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AbshrccCWe present a case study that employs production 
test data from an RF device to assess the effectiveness of four 
different methods in predicting the padfail labels of fabricated 
devices based on a subset of performances and, thereby, in 
decreasing test cost. The device employed is a zero-IF down- 
converter for cell-phone applications and the four methods 
range from a simple maximum-cover algorithm to an advanced 
ontogenic neural network. The results indicate that a subset of 
non-RF performances suffice to predict correctly the passffail 
label for the vast majority of the devices and that the addition of 
a few select RF performances holds great potential for reducing 
misprediction to industrially acceptable levels. Based on these 
results, we then discuss enhancements and experiments that will 
further corroborate the utility of these methods within the cost 
realities of analog/RF production testing. 

Specification testing, wherein the performances of the de- 
vice are verified against the specification limits, still remains 
the only acceptable industrial practice for analoglRF devices. 
Yet the high cost of RF ATE and the lengthy test times 
involved have resulted in intensified efforts and interest in 
reducing the number and types of performances that are 
examined during production testing. A plausible direction 
towards decreasing cost, akin to test compaction practices 
in digital circuits, is to identify and eliminate information 
redundancy in the set of performances, thereby relying only on 
a subset of them in order to reach a passffail decision. Such 
redundancy is likely to exist since groups of performances 
refer to the same portion of the chip and are subject to similar 
process imperfections. Since it is not possible to express the 
relationship between performances in closed-form functions, 
the idea of identifying information redundancy through the 
specification test data logs has been pitched. Yet it is highly 
unlikely that such redundancy will manifest itself in a coarse 
and easily observable form of superfiuous performances that 
can be summarily discarded. Instead, more advanced statistical 
analysis methods are likely to be required. In essence, these 
methods should entail two components, namely a selection 
algorithm for searching in the power-set of performances for 
a discriminative low-cost subset and a prediction model for 
making passffail decisions based solely on this subset. 

In this paper, we present the results of a case study that 
examines the effectiveness of four such methods using produc- 
tion test data from an RF device. These four methods are listed 
in Table I. In the MAX-COVER formulation the prediction 
model is trivialized, i.e. passffail decision is reached by simply 
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comparing the selected performances to their specifications 
and ignoring the missing ones. This simplistic approach serves 
mainly as a basis for comparison. In contrast, the other 
three methods implement class$ers that learn to map the 
selected set of performances directly to a passlfail decision, 
thereby implicitly predicting conformance of the eliminated 
performances to the specifications. NN and LDA are standard 
machine learning approaches, while ONN can learn complex 
non-linear mappings. Using these four methods, we are inter- 
ested in exploring the following two questions: . How well can the passffail decision of the RF device 

be predicted through models constructed based solely 
on a select set of non-RF performances (i.e. digital, DC 
and low frequency)? The motivation for this question is 
the fact that by only relying on non-RF performances, 
the need for RF ATE is eliminated, thereby drastically 
reducing test cost. 
How does the prediction accuracy improve by selectively 
adding a few RF performances to the best non-RF perfor- 
mance subsets? The motivation for this question is that 
even if the cost of an RF tester cannot be completely 
eliminated, it may still be possible to decrease the time 
that each device spends on it and, by extension, the over- 
all test cost, by reducing the number of RF performances 
that are explicitly tested. 

The main conjecture drawn from this case study is that the 
machine learning approach to the specification test compaction 
problem shows great promise for reducing test cost. Indeed, 
a relatively small number of only non-RF performances are 
shown to suffice for predicting correctly the passffail decision 
of a very large percentage of devices (around 99% in our 
case study). Moreover, the addition of few RF performances, 
ameliorates this small prediction inaccuracy and results in 
very powerful prediction models, which enable test cost re- 
duction while maintaining industrially acceptable test quality 

TABLE I 

LEARNING METHODS EMPLOYED IN THIS CASE STUDY. 

Method 11 Selection algorithm I Prediction model 

MAX-COVER 11 MAX-COVER formulation I Trivial 
NN+QR 11 Q R  decomposiuon I Nearest Ne~ghbors 

Lincar Discriminant 
U M + Q R  11 Q R  decomposition I Analvsis 

Ontogenic Neural 
ONN+GA 11  Gcnctic Algorithm 

Nawork 
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standards. The results of this case study also make evident 
that the more elaborate ONN+GA method outperforms the 
simpler MAX-COVER, NN+QR and LDA+QR methods; this 
eludes to the fact that the correlations between the kept 
and discarded performances are indeed intricate and justifies 
the use of advanced machine learning methods. While we 
acknowledge that the questions explored through this case 
study reflect a simplified model of test economics, they still 
reveal the underlying potential of machine learning-based 
analoglRF specification test compaction methods to reduce 
test cost. Thus, they encourage further experimentation and 
assessment of our methods using larger data sets and more 
complex cost models that reflect more accurately the realities 
of a production test environment 

In the linear error-mechanism model algorithm (LEMMA) 
[I], it is assumed that a model y = Ax is available [2], 
where y is the m x 1 measurement error vector, x is a 
n x 1 circuit parameter error vector, A is a m x n sensitivity 
matrix, and nz corresponds to the number of measurements 
required for an exhaustive test of performances. The method 
aims to predict the complete vector y by carrying out only 
a subset 0. The cardinality p of 0 0, 2 n) is a compromise 
between the permitted measurement cost and the maximum 
tolerable prediction error. The selection process is performed 
through Q R  factorization [3] and minimizes the prediction 
variance. In 141, an iterative selection approach is followed, 
which considers subsets rather than individual measurements. 
Next, the complete measurement vector is predicted by y = 

d  ( A T A ) ~ '  d T ~ ,  where d  is the p x n reduced matrix A. 
A leisurely look at this approach and some refinements are 
provided in [5]. The LEMMA method has the following limi- 
tations: (a) it relies on a linear model to predict the behavior of 
a non-linear system, (b) the linear model is developed through 
simulation and (c) it requires error mechanism models that are 
difficult to specify for complex circuits. 

In [6], a fault-driven test selection approach is proposed. The 
set of performances to be explicitly tested is cumulatively built 
by adding to the current set the performance p, for which the 
yield of the set {P - P - p i }  is maximized, where P and 
P denote the current and the complete set of performances, 
respectively. The algorithm terminates when the desired fault 
coverage is reached. In [7], in addition to fault coverage, 
the selection is also driven by the degree to which faults 
are exposed. The disadvantage of these approaches is their 
dependence on fault models, which are incomplete and, thus 
may result in inadvertent yield loss and test escapes. 

In 181, a data set is generated by measuring explicitly all 
performances for a representative set of devices. Here, it is not 
required to adopt a fault model since it is assumed that this set 
of devices reflects accurately the statistical mechanisms of the 
manufacturing process. Once a suitable subset of performances 
that need to be explicitly tested is identified, regression models 
are constructed for the untested performances using the data 
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set and test limits are assigned to the tested performances 
such that they guarantee the compliance of the untested 
performances to the specifications with the desired confidence 
levels. The authors, however, do not show how to select the 
subset of independent performances, and, moreover, do not 
show how to explore efficiently the trade-off between the 
number of independent performances and yield loss. 

In [9], the compaction problem is viewed as a binary 
passlfail classification problem. Similarly to 181, the method 
begins with generating a data set by measuring all perfor- 
mances for a set of devices. Then, starting with the complete 
set of performances, P = {pl :m, ...: ph,), one performance 
p, is selected at each step for possible removal. The training 
data corresponding to the set { P  - p,}, where P  denotes the 
current set of performances, is used to train a support vector 
machine (SVM) for predicting passlfail only by processing the 
values of performances in { P - p, ) .  If the prediction error is 
smaller than a user define threshold, E,, then p, is considered 
redundant and is permanently excluded. This selection proce- 
dure is greedy since the result depends on the order in which 
performances are examined. In practice it is advantageous 
to consider subsets of performances since combinations of 
performances can provide significant information which is not 
available in any of the individual performances separately. The 
method is assessed on an operational amplifier and a MEMS 
accelerometer using simulation data. 

Our case study vehicle is a zero-IF down-converter for cell- 
phone applications that is designed in RFCMOS technology, 
fabricated at IBM, and currently running in production. The 
input is an RF signal and the output is an IQ baseband signal. 
In addition, the device has an integrated VCO, a baseband 
filter and a DC nulling DAC. The LNA output is connected to 
the mixer input using an external SAW filter. This device is 
characterized by 136 performances, 65 of which are non-RF 
and 71 are RF. The data set contains the measured perfor- 
mances for 944 devices. These performance values, combined 
with the specification limits promised in the data sheet, are 
used to assign to each device a status bit denoting whether it 
is functional or faulty. Overall, the data set contains 73 faulty 
and 871 functional devices. 

Preprocessing: Let A be the 944 x (65 + 71) matrix con- 
taining the given data. The performances have typical values 
which differ significantly. In order to avert skewing of the 
distance between two devices in the performance space, each 
column of A is individually normalized. More specifically, 
each column of A is divided by the maximal entry, in absolute 
value, in this column. This procedure scales all data in the 
range [- 1 , 11. Then, the columns of A are mean-centered by 
subtracting from every entry in each column the mean of the 
column elements. Formally, let .4ij denote the (i, j)-th entry 
in A, and let A(j)  denote the j-th column of -4. Scaling the 
data amounts to getting a new matrix A' whose entries are 
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Fig. 1. Spectrum coverage plot for non-RF performances. Fig. 2. "Bcst" 3D plot of non-RF pcrformanccs. 

and mean-centering the data is equivalent to getting a matrix 
A" whose entries are + 

A + 
+$ + 

+ 4- 
Visualization: To gain some intuitive understanding of the 

data, we first run Singular Value Decomposition (SVD), wh~ch 
'5 

returns the optimal ad hoc dimensions of the data set. Fig. 
1 shows the spectrum coverage plot for the non-RF data. 

+ 

It can be observed that retaming about half of the principal + 

dimensions suffices to capture all the informahon content in 
/z 

0 U - G  4 15 the non-RF data and over 80% of the information content in -0.25 

the RF data. This redundancy is key in accurately predicting 21~l prrnceal mr)tntue 05 
l e l  principnl mmHna(e 

passlfail using only a subset of non-RF performances. 
Fig. 3. Zoom m thc corc of functional dcvlccs in thc 3D plot of Fig. 2 

Fig. 2 plots the 944 devices on the coordinate system 
of the top three principal components of the non-RF data 
matrix. Blue '+' signs denote functional devices, whereas red one that maximizes the number of faulty circuits detected by 
'x' signs denote faulty devices. Even in this rather primitive examining only those performances. More formally, 
visualization, it is noticed that some faulty devices are easily 
detected since their patterns are very distant from the core 
of functional patterns. However, in Fig. 3, which zooms in on 
this core, we observe that there exist 10 faulty devices that are 
interwoven with the functional ones. Separating such devices 
in three dimensions seems difficult and one can only hope that 
this will be achievable by adding dimensions. We will monitor 
closely the effectiveness of the four methods on these devices. 

A. MAX-COVER 

A straight-forward algorithm for selecting a subset of per- 
formances and determining whether a device is functional or 
faulty by examining only this subset can be devised based on 
a simple maxirnum-cover formulation. Let T be an m x n 
matrix whose rows represent m devices and whose columns 
represent n performances. Let the (i, j)-th entry of T be set 
to 1 if and only if the j-th performance of the i-th device 
violates its specification; otherwise it is set to zero. We seek, 
among all possible subsets of c columns of T (performances), 

max llf llo 
s.t. T x  = f: 

The xi's for i = 1 . .  . n denote whether the i-th performance 
is selected or not. The i-th entry of f is non-zero if and only 
if the i-th circuit is faulty and detectable by the subset of the 
c selected performances. Notice that 11 f l l o  = x:=l (fi)' is 
exactly equal to the number of non-zeros in the vector f (by 
convention, 0' = 0). Solving the above problem is NP-hard. 
A well-known approximation algorithm involves a straight- 
forward Integer Linear Programming (ILP) formulation of the 
problem and subsequently approximates the solution to the 
NP-hard ILP formulation by relaxing it to a Linear Program 
(LP), solving the LP, and using randomized rounding to map 
the resulting real values to integers. In [lo], details of this 
procedure are given in the context of digital test compaction. 
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B. NN+QR performances. This particular neural network is capable of 

~ ~ ~ ~ ~ ~ - ~ ~ i ~ h b ~ ~  (NN) algorithms [111 perhaps allocating arbitrarily non-linear hypersurfaces, unlike SVMs 

the simplest non-linear classifiers. ~i~~~ a data point xu that require the a priori definition of a kernel. The allocated 
whose label is unknown, NN examines its K labelled nearest hypersurface reflects all performances and constitutes a simple 
neighbors (for a small odd value of K) and labels xu by test criterion: the status bit of a new device is defined based on 

applying a majority vote on their labels. picking the value the position of the footprint of its reduced-size performance 

of K is data-dependent. Typically, increasing K returns better pattern with respect the learned 

results, until a point of diminishing returns is reached. Another In to the previous the stages 

relevant for NN is the distance metric. our performances and constructing the prediction model are opti- 
experiments, we examine values of K between 1 and 11 and mized together. More specifically, we use a genetic algorithm 
we use Euclidean distance to determine data point proximity. (GA) to search in the space of performance subsets, assessing 

In order to select subsets of performances, we use a variant the fitness each subset by training the ONN. The use of 
of QR decomposition of matrices. ~ ~ ~ ~ l l  our discussion on GAS for selecting features from a high-dimensional set is 
the SVD of the non-RF performances: selecting a (small) originally proposed in [16]. GAS start with a base population 
number of eigen-performances (e.g., three) results to over of chromosomes (bit strings, in our case, of length equal to 
86% covenge of the performance spectrum. l-his procedure is the number of performances, where the k-th bit is Set to 1 if 
equivalent to projecting all performances on a small number the k-th performance is present in the subset and 0 othemise), 
of eigen-performances, capture most of the (linear) and use mutation and crossover operators to generate new off- 
structure in the performance space. These eigen-performances spring populations. At the end of each generation, the fitness 
are linear of all performances, thus do of chromosomes is evaluated and only the fittest chromosomes 
not represent any real, measurable quanhty. An important "late Lo produce off-springs. GAS evolve with the juxlaposiLion 
question is whether we can select a small number of actual of bit templates, quickly optimizing the t?Kget fitness function. 

perfommces that behave in a similar manner, e.g., projecting In this work, we use a multi-objective GA, called NSGA-11 

d l  performances in the space spanned by the selected ones [171, to jointly optimize in one simulation run the s re diction 
would result to capturing almost the same (linear) structure error of the ONN and the dimensionality of the selected subset 

in the data that was captured by the eigen-performances. of performances. For this purpose, NSGA-11 has a diversity 
 hi^ research question has been answered in preserving mechanism that ensures a good spread of Pareto- 

[12], [13], and randomized algorithms were developed to 
perform subset selection. Here, we use a heuristic variant of V. RESULTS 
the algorithnl proposed in [13], orig~nally developed in [14], 
which despite not having provable approximation guarantees We split the data set equally in a training and a test set. 

of the form presented in ~121, [131, it is deterministic and was AS is common in evaluating machine learning techniques, we 

empirically shown to perform well. assume that the status bits are known only for the devices in 
the training set; status bits for the devices in the test set are 

C. LDA+QR assumed unknown and are only used to evaluate the prediction 
Linear Discriminant Analysis (LDA) [I]] is a more effective error of the learned models. Each experiment is repeated for 

classification scheme, especially if the data originates from 200 splits (devices are sampled uniformly at random) to reduce 
an (approximately) Gaussian distribution. LDA seeks a low- the variance of the reported results. The standard deviation of 
dimensional subspace, such that when the training data is the prediction error is an order of magnitude smaller than its 
projected on it, the ratio of the within-class scatter over the mean, so we can conclude that the mean of the prediction error 
between-class scatter is minimized. Once the data is projected is a statistically significant metric. As a comparison basis, the 
on the lower-dimensional space, the NN algorithm described in test set comprises 472 devices of which, on avenge, 37 are 
the previous method is applied to determine the label of new faulty; thus, a trivial classification algorithm always returning 
data points. LDA does not have any free parameters as the "functional" would achieve a prediction error of roughly 8%. 
dimensionality of the subspace determined by LDA is always 

A. Selecting only non-RF Pe~omzances equal to the number of classes minus one; hence, in our case 
where we have two classes (functional and faulty), it is equal Fig. 4 shows the experimental results for MAX-COVER. We 
to one, i.e. the subspace collapses to a line. Performance subset run two experiments: in the first we use the complete Set of 
selection is performed using the same QR decomposition available devices, while in the second we use the trainingltest 
algorithm as in the NN classifier. set split formulation, we solve the maximum cover problem 

using only the training set, and we evaluate the prediction 
D. ONN+GA error on the test set. In the first experiment, a set of 6 non- 

As a fourth technique, we use an ontogenic neural network RF performance~ suffices to cover 55 faulty devices, which 
(ONN) [15] to learn the position of the hypersurface sepa- is the maximum number that can be detected using only 
rating the populations of functional and faulty devices in the non-RF performances (i.e. the curve remains flat after adding 
training set, when these are projected on a subspace of the more non-RF performances). This corresponds to an error (test 
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MAXCOVER formulabon 

Fig. 4. Prediction crror using MAX-COVER. 

escapes) slightly less than 2%. Almost identical results are 
obtained in the second experiment; the error converges very 
quickly to just below 2% for a set of 10 non-RF performances. 

Fig. 5 shows experimental results of NN+QR and 
LDA+QR. We experimented with values of K (number of 
neighbors used by NN) between 1 and 11 and the results 
show that both classifiers achieve their best performances for 
K = 3,5,  or 7. LDA+QR returns slightly better results than 
NN, both of which are comparable to those of MAX-COVER. 
We also observed that all errors are test escapes and we 
examined how many correctly predicted devices belong to the 
set of the 10 faulty devices of Fig. 3. The average of this 
number over the 200 repetitions is zero, indicating that these 
"difficult" devices are always mispredicted. 

Fig. 6 shows experimental results using ONN+GA. The 
'0' points correspond to the optimal identified performance 
subsets for each cardinality. The dashed blue line runs along 
the Pareto-optimal points. A set of 16 performances achieves 
the lowest prediction error of 0.92%. This corresponds to 
4 out of 472 devices being misclassified. Thus, ONN+GA 
misclassifies only the "difficult" faulty devices of Fig. 3, in 
contrast to NN+QR and LDA+QR, which misclassify, on 
average, 5 more devices whose performance pattern falls close 
to the core of functional devices. 

B. Adding RF Perfomnces 

As a final experiment, we examine the prediction improve- 
ment that can be obtained by adding a few RF performances 
to the best subset of non-RF performances identified above. 
For example, for the ONN+GA, we start with the 16th- 
dimensional non-RF performance subset that results in the 
lowest prediction error of 0.92%. As seen in Fig. 7, by 
adding 3 RF performances to this set, the prediction error is 
reduced to 0.56%, and by adding 12 RF performances the 
error drops further to 0.38%. These rates correspond to only 1 
misclassified device, which shows that there is great promise in 
using a subset of non-RF performances along with a very small 
number of RF performances to achieve accurate prediction. In 

Number of m R F  w-s 
L D A v u i h S N N ~ ~ u s  SN+iro(iw.eheme 

z 4F\ -I 

Fig. 5. Prediction crror using NN+QR and LDA+QR. 

Fig. 6. Prediction error using ONN+GA. 

the other three methods, the prediction error also is reduced but 
remains above I% (plots are omitted due to space limitations). 

VI. FUTURE WORK 

While the results of this case study show great promise, 
the following enhancements targeting test cost reduction and 
test quality improvement would greatly support and expedite 
technology transfer to an industrial setting: 

1) Regarding test cost, we aimed to minimize the cardi- 
nality of the set of selected performances, implicitly 
assuming that all performances incur the same cost. In 
practice, however, the cost varies for each performance 
due to differences in the corresponding test configura- 
tion and length. Furthermore, eliminating a performance 
does not necessarily save the cost of the corresponding 
configuration, since the latter may be shared across 
a group of performances. Thus, weighted versions of 
the compaction methods described herein should be 

25th IEEE VLSl Test Symmposium (VTS'07) 
0-7695-2812-0/07 $20.00 O 2007 IEEE 

I 

C ~ M P U T E R  
SOCIETY 

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 19:51 from IEEE Xplore.  Restrictions apply.



Ontogerte Neural Net& vnth 16 nar-RF perf narkable nu&ro(RF psrt 

. %.. . 

2 4 8 8 10 12 1 1  $6 39 20 22 
Number of RF p3rbnnaness 

Fig. 7. Prediction emr using ONN+GA when adding RF performances to 
the best identified non-RF performance subset. 

explored, aiming to optimize a more complex function 
that better reflects the actual test cost. 

2) Regarding test quality, the statistical nature of this spec- 
ification test compaction approach entails a prediction 
error which, albeit small, may nevertheless be pro- 
hibitive for industrial standards, especially if it amounts 
to mostly test escapes. Thus, the use of some form of 
guard-banding [9], [18] should be explored, in order to 
deal with the devices that are prone to rnisprediction. 

3) While prediction models are currently constructed using 
performances as inputs, greater prediction accuracy and 
elimination of more performances may be achievable 
by using, instead, the actual measurements obtained for 
computing the performances. In this case, further fine- 
grained cost reductions may be possible by eliminating 
individual measurements. 

We also point out that the data set in this case study is fairly 
small and cannot provide a definitive answer as to whether the 
misprediction error really reflects a percentage (0.38%) due to 
underlying trends in the nominal and faulty distributions or 
whether it is an artifact of the data set and essentially reflects 
a constant (1 device) due to a peculiar outlier. Therefore, a 
continuation of this case study using many more devices and 
incorporating the above enhancements is currently under way. 

VII. CONCLUSIONS 

Analysis of production test data from an RF device reveals 
that performances comprise significant redundancy, which can 
be exploited to build prediction models for reaching passlfail 
decisions based on a reduced-size set of performances. To this 
end, advanced machine learning and performance selection 
techniques, such as ONN+GA, achieve excellent results and 
demonstrate great potential for reducing test cost through spec- 
ification test compaction. Further enhancements and evaluation 
of these methods on larger data sets is expected to confirm 
our findings and shape more research at the intersection of 
machine learning and analoglRF circuit testing. 
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