
Cost-Driven Selection of Parity Trees

Sobeeh Almukhaizim∗

Electrical Engineering Dept.
Yale University

New Haven, CT 06520, USA

Petros Drineas
Computer Science Dept.

Rensselaer Polytechnic Institute
Troy, NY 12180, USA

Yiorgos Makris
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Abstract

We discuss the problem of parity tree selection for loss-
less compaction of the output responses of a circuit. Earlier
methods assume off-chip storage of the correct compacted
responses and therefore minimize the number of necessary
parity trees. In contrast, our method targets on-chip gener-
ation of the correct compacted responses and therefore min-
imizes the actual implementation cost of the corresponding
parity prediction functions. We present a systematic search
approach that exploits the correlation between the hardware
cost of a function and itsentropy, in order to select parity
trees that minimize the incurred cost, while achieving loss-
less compaction. Experimental results demonstrate that our
method achieves significant hardware reduction over meth-
ods that minimize the number of parity trees.

1. Introduction

Parity trees are used extensively in test-related applica-
tions. For example, test response compaction methods [1, 2]
employ parity trees in order to reduce the amount of test data.
Since the correct compacted responses are explicitly stored
off-chip, the optimization objective of such methods is the
minimization of the number of parity trees and, by exten-
sion, the corresponding storage requirement. Similarly, Con-
current Error Detection (CED) methods [3, 4, 5] exploit the
expected parity of one or several groups of output bits. In
this case, however, the correct compacted responses are gen-
erated on-chip. Therefore, the optimization objective of such
methods should be the minimization of the incurred hardware
cost for predicting the correct compacted responses. Interest-
ingly, selecting the minimum number of parity trees does not
always result in the minimal parity predictor implementation.
While the former problem has been studied extensively, little
is known for the latter.

In this paper, we present a systematic method for selecting
parity trees based on the cost of the corresponding parity pre-
diction circuit. Based on the well-known correlation between
the entropy of a function and its cost [6], our method uses an
entropic metric to identify inexpensive solutions. We present
an algorithm that searches for feasible solutions through In-
teger Linear Programming and Randomized Rounding, esti-
mates their entropy through Monte Carlo sampling and ap-
proximates the optimal entropic potential function through a
Metropolis random walk.

∗The author is supported through a scholarship from Kuwait University.

2. Motivation

Consider the gate-level implementation of a 2-bit Multi-
plier shown in Figure (1)(a) and assume that we want to per-
form CED using the method of Figure (1)(b). In this method,
the outputs of the multiplier are compacted throughk Parity
Trees, and compared to the correct parity bits that are gen-
erated through an additionalParity Predictor [5]. In order
to constructk parity trees that achieve lossless compaction,
an Error Detectability Tablesuch as the one shown in Fig-
ure (1)(c) is required. Columns on this table represent output
bits and rows representErroneous Cases (ECs). The (i, j)
element of the table is “1” if and only if Erroneous Casei
can be detected at output bitj.

Given a target error model, the set of Erroneous Cases
of interest may be obtained by fault simulation of the errors
in this model. For the purpose of this example, we fault-
simulated all single stuck-at faults in the circuit for all pos-
sible input combinations and we obtained the 9 ECs shown
in the table of Figure (1)(c). Essentially, this means that any
error that behaves as a single stuck-at fault will result in a
discrepancy between the good machine and the bad machine
response in one of these 9 sets of output bits.

The problem now reduces to choosingp parity trees to
compact the outputs, while preserving the detectability of all
ECs. In this example, there are 15 possible parity trees, one
for each element in the powerset of the output bits. An EC is
detected by a parity tree if and only if it is detectable at anodd
number of output bits included in the parity tree. Previous
work [1, 2] has focused on selecting theminimum numberof
parity trees such that all ECs are detected. The problem has
been shown to be NP-complete. An easy way to prove this
is to expand the Error Detectability table such that a column
is included for every possible parity tree, as shown in Fig-
ure (1)(d). In this case selection of the minimum number of
parity trees becomes a MIN-COVER[7] problem. Explicitly
building this expanded table, however, is both infeasible due
to the exponential explosion and unnecessary, since all infor-
mation regarding the detection of ECs by parity trees can be
inferred from the basic table. Therefore, existing heuristics
solve the problem without constructing the expanded table.
For example, an Integer Program formulation of the problem
was recently presented and a solution based on Linear Pro-
gram Relaxation and Randomized Rounding was proposed
[5]. On the multiplier, these methods yield the minimum
number of parity trees that detect all ECs,k = 2. One such
solution isP1 = O1 ⊕O0 andP2 = O3 ⊕O2 ⊕O1.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

A

1

A

1

A

1

A

0

A

0

B

1

B

1

B

1

B

0

B

0

O

2

O

0

O

1

O

3
 2-bit

Multiplier

Parity

Predictor

Parity

Trees

Comparator

CED

Output

k

k

O(3:0)

(a)
 (b)
 (c)

(d)

 O
3

 O
2

 O
1

 O
0

XOR

O
3
, O
2

XOR

O
3
, O
1

XOR

O
3
, O
0

XOR

O
2
, O
1

XOR

O
2
, O
0

XOR

O
1
, O
0

XOR

O
3
, O
2

, O
1

XOR

O
3
, O
2

, O
0

XOR

O
3
, O
1

, O
0

XOR

O
2
, O
1

, O
0

XOR

O
3
, O
2
,

O
1
, O
0

EC
1

 0

 0

 1

 0

 0

 1

 0

 1

 0

 1

 1

 0

 1

 1

 1

EC
2

 0

 1

 0

 0

 1

 0

 0

 1

 1

 0

 1

 1

 0

 1

 1

EC
3

 1

 0

 1

 0

 1

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

EC
4

 0

 0

 0

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

EC
5

 1

 1

 1

 1

 0

 0

 0

 0

 0

 0

 1

 1

 1

 1

 0

EC
6

 0

 0

 1

 1

 0

 1

 1

 1

 1

 0

 1

 1

 0

 0

 0

EC
7

 0

 1

 1

 0

 1

 1

 0

 0

 1

 1

 0

 1

 1

 0

 0

EC
8

 1

 0

 0

 0

 1

 1

 1

 0

 0

 0

 1

 1

 1

 0

 1

EC
9

 1

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 0

 1

 O
3

 O
2

 O
1

 O
0

EC
1

 0

 0

 1

 0

EC
2

 0

 1

 0

 0

EC
3

 1

 0

 1

 0

EC
4

 0

 0

 0

 1

EC
5

 1

 1

 1

 1

EC
6

 0

 0

 1

 1

EC
7

 0

 1

 1

 0

EC
8

 1

 0

 0

 0

EC
9

 1

 1

 0

 1

A(1:0)
 B(1:0)
2-Bit Multiplier
 Error Detectability Table

Figure 1. Motivation Example: Parity-Based CED on a 2-Bit Multiplier

This optimization objective is appropriate for methods
that store the correct compacted responses off-chip [1, 2],
since it minimizes the necessary storage. However, it is
not the most appropriate optimization objective for methods
thatgeneratethe correct compacted responses using on-chip
hardware [5]. In the latter, parity tree selection should rather
be driven by theactual hardware costrequired to predict the
parity tree outputs. When we synthesized the parity predictor
for the two parity functionsP1 andP2 chosen above, its cost
was 22 gates. Surprisingly, these two functions are even more
expensive than the circuit itself, which generates four func-
tions and costs 11 gates. Yet other solutions exist that yield a
cheaper parity prediction circuit. For example, another set of
two parity trees,P3 = O3 ⊕ O1 andP4 = O3 ⊕ O2 ⊕ O0,
will also detect all ECs and the corresponding parity predic-
tor only costs 10 gates. Moreover, there exists a solution
with k = 3 parity trees,P3 = O3 ⊕ O1, P5 = O0, and
P6 = O3 ⊕ O2, which also detects all ECs and has a parity
predictor that only costs 7 gates.

As demonstrated through this toy example, output func-
tions in practical circuits are typically structured and simple,
resulting in inexpensive implementations. Yet when XOR-
ed together they may result in complicated random functions
that are expensive to implement. Therefore, minimizing the
number of parity trees is not the best optimization objective
for methods that generate the compacted responses through
on-chip hardware. Rather, methodologies that select parity
trees for lossless compaction based on the actual cost of the
parity predictor are required.

3. Cost-Driven Parity Tree Selection

In this section, we provide a brief review of related re-
search efforts and we introduce the proposed methodology.

3.1. Related Work

Previous research efforts have also pointed out the need to
reduce the implementation cost of the parity prediction func-
tions, especially within the area of CED. In [8], the authors
propose replacing the parity function with a simpler function,
the self-dual complement, that requires lower area overhead.
More recently, a technique is proposed to disable CED for
a pre-selected subset of the inputs of the circuit [9]. Mask-
ing the CED output introduces don’t care conditions in the
parity functions that allows further logic optimization of the
parity predictor. Both of these techniques are lossy, i.e. they
reduce the cost of the parity predictor at the expense of sacri-
ficing fault coverage. Furthermore, they are appliedafter the
parity trees are selected. In contrast, the method proposed
herein considers the implementation cost of the correspond-
ing parity predictorduring the selection of parity trees. At
the same time, it guarantees lossless compaction, which pre-
serves fault coverage.

The only previous work that we are aware of, wherein par-
ity tree selection is driven by the actual hardware cost of the
implementation is [4]. In this work, the authors resynthesize
the circuit to include CED based on multiple parity groups.
They devise a cost function which reflects the total cost of the

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

modified original circuit and the corresponding parity predic-
tion circuit. Subsequently, they guide the formation of parity
groups towards minimization of this cost function through a
greedy heuristic. The cost function is exact, since it is ob-
tained through actual synthesis of potential solutions. Ex-
plicit synthesis of candidate solutions, however, is compu-
tationally expensive, thus limiting the search space that can
be explored in practice. In contrast, the method proposed
herein employs a statistical, yet highly accurate, cost func-
tion that can be computed rapidly, allowing exploration of a
much larger search space. Furthermore, it is a post-synthesis
method which does not modify the original circuit.

3.2. Proposed Method Overview

We emphasize the high complexity of the problem at
hand, which arises from the two-fold objective of achieving
lossless compaction while minimizing the hardware of the
predictor. Although lossless compaction can be expressed
as a linear optimization problem [5], hardware minimiza-
tion leads to non-linearities that are much harder to handle.
Therefore, in order to achieve our goal, we devise a combina-
tion of several advanced algorithmic methods. These include
randomized roundingto approximately solve Integer Linear
Programs,Monte Carlo sampling techniquesto estimate the
entropy of a function and, by extension, its cost, as well as
the Markov Chain Monte Carlo methodand theMetropolis
random walkto approximately optimize an entropic poten-
tial function.

Before detailing the proposed algorithm in the following
section, we briefly sketch our approach. Given a circuit and
its Error Detectability Table, we start by findinga specific
feasible solution, namely, a set ofk parity trees for com-
pacting the circuit outputs such that the detectability of all
Erroneous Cases is preserved. Notice that the output of the
k parity trees is ak-bit 0-1 string. Then, weestimate the
hardware cost of the predictorassociated with this specific
set of parity trees byapproximating its entropy. Again, no-
tice that the predictor is a function whose domain is the set
of all possible inputs to the circuit and the output is ak-bit
string. We then examine aneighboring feasible solution,
namely, a solution that preserves detection of all Erroneous
Cases and is “close” to the previous solution, in some well-
defined “proximity” metric. Subsequently, we estimate the
cost of the new solution, once again, by estimating its en-
tropy. We thenaccept or rejecta move to this neighbor with
a probability that depends on the estimated cost of the new
solution. More specifically, “better” solutions are almost al-
ways accepted, while “worse” solutions are accepted with a
probability that becomes exponentially smaller, as their qual-
ity decreases. This is essentially the classical Metropolis
algorithm, which is the basis of Simulated Annealing tech-
niques that have been very successful in tackling non-linear
optimization problems in various contexts.

4. Proposed Algorithm

The proposed algorithm, which we describe at a high level
in this section, is based on the following principles:

• Low entropy corresponds to non-random functions, and
thus to cheaper hardware implementations.

• Estimating the entropy is feasible via uniform sampling.

• A biasedrandom walk in the set of feasible solutions,
using entropy as the potential function and a bias to-
wards entropy minimization, converges to optimal fea-
sible solutions.

The building blocks of our approach are discussed below:
We first formulate the problem of lossless compaction using
a fixed number of parity trees as anInteger Linear Program
(ILP) and we approximate it efficiently in polynomial time
via randomized rounding, as explained in section 4.1. We
then demonstrate how the hardware complexity of the par-
ity predictor may be efficiently estimated byapproximating
its entropy, as detailed in section 4.2. Subsequently, in sec-
tion 4.3 we discuss the use of aMetropolis random walkin
order to select a parity predictor with minimum entropy. In
section 4.4 we present the overall algorithm, which repeats
the above procedure for all possible values ofk from 1 up
to n and selects the best solution. Finally, open issues and
opportunities for further improvement of our algorithm are
discussed in section 4.5.

4.1. Lossless Compaction via ILP

We demonstrate how to model parity tree selection for
lossless compaction as a set of integral inequalities; we
then userandomized roundingto identify feasible solutions-
namely solutions satisfying the constraints. This formulation
of the problem is described in detail in [5]. For the purpose
of completeness, we briefly summarize its key points.

Assume that the circuit hasm input bits{I1 . . . Im} and
n output bits{O1 . . . On}. We are given a set off erroneous
casesF = {EC1 . . . ECf} and anf × n matrixV such that
Vij = 1 if and only if erroneous caseECi is detected by the
j-th output bitOj ; otherwise,Vij = 0. This matrix is the
Error Detectability Table that was described in the example
of Figure (1)(c). Achieving lossless compaction viak parity
trees is equivalent to the following statement:

Statement 1 Given a positive integerk, find k n-
dimensional binary vectorsβ(1), . . . , β(k) such that

k∑

i=1

(
V · β(i) mod2

)
≥ ~1n

or report the lack thereof (~1n denotes ann-dimensional vec-
tor of ones).

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

Notice that thek vectorsβ(i) aren-dimensional 0-1 vec-
tors; each of these vectors corresponds to a parity tree that
includes the outputs of the circuit that are set to 1 in the vec-
tor. For example, ifβ(1) is [1 0 0 1 0 1], then the corre-
sponding parity tree isO6 ⊕ O3 ⊕ O1. Our goal is to find a
feasible solution; namely, values for allβ(i) such that state-
ment 1 is satisfied. The above statement is equivalent to an
Integer Linear Program, since we can remove the modulo
operator at the expense of extra variables [5]. Identifying a
feasible point for an integer program is NP-complete; we em-
ploy a technique calledrandomized rounding[10] to solve it.
The idea of randomized rounding is simple: solve thelin-
ear programming relaxationof the integer program (which
may be easily done in polynomial time using, for example,
the Simplex algorithm) and round the resultingreal values
probabilistically, thus forcing them to integers. We note that
the linear programming relaxation amounts to removing the
integrality constraints and replacing them by continuous in-
tervals. As proved in [10], if a feasible point for the integer
program of statement 1 exists, randomized rounding identi-
fies it with very high probability.

4.2. Hardware Estimation via Entropy

Recall from the example of Figure (1) that we are inter-
ested in minimizing the cost of the hardware implementation
of the parity predictor. Thus, in order to avoid expensive
feasible solutions during selection of parity trees for lossless
compaction, we need to be able toestimatethe implementa-
tion cost of the corresponding parity predictor functions ef-
ficiently. We use theentropyof the parity predictor function
as our estimator. Cheng and Agrawal [6] pioneered the use
of entropy for estimating the complexity of a multi-output
function. Their observations have been followed by a body
of work [11, 12, 13], establishing the correlation between the
entropy of a function and the cost of its hardware implemen-
tation. Therefore, we refer the reader to these references and
we do not elaborate further on the quality of entropy as an
estimator for the implementation cost of a function.

We now define the entropy of the parity predictor func-
tion. Recall that the domain of this function is{0, 1}m (all
possible inputs combinations) and its range is{0, 1}k, where
k is the number of parity trees. Lety denote the output of
the predictor, which is ak-bit string of zeros and ones. Then,
given a set of parity treesB = β(1) . . . β(k), the entropy of
the corresponding parity predictor function is

H(B) = −
∑

x∈{0,1}k

Pr(y = x) · ln Pr(y = x)

Essentially, thePr(y = x) is the number of times that
the output of the parity predictor (y) is equal to the specific
string x over all possible2m inputs of the parity predictor,
divided by2m. The entropy always ranges between 0 and

log(k); smaller values imply that the function is less ran-
dom and, hence, its implementation cost is expected to be
smaller, while values of entropy close tolog(k) imply that
the function is quite random and, hence, its implementation
cost is expected to be high. Notice that exactly computing
the entropy takes time exponential inm; fortunately, we can
approximate the entropy bysamplingover all possible2m in-
puts andestimatingthe probabilitiesPr(y = x) in the above
formula.

4.3. Cost-Driven Selection via Random Walk

LetΩ denote the set of all possible feasible solutions to the
ILP of statement 1; each feasible solution is a set of vectors
B = β(1) . . . β(k). Let each element ofΩ be a vertex of
a graphG; we will perform abiased random walkon G.
However, first we need to define theedgesof G.

An edgein a graph usually denotes some “similarity” be-
tween the corresponding vertices. In our case, two vertices
(feasible solutions) will be “similar” if at mostt elements
of their corresponding set of vectors (parity trees) are differ-
ent, wheret < k · n is a small, constant value. Intuitively,
this notion of similarity means that the two feasible solutions
corresponding to the vertices ofG have almost the same par-
ity trees, with at mostt changes. Edges onG exist between
all “similar” vertices, under the above “similarity” definition.
Notice that the number of neighbors of a vertex is exactly
equal toMAX =

∑t
j=1

(
kn
j

)
. We now construct a Markov

chain in the form of a biased random walk inG as follows:

1. Find a feasible solution, by solving the ILP of statement
1 via randomized rounding; this solution corresponds to
a vertexv of G.

2. Find the set of all the neighborsΓ(v) of v; this amounts
to constructing allMAX neighbors and testing whether
they correspond to feasible solutions. Letd(v) = |Γ(v)|
denote thedegreeof v.

3. With probability 1/2 stay atv.

4. Otherwise, with probability1 − d(v)/MAX stay atv;
otherwise, select one of thed(v) neighbors ofv with
probability1/MAX.

5. Let w denote the selected neighbor; move tow with
probability

min{1, 2H(B)−H(B̃)},
whereB is the set of parity trees corresponding to the
feasible solution of vertexv and B̃ is the set of parity
trees corresponding to the feasible solution of vertexw.
Here, we do not exactly compute the entropy; instead
we approximate it by uniform sampling.

6. Setv = w, go to step 2 and repeat forM = 103 steps.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

The above random walk essentially corresponds to the
Metropolis random walk [14]. The constant 2 in step 5 is
rather arbitrary; it could be replaced by any constantα ≥ 1.
Notice that ifH(B) is larger thanH(B̃) (the solution atw is
better than the solution atv), then the move happens with
probability 1; otherwise, the probability of moving drops
rapidly. Usually, values ofα close to one correspond to ran-
dom walks that explore a large fraction ofΩ (thus, they are
slow); on the other hand large values ofα (e.g.α →∞) cor-
respond to myopic, greedy approaches that are fast, but could
get stuck at local optima. As a result, picking a value ofα
usually emerges from fine tuning the experimental setting.

Finally, the choice oft is certainly a critical issue in our
approach. Small values oft (e.g. t = 1) result in graphs
with a small number of edges, and, usually, with many inde-
pendent connected components. Obviously, a random walk
is unable to explore such a space efficiently. In our experi-
ments with benchmark circuits, we observed that small per-
turbations of feasible solutions resulted to new feasible so-
lutions; thus, we experimented with small values oft which
were chosen adaptively. However, larger, more complex cir-
cuits will probably require larger values oft, which will di-
rectly impact the complexity of our algorithm.

4.4. Overall Algorithm

Based on the above methods, the overall algorithm is now
simple to describe: for every possible value ofk (wherek is
the number of parity trees and ranges from 1 up ton), run
the Metropolis random walk on the graphG generated by the
set of feasible solutions to the ILP of statement 1. Obtain the
best solution for eachk, and divide its entropy bylog(k) for
normalization purposes. At the end, pick the solution with
the lowest normalized entropy. Notice that larger values of
k might return smaller hardware costs, thus necessitating the
execution of the random walk for all possible values ofk.

4.5. Open Issues

Our methodology takes an important first step towards
tackling the question of simultaneouslyachieving lossless
compactionand minimizing the hardware overheadof the
parity predictor function in non-trivial ways. Yet, several im-
portant and difficult to answer questions remain open, pre-
senting opportunities for further research. More specifically:

• Is there a better estimator than entropy for the hardware
cost of the parity prediction functions?

• What would be a good choice fort in practical circuits?

• What would be a good choice for the parameters of the
Metropolis random walk (α andM)?

• Would it be advantageous to use a time inhomogeneous
random walk by varyingα over time? (This is the sim-
ulated annealing approach described in [15]).

5. Experimental Results

In this section, we compare our cost-driven parity tree se-
lection method to the method that selects the minimum num-
ber of parity trees. We implemented both methods and ap-
plied them on several MCNC benchmarks. The circuits are
synthesized using theruggedscript of SIS [16] and mapped
to a standard library containing only 2-input gates. In order to
obtain a set of realistic Erroneous Cases of interest for the ex-
periments, we construct the Error Detectability Table based
on the single stuck-at fault model. This is performed through
internally developed software that employs fault simulation
[17] of all single stuck-at faults for all input combinations
and identifies all error-free and erroneous responses. Once
the Error Detectability Table is constructed, we perform loss-
less compaction via ILP to compute the minimum number of
parity trees required,kmin, as described in [5]. Subsequently,
the proposed method is applied and the set ofk parity trees
that detect all the Erroneous Cases and have the minimum
normalized entropy is selected fork ranging betweenkmin

andn, as described in section 4.4.
The results are summarized in Table 1. Under the first ma-

jor heading, we provide details about the circuits that were
used: name, number of primary inputs, number of primary
outputs, gate count and the hardware cost reported by SIS af-
ter synthesis. Under the second major heading, we provide
the results of selecting the minimum number of parity trees
for lossless compaction,kmin, the gate count for the corre-
sponding parity predictor, the hardware cost reported by SIS
after synthesis, and the entropy of the selected solution. Un-
der the third major heading, the same information is reported
for the proposed cost-driven selection method.

The rightmost column indicates the hardware reduction
that cost-driven selection of parity trees achieves over selec-
tion of the minimum number of parity trees. The average
reduction over all benchmark circuits is 21.85%. On several
benchmarks, the proposed method yields a set ofk = kmin

parity trees. Yet the selected solution is picked based on the
lowest entropy and therefore results in a less expensive hard-
ware implementation. For example, this is the case for cir-
cuitstav, s27, dk16, s1, pma ands386. In some cases, such
ass27 ands1, the cost of the solutions is reduced by more
than 50%.

Additionally, the proposed method selects a set ofk parity
trees, withk > kmin, if the entropy of thek-bit parity pre-
dictor is lower than the entropy ofkmin-bit parity predictor.
For example, on circuitdk512 the proposed method yields
a solution withk = 6 parity trees and a normalized entropy
of 0.818, while the method targeting the minimum number of
parity trees yields a solution withkmin = 4 parity trees and a
normalized entropy of0.973. As may be observed, selecting
the solution with the higher number of parity trees, yet with
a lower entropy, results in a less expensive parity prediction
circuit. Similar observations hold for circuits1a.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

Original Circuit Minimum # of Parity Trees Cost-Driven Selection
Circuit Name PI PO Gates Cost # of Trees Gates Cost Entropy # of Trees Gates Cost Entropy Savings

(kmin) (k)
cse 11 11 196 256128 5 131 171680 0.641 5 97 127136 0.598 25.95%

donfile 7 6 97 128064 4 57 74704 0.716 4 56 75632 0.692 -1.24%
dk16 7 8 240 316448 6 323 428736 0.953 6 294 389760 0.883 9.09%
dk512 5 7 74 96048 4 79 104400 0.973 6 61 80272 0.818 23.11%
keyb 12 7 228 298352 5 82 107648 0.512 5 67 86304 0.439 19.83%
pma 13 13 347 453792 6 186 243136 0.247 6 138 180496 0.210 25.76%
sse 11 11 131 178640 5 80 104864 0.771 5 59 77488 0.753 26.12%
styr 14 15 413 547056 8 217 287216 0.463 8 162 213904 0.394 25.53%
s1 13 11 167 217616 5 121 156832 0.680 5 61 77024 0.512 50.89%
s1a 13 11 153 199056 6 96 124816 0.533 7 61 77024 0.314 38.23%
s27 7 4 20 25056 3 15 18096 0.952 3 7 8352 0.813 53.85%
s386 13 13 123 158688 4 83 105328 0.420 4 72 92336 0.400 12.35%
tav 6 6 28 34336 4 31 39440 0.723 4 26 33408 0.685 15.22%
tbk 11 8 146 190240 5 160 207872 0.683 5 151 198592 0.647 4.46%
tma 12 11 219 285824 5 130 169824 0.258 7 131 172144 0.224 -1.37%

Table 1. Experimental Results on MCNC Benchmark Circuits

Occasionally, the proposed method will fail to provide
hardware reduction over the solution with the minimum num-
ber of trees. This is for example the case for circuittma,
where the entropy of the proposed solution withk = 7 par-
ity trees is slightly less than the entropy of the solution with
kmin = 5 parity trees, yet the implementation of the latter is
slightly less expensive. This may be attributed to the heuris-
tics employed for reducing the search space of the problem.
Additionally, the entropy is a statistical and not an exact met-
ric. Significant entropy differences provide a good indication
of the relative circuit complexity. However, the comparison
resolution may degrade as the absolute value of the difference
between the entropy of two circuits becomes smaller.

6. Conclusion

Parity trees that achieve lossless compaction while incur-
ring inexpensive parity prediction functions are necessary for
test methods that generate the correct compacted responses
on-chip. Towards this end, we presented a method that uti-
lizes the entropy of the prediction circuit as a potential func-
tion for guiding our search algorithm and selecting appropri-
ate parity trees. We also discussed the limitations of the pro-
posed methodology and pointed towards directions for fur-
ther improvement. Experimental data on several benchmark
circuits indicated that the proposed methodology yields sig-
nificant cost reduction for the parity predictor of the selected
parity trees, as compared to methods that select the minimum
number of parity trees.

References

[1] K. Chakrabarty and J. P. Hayes, “Test response compaction
using multiplexed parity trees,”IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems, vol.
15, no. 11, pp. 1399–1408, 1996.

[2] O. Sinanoglu and A. Orailoglu, “Space and time compaction
schemes for embedded cores,” inInternational Test Confer-
ence, 2001, pp. 521–529.

[3] M. Goessel and S. Graf,Error Detection Circuits, McGraw-
Hill, 1993.

[4] N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,”IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 7, pp. 783–789, 1997.

[5] S. Almukhaizim, P. Drineas, and Y. Makris, “On concurrent
error detection with bounded latency in FSMs,” inDesign
Automation and Test in Europe Conference, 2004.

[6] K-T. Cheng and V. D. Agrawal, “An entropy measure for
the complexity of multi-output boolean functions,” inDesign
Automation Conference, 1990, pp. 302–305.

[7] M. R. Garey and D. S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman,
1979.

[8] Vl. V. Saposhnikov et al., “Self-dual parity checking - a new
method for on-line testing,” inVLSI Test Symposium, 1996,
pp. 162–168.

[9] K. Mohanram et al., “Synthesis of low-cost parity-based par-
tially self-checking circuits,” inInternational On-Line Test
Symposium, 2003, pp. 35–40.

[10] R. Motwani and P. Raghavan,Randomized Algorithms, Cam-
bridge University Press, 3rd edition, 1995.

[11] S. Rajgopal, “Spatial Entropy - A Unified Attribute to Model
Dynamic Communication in VLSI Circuits,” Tech. Rep.
UIUC TR92-041, 1, 1992.

[12] N. Shanbhag, “A mathematical basis for power-reduction in
digital VLSI systems,” IEEE Transactions on Circuits and
Systems, vol. 44, pp. 935–951, 1997.

[13] M. Nemani and F. N. Najm, “Delay Estimation VLSI Circuits
from a High-Level View,” inDesign Automation Conference,
1998, pp. 591–594.

[14] N. Metropolis et al., “Equation of state calculation by fast
computing machines,”Journal of Chemical Physics, 1953.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by Simulated Annealing,” Science, Number 4598, 13 May
1983, pp. 671–680.

[16] E. M. Sentovich et al., “SIS: a system for sequential circuit
synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS UC
Berkeley CA 94720, 1992.

[17] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuits,”IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

	Abstract
	1. Introduction
	2. Motivation
	3. Cost-Driven Parity Tree Selection
	3.1. Related Work
	3.2. Proposed Method Overview

	4. Proposed Algorithm
	4.1. Lossless Compaction via ILP
	4.2. Hardware Estimation via Entropy
	4.3. CostDriven
Selection via Random Walk
	4.4. Overall Algorithm
	4.5. Open Issues

	5. Experimental Results
	6. Conclusion
	References
	Return to Table of Contents

