Highlights of 20+ years of RandNLA

17

Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.



Highlights of 20+ years of RandNLA
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Lessons learned (5)

 Beautiful symbiotic relationship between RandNLA and the world of matrix 
concentration inequalities.

Bernstein, Chernoff, Martingale, etc. measure concentration inequalities for sums of 
random matrices.

 Beautiful symbiotic relationship between RandNLA and the world of sketching 
construction.

 RandNLA has provided motivation for the development of matrix concentration 
inequalities and sketching tools, AND

 Matrix concentration inequalities have considerably simplified the analysis of 
RandNLA algorithms and sketching tools have resulted in more efficient 
RandNLA algorithms.



Back to lesson (2) [slide from H. Avron]
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Combining outer & inner iterations
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Goal: Combine iterative sketching-based solvers (think Blendenpik) with iterative 
algorithms, such as:

 Interior Point Methods (IPM) for Linear Programming

 Iterative Re-Weighted Least-Squares (IRWLS) for Generalized Linear 
Models 

 Etc.

Thus, there is an outer iteration (say, from the IPM for LPs) and an inner 
iteration (from the solver).



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

RandNLA and Linear Programming



• Primal-dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Modern approaches: path-following interior point methods iterate using the Newton 
direction. A system of linear equations must be solved at each iteration.

(inexact interior point methods: work by Bellavia, Steihaug, Monteiro, etc.)

• Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

RandNLA and Linear Programming



Path-Following IPMs
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A broad classification of Interior Point Methods (IPM) for Linear Programming (LP):

IPM: Path Following Methods

 Long step methods (worse theoretically, fast in practice)

 Short step methods (better in theory, slow in practice)

 Predictor-Corrector (good in theory and practice)

 Can be further divided to feasible and infeasible methods (depending on starting 
point). 

Especially relevant in practice for long step and predictor corrector methods.

IPM: Potential-Reduction algorithms
Not explored in our work.



Standard Form Linear Programs
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Interior Point Methods (IPMs)



Interior Point Methods (IPMs)
(long-step, feasible)



IPM Algorithm Figure 
(from Lesaja ‘09)



Interior Point Methods (IPMs)

Path-following IPMs, at every iteration, solve a system of linear equations :

normal 
equations



RandNLA & IPMs for LPs

29

Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.



RandNLA & IPMs for LPs
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Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.



RandNLA & IPMs for LPs

31

Research Agenda: Explore how approximate, iterative solvers for the normal 
equations affect the convergence of 

(1) long-step (feasible and infeasible) IPMs, 

(2) feasible predictor-corrector IPMs.

 We seek to investigate standard, practical solvers, such as Preconditioned 
Conjugate Gradients, Preconditioned Steepest Descent, Preconditioned 
Richardson’s iteration, etc.

 The preconditioner is constructed using RandNLA sketching-based approaches.

 Remark: For feasible path-following IPMs, an additional design choice is whether 
we want the final solution to be feasible or approximately feasible.



32

Standard form of primal LP:

Path-following, long-step IPMs: compute the Newton search direction; update 
the current iterate by following a (long) step towards the search direction. 

A standard approach involves solving the normal equations:

Vector of m unknowns

where

Use a preconditioned method to solve the above system: we analyzed 
preconditioned Conjugate Gradient solvers; preconditioned Richardson’s; and 
preconditioned Steepest Descent, all with randomized preconditioners.

Preconditioning in Interior Point Methods
(joint with H. Avron, A. Chowdhuri, G. Dexter, and P. London, NeurIPS 2020 & JMLR 2022)



Challenges

Immediate problem: even assuming a feasible starting point, approximate solutions 
do not lead to feasible updates.
• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably correct the error induced by the 
approximate solution and guarantee convergence.



Details: the approximate solution violates critical equalities:

• The vector 𝑟𝑟𝑝𝑝 is the primal residual; for feasible long-step IPMs, it is the all-zero vector. 

• Standard analyses of long-step (infeasible/feasible) IPMs critically need the second 
inequality to be an equality. 

• Without the above equalities, in the case of feasible IPMs, we can not terminate with a 
feasible solution; we will end up with an approximately feasible solution.

Challenges

Immediate problem: even assuming a feasible starting point, approximate solutions 
do not lead to feasible updates.
• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably correct the error induced by the 
approximate solution and guarantee convergence.

and 𝟎𝟎𝒎𝒎



We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:

Then 𝟎𝟎𝒎𝒎

Results
(correction vector idea also in O’Neal and Monteiro 2003)



Results
(correction vector idea also in O’Neal and Monteiro 2003)

We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:



Results
(correction vector idea also in O’Neal and Monteiro 2003)

We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:

Then, 𝐴𝐴 �Δ𝑥𝑥 = 𝟎𝟎𝒎𝒎.



Results

• The vector 𝑟𝑟𝑝𝑝 is the primal residual; the vector 𝑟𝑟𝑑𝑑 is the dual residual. For feasible long-step 
IPMs, they are both all-zero vectors. 

• Our (sketching-based) “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 works with probability 1 − 𝛿𝛿 and can be 
constructed in time

• If sketching-based, randomized preconditioned solvers are used, then we only need mat-
vecs to construct 𝒗𝒗.

• Using this “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛, analyses of long-step (infeasible/feasible) IPMs work! 

We construct a “correction” vector 𝑣𝑣 ∈ 𝑅𝑅𝑛𝑛 s.t.:

Then 𝟎𝟎𝒎𝒎



Results: feasible, long-step IPMs

If the constraint matrix 𝑨𝑨 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of a randomized PCG solver.

 Then, the feasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



Results: infeasible, long-step IPMs

If the constraint matrix 𝑨𝑨 ∈ 𝑹𝑹𝒎𝒎×𝒏𝒏 is short-and-fat (𝒎𝒎 ≪ 𝒏𝒏), then

 Run 𝑂𝑂 𝑛𝑛2 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜖𝜖

outer iterations of the IPM solver.

 In each outer iteration, the normal equations are solved by 𝑂𝑂(log𝑛𝑛) inner 
iterations of a randomized PCG solver.

 Then, the infeasible, long-step IPM converges.

 Can be generalized to (exact) low-rank matrices A with rank 𝑘𝑘 ≪ min{𝑚𝑚,𝑛𝑛}.

Thus, approximate solutions suffice; ignoring failure probabilities, each inner 
iteration needs time



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

Feasible Predictor-Corrector IPMs 
(joint with H. Avron, A. Chowdhuri, G. Dexter ICML 2022; long paper)



 By oscillating between the following two types of steps at each iteration, 
Predictor-Corrector (PC) IPMs achieve twofold objective of (i) reducing 
duality measure μ and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure μ.
• Corrector steps (σ = 1) to improve centrality.

 PC obtains the best of both worlds: (i) the practical flexibility of long-step 
IPMs and (ii) the convergence rate of short-step IPMs.

 Our work combines the prototypical PC algorithm (e.g., see Wright (1997)) 
with (preconditioned) inexact solvers.

 Major challenge: analyze inexact PC is to guarantee that the duality measure 
after each corrector step of the PC iteration decreases. 

(Standard analysis breaks; the (feasible) long-step proof was easier; we had to come up 
with new inequalities for an approximate version of the duality measure.)

Feasible Predictor-Corrector IPMs 
(joint with H. Avron, A. Chowdhuri, G. Dexter ICML 2022; long paper)



Predictor-corrector Algorithm Overview

Alternates between predictor and corrector 
steps

● Predictor step greatly decreases the duality 
measure, while deviating from the central 
path (centering parameter 𝜎𝜎 = 1).

● Corrector step keeps the duality measure 
constant but returns iterate to near central 
path (centering parameter 𝜎𝜎 = 0).

● Alternates between two neighborhoods of the 
central path 𝑁𝑁2(0.25) and 𝑁𝑁2(0.5).



Solving the linear system

At each iteration of the Predictor-Corrector IPM, we need to solve the 
following linear system:

Note that the last two equations only involve matrix-vector products. 
Therefore, we only focus on solving the first equation efficiently.



Structural Conditions for Inexact PC
 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 satisfies (sufficient conditions):

 Then, we prove that the Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, 
as expected.

 The final solution (and all intermediate iterates) are only approximately feasible.



 We modified the PC method using a correction vector 𝒗𝒗 to make iterates exactly
feasible. 

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 and 𝑣𝑣 satisfy (sufficient conditions):

 Then, we prove that this modified Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, as expected.

 The final solution (and all intermediate iterates) are exactly feasible.

Structural Conditions for Inexact PC 
using a correction vector 𝑣𝑣
(correction vector idea also in O’Neal and Monteiro 2003)



 We modified the PC method using a correction vector 𝒗𝒗 to make iterates exactly
feasible. 

 Let Δ�𝑦𝑦 be an approximate solution to the normal equations 𝐴𝐴𝐷𝐷2𝐴𝐴𝑇𝑇 ⋅ Δ𝑦𝑦 = 𝑝𝑝. 

 If Δ�𝑦𝑦 and 𝑣𝑣 satisfy (sufficient conditions):

 Then, we prove that this modified Inexact PC method converges in 𝑂𝑂 𝑛𝑛 ⋅ log 1
𝜖𝜖

iterations, as expected.

 The final solution (and all intermediate iterates) are exactly feasible.

Structural Conditions for Inexact PC 
using a correction vector 𝑣𝑣
(correction vector idea also in O’Neal and Monteiro 2003)

𝒗𝒗 is user 
controlled!!



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

Satisfying the structural conditions



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐷𝐷.

Satisfying the structural conditions



 We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized 
preconditioners for constraint matrices 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 that are: short-and-fat (𝑚𝑚 ≪ 𝑛𝑛), 
tall-and-thin (𝑚𝑚 ≫ 𝑛𝑛) or have exact low-rank k ≪ min{𝑚𝑚,𝑛𝑛}.

 Satisfying the structural conditions for “standard” Inexact PC: the PCG solver 
needs 𝑂𝑂 log 𝑛𝑛⋅𝜎𝜎1 𝐴𝐴𝐴𝐴

𝜖𝜖
iterations (inner iterations).

 Satisfying the structural conditions for the “modified” Inexact PC: the PCG 
solver needs 𝑂𝑂 log 𝑛𝑛

𝜖𝜖
iterations (inner iterations).

 Notice that using the error-adjustment vector 𝑣𝑣 in the modified Inexact PC 
eliminates the dependency on the largest singular value of the matrix 𝐴𝐴𝐷𝐷.

 Computing the error-adjustment vector 𝑣𝑣 is fast and can be done (combined with 
randomized preconditioners and PCG) in 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 log𝑛𝑛 time (just mat-vecs).

 Similar results can be derived for preconditioned steepest descent, preconditioned  
Chebyschev, and preconditioned Richardson solvers.

Satisfying the structural conditions



Details: the preconditioned equation

Corresponding preconditioned equation is given by

Here 𝑄𝑄 ∈ 𝑅𝑅𝑚𝑚×𝑚𝑚 is the preconditioner.

Clearly, we need a matrix 𝑄𝑄 which is “easily” invertible. 

(Will come back to this later.)



Satisfying the sufficient conditions for Inexact Predictor-
Corrector IPMs (no correction vector)

For an accuracy parameter 𝜁𝜁 ∈ (0,1), it can be shown that the following two conditions on 
the preconditioner 𝑄𝑄−1/2 of the iterative solver can be used to derive the sufficient 
conditions:

(C1) All singular values 𝜎𝜎𝑖𝑖 , 𝑖𝑖 = 1 …𝑚𝑚 of the preconditioned matrix 𝑄𝑄−1/2 𝐴𝐴𝐷𝐷
satisfy:

(C2) As the number of iterations t of the iterative solver increase, the residual 
norm w.r.t the preconditioned system decreases monotonically: 



Constructing our preconditioner 

● For a suitable sketching matrix 𝑊𝑊 ∈ 𝑅𝑅𝑛𝑛×𝑤𝑤 with 𝑤𝑤 ≪ 𝑛𝑛 let 𝑄𝑄 = 𝐴𝐴𝐷𝐷𝑊𝑊𝑊𝑊𝑇𝑇𝐷𝐷𝐴𝐴𝑇𝑇. 
● To invert 𝑄𝑄, it is sufficient to compute the SVD of 𝐴𝐴𝐷𝐷𝑊𝑊, which takes 

𝑂𝑂(𝑚𝑚2𝑤𝑤) time.
● Choice of the sketching matrix 𝑾𝑾:

■ 𝑾𝑾 could be the CountSketch matrix with 𝑤𝑤 = 𝑂𝑂(𝑚𝑚 log𝑚𝑚) and log𝑚𝑚 non-zero entries per 
row.

■ Many, many other choices exist (random Gaussians, fast randomized transforms, etc.)
■ 𝐴𝐴𝐷𝐷𝑊𝑊 can be computed in 𝑂𝑂(log 𝑚𝑚 ⋅ 𝑛𝑛𝑛𝑛𝑛𝑛(𝐴𝐴)) time.

● We can compute 𝑄𝑄−1/2 in time:



Iterative solver: summary

● Approximate solution Δ�y can be 
found by pre-multiplying  the 
solution by the preconditioner.

● Instead of Conjugate Gradients 
(CG), one can use other iterative 
solvers, namely, Chebyshev 
iteration, Steepest descent etc.



Satisfying condition C1: Bounding the condition number of 
the preconditioned matrix

● Here 𝑉𝑉 is the matrix of the right singular vectors of 𝐴𝐴 (thin SVD, containing only the 
singular vectors corresponding to non-zero singular values.

● This is the so-called ℓ2-subspace embedding condition and implies that the condition 
number of 𝑄𝑄−1/2𝐴𝐴𝐷𝐷 remains small.

● Our 𝑊𝑊satisfies the ℓ2-subspace embedding condition with high probability.



Satisfying condition C2: the residual norm w.r.t the 
preconditioned system decreases monotonically

● Residual drops exponentially fast as the number of iterations 𝑡𝑡 increases.

● The above guarantee holds for various iterative solvers including CG, Chebyshev iteration, 
Steepest descent etc.



Satisfying condition C2 using conjugate gradient

● Note that, in general, an energy norm error on the approximate solution derived 
via CG does not ensure that the residual norms decrease monotonically (even if the 
energy norm error decreases monotonically).

● From (C1), we already have a bound on the condition number of 𝑄𝑄−1/2𝐴𝐴𝐷𝐷.
● If we combine the above inequality with the recursion,  we get (C2).
● Therefore, our preconditioner ensures the CG residual decreases monotonically.

Result  (Theorem 8 of Bouyouli et al. (2009)):



Satisfying condition C2 using Chebyshev iteration

● Chebyshev iteration avoids the computation of the communication intensive 
inner products which is typically needed for CG or other non-stationary 
methods.

● Therefore, this solver is convenient in parallel or distributed settings.
● Due to (C1), we already have a bound for 𝑈𝑈. Using this, we establish (C2).

Result  (Theorem 1.6.2 of Gutknecht (2008)):



Other solvers

● Similarly, our preconditioner also satisfies (C2) with respect to other two 
popular iterative solvers, namely Steepest descent and Richardson 
iteration.

● The proofs for both the solvers rely on the fact that due to the efficient 
preconditioning the residuals of the preconditioned system decrease 
monotonically.



Constructing the vector 𝑣𝑣

● Any iterative solver solves the system approximately. Therefore, due to 
the approximation error caused by the solver, the iterates of our 
predictor-corrector IPM lose feasibility right after the first iteration.

● As already discussed, for our inexact corrected predictor-corrector, we 
introduce a correction vector 𝑣𝑣 in order to maintain feasibility at each 
iteration of the IPM.

● 𝑣𝑣 must satisfy the following invariant at each iteration:

Recall that Δ�y is the solution returned by the iterative solver. 

(A solution originally proposed by  Monteiro & O'Neal (2003) is expensive.)



Constructing the vector 𝑣𝑣

● Our solution:

● Inspired by work on sketching for under-constrained regularized 
regression problems.

● We use the same sketching matrix W that we used for constructing our 
preconditioner.

● Due to the “good” preconditioner we used, we can show that the norm of 𝑣𝑣
is nicely bounded and thus the sufficient conditions are satisfied. 

● Other constructions might be possible and perhaps better in theory 
and/or practice.



Time to compute the correction vector

● Recall our solution:

● We have already computed the pseudoinverse of 𝐴𝐴𝐷𝐷𝑊𝑊 when constructing 
our preconditioner.

● Pre-multiplying by 𝑊𝑊 takes 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 ⋅ log𝑚𝑚 time, assuming 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 ≥ 𝑛𝑛.
● 𝑿𝑿,𝑺𝑺 are diagonal matrices.
● Therefore, computing 𝑣𝑣 takes 𝑂𝑂 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 ⋅ log𝑚𝑚 time.



Overall running time (per iteration)

Accounting for the number of iterations of the solver, as well as the failure 
probability 𝜂𝜂 ∈ (0,1), the per-iteration cost of our approaches is given by: 

● Without a correction vector:

● With a correction vector:



Open problems
 Can we prove similar results for infeasible predictor-corrector IPMs? Recall that  

such methods need 𝑂𝑂 𝑛𝑛 outer iterations (Yang & Namashita 2018).

 Are our structural conditions necessary? Can we derive simpler conditions?

 Could our structural conditions change from one iteration to the next? Could we 
use dynamic preconditioning or reuse preconditioners from one iteration to the 
next (e.g., low-rank updates of the preconditioners)?

 Connections with similar results in the TCS community (starting with Daitch & 
Spielman (STOC 2008)).

• Analyzed a short-step (dual) path-following IPM (LP not in standard form). 

• No “correction” vector; an approximately feasible solution was returned.

• Dependency on log 𝜅𝜅 𝑆𝑆 for the outer iteration -- can it be removed?
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