Cost-Driven Selection of Parity Trees

Sobeeh Almukhaizim Petros Drineas Yiorgos Makris
Electrical Engineering Dept. Computer Science Dept. Electrical Engineering Dept.
Yale University Rensselaer Polytechnic Institute Yale University
New Haven, CT 06520, USA Troy, NY 12180, USA New Haven, CT 06520, USA
Abstract 2. Motivation

We discuss the problem of parity tree selection for loss- Consider the gate-level implementation of a 2-bit Multi-
less compaction of the output responses of a circuit. Earlier plier shown in Figure (1)(a) and assume that we want to per-
methods assume off-chip storage of the correct compactedorm CED using the method of Figure (1)(b). In this method,
responses and therefore minimize the number of necessanhe outputs of the multiplier are compacted througRarity
parity trees. In contrast, our method targets on-chip gener- Trees and compared to the correct parity bits that are gen-
ation of the correct compacted responses and therefore minerated through an addition®arity Predictor[5]. In order
imizes the actual implementation cost of the correspondingto constructk parity trees that achieve lossless compaction,
parity prediction functions. We present a systematic searchan Error Detectability Tablesuch as the one shown in Fig-
approach that exploits the correlation between the hardware yre (1)(c) is required. Columns on this table represent output

cost of a function and itentropy, in order to select parity bits and rows represefirroneous Cases (ECs)The (i,7)
trees that minimize the incurred cost, while achieving loss- element of the table is “1” if and only if Erroneous Caise

less compaction. Experimental results demonstrate that ourcan be detected at output bit
method achieves significant hardware reduction over meth- Gjyen a target error model, the set of Erroneous Cases

ods that minimize the number of parity trees. of interest may be obtained by fault simulation of the errors
] in this model. For the purpose of this example, we fault-
1. Introduction simulated all single stuck-at faults in the circuit for all pos-

sible input combinations and we obtained the 9 ECs shown

Parity trees are used extensively in test-related applicay, yhe taple of Figure (1)(c). Essentially, this means that any

tions. For example, test response compaction methods [1, 2o, that behaves as a single stuck-at fault will result in a
employ parity trees in order to reduce the amount of test datadiscrepancy between the good machine and the bad machine

Since the correct compacted responses are explicitly Store%sponse in one of these 9 sets of output bits.
off-chip, the optimization objective of such methods is the

minimization of the number of parity trees and, by exten-

sion, the corresponding storage requirement. Similarly, Con-
current Error Detection (CED) methods [3, 4, 5] exploit the

expected parity of one or several groups of output bits. In
this case, however, the correct compacted responses are ge
erated on-chip. Therefore, the optimization objective of such
methods should be the minimization of the incurred hardware

. arity trees such that all ECs are detected. The problem has
cost for predicting the correct compacted responses. Interestg

inal lecting the mini ber of parity t q i een shown to be NP-complete. An easy way to prove this
INgly, Selecting the minimum humboer ot parity trees does Not;e 4 expand the Error Detectability table such that a column
always result in the minimal parity predictor implementation.

))) ~.is included for every possible parity tree, as shown in Fig-
Whlle the former problem has been studied extensively, little ure (1)(d). In this case selection of the minimum number of
is known for the latter.

) . . ity t b MIN-COVER][7 blem. Explicitl
In this paper, we present a systematic method for seIectmggarl y [rees becomes a [7] problem. Explicitly

ity 1 based on th tofth di it uilding this expanded table, however, is both infeasible due
parity rees based on the cost ot the corresponding parity préy, 4, exponential explosion and unnecessary, since all infor-
diction circuit. Based on the well-known correlation between

. . mation regarding the detection of ECs by parity trees can be
the entropy of a function and its cost [6], our method uses an ! garaing I y party

{roDi tric to identify i . luti Wi tinferred from the basic table. Therefore, existing heuristics
en r?plc?‘e nt(r:1 ?' en n;]y mcl?xp?nsw; SO ul |(3ns. tr? preieln solve the problem without constructing the expanded table.
an aigoritnm that searcnes for feasible Solutions through In-r, example, an Integer Program formulation of the problem
teger Linear Programming and Randomized Rounding, esti-

tes thei i th h Monte Carl i 4 was recently presented and a solution based on Linear Pro-
mates their entropy througn Monte £.ario sampling an ap'gram Relaxation and Randomized Rounding was proposed
proximates the optimal entropic potential function through a

Met i d Ik [5]. On the multiplier, these methods yield the minimum
etropolis random walk. number of parity trees that detect all EGs= 2. One such
*The author is supported through a scholarship from Kuwait University. solution isP; = O1 @& Og and P, = O3 & Oy & O;.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004) COMPUTER
1093-0167/04 $20.00 © 2004 IEEE SOCIETY

The problem now reduces to choosipgarity trees to
compact the outputs, while preserving the detectability of all
ECs. In this example, there are 15 possible parity trees, one
for each element in the powerset of the output bits. An EC is
detected by a parity tree if and only if it is detectable abdd
Humber of output bits included in the parity tree. Previous
work [1, 2] has focused on selecting timtnimum numbeof

2-Bit Multiplier A(1:0) B(1:0) Error Detectability Table

A|
)] 0; | 0,] O, | Oy
E\‘ Oa 2-.b|t. Parlty EC, 0 0 1 0
o O1 Multiplier Predictor EC, 0 1 0 0
B, 0@ ¥ EC; [1 [o[1[0
B, 0 (8:0) EC,J] o]l o of 1
A, 0 Parity K EC; | 1 1 1 1
le) Trees ECg 0 0 1 1
A, 2 . ¢ EC,| 0 | 1 1 0
B y ECy | 1 0o [oTo
BO | Comparator EC, 1 1 0 1
1
Ao
CED
Output
(a) (b) ()
XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR
[0 o, o, 0O, 0,0, | 0,,0, | 0,,0,| 0,,0 | 0,,0, | 0,, 0 0;,0; | 05,0, | 05,0, | 0,,0, | Os,0,
3 V2 33 M1 35 VYo 2 23 13 VYo ’0‘ ’Q] ’Q, ’00 01,00
EC, 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
EC, 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
EC, 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
EC, 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
ECs 1 1 1 1 0 0 0 0 0 0 1 1 1 0
E 0 0 1 1 0 1 1 1 1 0 1 0 0 0
E 0 1 1 0 1 1 0 0 1 1 0 1 0 0
E 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
E 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
(d

Figure 1. Motivation Example: Parity-Based CED on a 2-Bit Multiplier

This optimization objective is appropriate for methods 3. Cost-Driven Parity Tree Selection
that store the correct compacted responses off-chip [1, 2],
since it minimizes the necessary storage. However, it is In this section, we provide a brief review of related re-
not the most appropriate optimization objective for methods search efforts and we introduce the proposed methodology.
thatgeneratethe correct compacted responses using on-chip
hardware [5]. In the latter, parity tree selection should rather3.1. Related Work
be driven by theactual hardware costequired to predict the
parity tree outputs. When we synthesized the parity predictor Previous research efforts have also pointed out the need to
for the two parity functiong?, and P, chosen above, its cost reduce the implementation cost of the parity prediction func-
was 22 gates. Surprisingly, these two functions are even morgions, especially within the area of CED. In [8], the authors
expensive than the circuit itself, which generates four func- propose replacing the parity function with a simpler function,
tions and costs 11 gates. Yet other solutions exist that yield ahe self-dual complement, that requires lower area overhead.
cheaper parity prediction circuit. For example, another set ofMore recently, a technique is proposed to disable CED for
two parity trees,P; = O3 @ O; and Py = O3 @ O2 @ Oy, a pre-selected subset of the inputs of the circuit [9]. Mask-
will also detect all ECs and the corresponding parity predic- ing the CED output introduces don't care conditions in the
tor only costs 10 gates. Moreover, there exists a solutionparity functions that allows further logic optimization of the
with k& = 3 parity trees,P; = O3 ® O, Ps = Op, and parity predictor. Both of these techniques are lossy, i.e. they
Ps = O3 @ O3, which also detects all ECs and has a parity reduce the cost of the parity predictor at the expense of sacri-
predictor that only costs 7 gates. ficing fault coverage. Furthermore, they are apphédrthe

As demonstrated through this toy example, output func- parity trees are selected. In contrast, the method proposed
tions in practical circuits are typically structured and simple, herein considers the implementation cost of the correspond-
resulting in inexpensive implementations. Yet when XOR- ing parity predictorduring the selection of parity trees. At
ed together they may result in complicated random functionsthe same time, it guarantees lossless compaction, which pre-
that are expensive to implement. Therefore, minimizing the serves fault coverage.
number of parity trees is not the best optimization objective The only previous work that we are aware of, wherein par-
for methods that generate the compacted responses througty tree selection is driven by the actual hardware cost of the
on-chip hardware. Rather, methodologies that select parityimplementation is [4]. In this work, the authors resynthesize
trees for lossless compaction based on the actual cost of théhe circuit to include CED based on multiple parity groups.

parity predictor are required. They devise a cost function which reflects the total cost of the
Proceedings of the 22nd IEEE VLS| Test Symposium (VTS 2004) COMPUTER

1093-0167/04 $20.00 © 2004 1IEEE SOCIETY

modified original circuit and the corresponding parity predic- 4. Proposed Algorithm

tion circuit. Subsequently, they guide the formation of parity

groups towards minimization of this cost function through a ~ The proposed algorithm, which we describe at a high level
greedy heuristic. The cost function is exact, since it is ob- in this section, is based on the following principles:

tained through actual synthesis of potential solutions. Ex-
plicit synthesis of candidate solutions, however, is compu-
tationally expensive, thus limiting the search space that can
be explored in practice. In contrast, the method proposed e Estimating the entropy is feasible via uniform sampling.
herein employs a statistical, yet highly accurate, cost func-))))

tion that can be computed rapidly, allowing exploration of a ~ ® A biasedrandom walk in the set of feasible solutions,

much larger search space. Furthermore, it is a post-synthesis ~ USing entropy as the potential function and a bias to-

e Low entropy corresponds to non-random functions, and
thus to cheaper hardware implementations.

sible solutions.
3.2. Proposed Method Overview The building blocks of our approach are discussed below:

We first formulate the problem of lossless compaction using

We emphasize the high complexity of the problem at a fixed number of parity trees as arteger Linear Program
hand, which arises from the two-fold objective of achieving (ILP) and we approximate it efficiently in polynomial time
lossless compaction while minimizing the hardware of the via randomized roundingas explained in section 4.1. We
predictor. Although lossless compaction can be expressedhen demonstrate how the hardware complexity of the par-
as a linear optimization problem [5], hardware minimiza- ity predictor may be efficiently estimated lapproximating
tion leads to non-linearities that are much harder to handle.its entropy as detailed in section 4.2. Subsequently, in sec-
Therefore, in order to achieve our goal, we devise a combination 4.3 we discuss the use ofMetropolis random walkn
tion of several advanced algorithmic methods. These includeorder to select a parity predictor with minimum entropy. In
randomized roundingo approximately solve Integer Linear section 4.4 we present the overall algorithm, which repeats
ProgramsMonte Carlo sampling technique® estimate the the above procedure for all possible valuestdfom 1 up
entropy of a function and, by extension, its cost, as well asto n and selects the best solution. Finally, open issues and
the Markov Chain Monte Carlo methoand theMetropolis opportunities for further improvement of our algorithm are
random walkto approximately optimize an entropic poten- discussed in section 4.5.
tial function.

Before detailing the proposed algorithm in the following 4.1. Lossless Compaction via ILP
section, we briefly sketch our approach. Given a circuit and
its Error Detectability Table, we start by findiregspecific We demonstrate how to model parity tree selection for
feasible solution namely, a set ok parity trees for com- lossless compaction as a set of integral inequalities; we
pacting the circuit outputs such that the detectability of all then useandomized roundingp identify feasible solutions
Erroneous Cases is preserved. Notice that the output of theamely solutions satisfying the constraints. This formulation
k parity trees is &-bit 0-1 string. Then, westimate the of the problem is described in detail in [5]. For the purpose
hardware cost of the predictor associated with this specific of completeness, we briefly summarize its key points.
set of parity trees bgpproximating its entropy. Again, no- Assume that the circuit has input bits{l; ... I,,} and
tice that the predictor is a function whose domain is the setn output bits{O; ... O,,}. We are given a set gf erroneous
of all possible inputs to the circuit and the output is-bit casesF = {EC, ... EC} and anf x n matrix V' such that
string. We then examine meighboring feasible solution Vi; = lifand only if erroneous casBC; is detected by the
namely, a solution that preserves detection of all Erroneous;-th output bitO;; otherwise,V;; = 0. This matrix is the
Cases and is “close” to the previous solution, in some well- Error Detectability Table that was described in the example
defined “proximity” metric. Subsequently, we estimate the of Figure (1)(c). Achieving lossless compaction ¥iparity
cost of the new solution, once again, by estimating its en-trees is equivalent to the following statement:
tropy. We theraccept or rejecta move to this neighbor with _ N _)
a probability that depends on the estimated cost of the newStatement 1 Given a positive integerk, find £ n-

solution. More specifically, “better” solutions are almost al- dimensional binary vectors"), ..., 3 such that
ways accepted, while “worse” solutions are accepted with a &

probability that becpm_es expon_entially smaller, as theirqua_l- Z (V) mon) > 1,

ity decreases. This is essentially the classical Metropolis =1

algorithm, which is the basis of Simulated Annealing tech- . _ _
niques that have been very successful in tackling non-linearor report the lack thereofl(, denotes am-dimensional vec-
optimization problems in various contexts. tor of ones).

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004) COMPUTER
1093-0167/04 $20.00 © 2004 IEEE SOCIETY

Notice that thek vectorss(®) aren-dimensional 0-1 vec- log(k); smaller values imply that the function is less ran-
tors; each of these vectors corresponds to a parity tree thatlom and, hence, its implementation cost is expected to be
includes the outputs of the circuit that are set to 1 in the vec-smaller, while values of entropy close tay (%) imply that
tor. For example, if3(") is [1 0 0 1 0 1], then the corre- the function is quite random and, hence, its implementation
sponding parity tree i€ © O3 ® O;. Our goal isto find a cost is expected to be high. Notice that exactly computing
feasible solutionnamely, values for alb® such that state- the entropy takes time exponentialie fortunately, we can
ment 1 is satisfied. The above statement is equivalent to arapproximate the entropy lsamplingover all possibl™ in-
Integer Linear Program, since we can remove the moduloputs andestimatingthe probabilitiesPr(y =) in the above
operator at the expense of extra variables [5]. Identifying aformula.
feasible point for an integer program is NP-complete; we em-
ploy a technique callechndomized roundin@L0] to solve it.
The idea of randomized rounding is simple: solve lihe

ear programming relaxatiorf the integer program (which Let(2 denote the set of all possible feasible solutions to the
may be easily done in polynomial time using, for example, |_p of statement 1; each feasible solution is a set of vectors
the Simplex algorithm) and round the resultiregl values B = M ...8%) Let each element of2 be a vertex of
probabilistically, thus forcing them to integers. We note that 4 graphG; we will perform abiased random wallon G.

the linear programming relaxation amounts to removing the However, first we need to define thdgesf G.

integrality constraints and replacing them by continuous in- ap edgein a graph usually denotes some “similarity” be-
tervals. As proved in [10], if a feasible point for the integer tween the corresponding vertices. In our case, two vertices
program of statement 1 exists, randomized rounding identi-(feasible solutions) will be “similar” if at most elements
fies it with very high probability. of their corresponding set of vectors (parity trees) are differ-
ent, wheret < k - n is a small, constant value. Intuitively,
this notion of similarity means that the two feasible solutions
corresponding to the vertices 6fhave almost the same par-

4.3. Cost-Driven Selection via Random Walk

4.2. Hardware Estimation via Entropy

Recall from the example of Figure (1) that we are inter- jty trees, with at most changes. Edges dfi exist between
ested in minimizing the cost of the hardware implementation g|| “similar” vertices, under the above “similarity” definition.
of the parity predictor. Thus, in order to avoid expensive Notice that the number of neighbors of a vertex is exactly
feasible solutions during selection of parity trees for losslessequal tor/AX = Y) (k_n)_ We now construct a Markov

J= J

compaction, we need to be abledstimatethe implementa-
tion cost of the corresponding parity predictor functions ef-
ficiently. We use thentropyof the parity predictor function
as our estimator. Cheng and Agrawal [6] pioneered the use
of entropyfor estimating the complexity of a multi-output
function. Their observations have been followed by a body
of work [11, 12, 13], establishing the correlation between the
entropy of a function and the cost of its hardware implemen-
tation. Therefore, we refer the reader to these references and
we do not elaborate further on the quality of entropy as an
estimator for the implementation cost of a function.

We now define the entropy of the parity predictor func-
tion. Recall that the domain of this function {8, 1}™ (all
possible inputs combinations) and its rangédsl }*, where
k is the number of parity trees. Lgtdenote the output of
the predictor, which is &-bit string of zeros and ones. Then,
given a set of parity tree8 = (1) ... 3%), the entropy of
the corresponding parity predictor function is

HB)=- Y Priy=x)-InPr(y=uz)

z€{0,1}*

Essentially, thePr(y = z) is the number of times that
the output of the parity predictoy) is equal to the specific
string « over all possible™ inputs of the parity predictor,
divided by2™. The entropy always ranges between 0 and

chain in the form of a biased random walk@ghas follows:

1. Find a feasible solution, by solving the ILP of statement
1 via randomized rounding; this solution corresponds to
a vertexv of G.

2. Find the set of all the neighboFqv) of v; this amounts
to constructing all/ AX neighbors and testing whether
they correspond to feasible solutions. Hét) = |T'(v)]
denote thelegreeof v.

. With probability 1/2 stay at.

. Otherwise, with probability — d(v)/M AX stay atv;
otherwise, select one of th§v) neighbors ofv with
probability 1 /M AX.

. Let w denote the selected neighbor; moveutowith
probability
min{1,24B)-H®B)y,
whereB is the set of parity trees corresponding to the
feasible solution of vertex and B is the set of parity
trees corresponding to the feasible solution of vettex

Here, we do not exactly compute the entropy; instead
we approximate it by uniform sampling.

6. Setv = w, go to step 2 and repeat fof = 103 steps.

YF]',F.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 IEEE

COMPUTER
SOCIETY

The above random walk essentially corresponds to the5. Experimental Results
Metropolis random walk [14]. The constant 2 in step 5 is
rather arbitrary; it could be replaced by any constant 1. In this section, we compare our cost-driven parity tree se-
Notice that if 7 (B) is larger thanid (B) (the solution atv is lection method to the method that selects the minimum num-
better than the solution af), then the move happens with per of parity trees. We implemented both methods and ap-
probability 1; otherwise, the probability of moving drops plied them on several MCNC benchmarks. The circuits are
rapidly. Usually, values ofr close to one correspond to ran- synthesized using theiggedscript of SIS [16] and mapped
dom walks that explore a large fraction Qf(thus, they are to a standard library containing only 2-input gates. In order to
slow); on the other hand large valuescofe.g.a — o) cor- obtain a set of realistic Erroneous Cases of interest for the ex-
respond to myopic, greedy approaches that are fast, but coul@eriments, we construct the Error Detectability Table based
get stuck at local optima. As a result, picking a valuexof on the single stuck-at fault model. This is performed through
usually emerges from fine tuning the experimental setting. internally developed software that employs fault simulation

Finally, the choice of is certainly a critical issue in our [17] of all single stuck-at faults for all input combinations
approach. Small values of(e.g. ¢ = 1) result in graphs and identifies all error-free and erroneous responses. Once
with a small number of edges, and, usually, with many inde- the Error Detectability Table is constructed, we perform loss-
pendent connected components. Obviously, a random walkess compaction via ILP to compute the minimum number of
is unable to explore such a space efficiently. In our experi-parity trees required;,;,, as described in [5]. Subsequently,
ments with benchmark circuits, we observed that small per-the proposed method is applied and the set phrity trees
turbations of feasible solutions resulted to new feasible so-that detect all the Erroneous Cases and have the minimum
lutions; thus, we experimented with small valueg @fhich normalized entropy is selected fbrranging betweet,,;,
were chosen adaptively. However, larger, more complex cir-andn, as described in section 4.4.
cuits will probably require larger values afwhich will di- The results are summarized in Table 1. Under the first ma-
rectly impact the complexity of our algorithm. jor heading, we provide details about the circuits that were

. used: name, number of primary inputs, number of primary

4.4. Overall Algorithm outputs, gate count and the hardware cost reported by SIS af-

Based on the above methods, the overall algorithm is nowter synthesis. Under the second major heading, we provide
simple to describe: for every possible valuekdfvherek is the results of selecting the minimum number of parity trees
the number of parity trees and ranges from 1 uporun for lossless compactiort;.;,,, the gate count for the corre-
the Metropolis random walk on the graghgenerated by the ~ sponding parity predictor, the hardware cost reported by SIS
set of feasible solutions to the ILP of statement 1. Obtain theafter synthesis, and the entropy of the selected solution. Un-
best solution for each, and divide its entropy biog(k) for der the third major heading, the same information is reported
normalization purposes. At the end, pick the solution with for the proposed cost-driven selection method.
the lowest normalized entropy. Notice that larger values of The rightmost column indicates the hardware reduction
k might return smaller hardware costs, thus necessitating théhat cost-driven selection of parity trees achieves over selec-

execution of the random walk for all possible valueg of tion of the minimum number of parity trees. The average
reduction over all benchmark circuits is 21.85%. On several
4.5. Open Issues benchmarks, the proposed method yields a sét ef k,,,,,

parity trees. Yet the selected solution is picked based on the
lowest entropy and therefore results in a less expensive hard-
ware implementation. For example, this is the case for cir-
Cuitstav, s27, dk16, s1, pma ands386. In some cases, such
ass27 andsl, the cost of the solutions is reduced by more
than 50%.
Additionally, the proposed method selects a sét périty
o Is there a better estimator than entropy for the hardwaretrees, withk > k., if the entropy of thek-bit parity pre-
cost of the parity prediction functions? dictor is lower than the entropy df,,;,,-bit parity predictor.
For example, on circuitlk512 the proposed method yields
a solution withk = 6 parity trees and a normalized entropy
e What would be a good choice for the parameters of the of 0.818, while the method targeting the minimum number of
Metropolis random walkd and M)? parity trees yields a solution with,,;,, = 4 parity trees and a
normalized entropy 06.973. As may be observed, selecting
Ihe solution with the higher number of parity trees, yet with
a lower entropy, results in a less expensive parity prediction
circuit. Similar observations hold for circuit a.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004) COMPUTER
1093-0167/04 $20.00 © 2004 IEEE SOCIETY

Our methodology takes an important first step towards
tackling the question of simultaneouséchieving lossless
compactionand minimizing the hardware overheaaf the
parity predictor function in non-trivial ways. Yet, several im-
portant and difficult to answer questions remain open, pre-
senting opportunities for further research. More specifically:

e What would be a good choice foiin practical circuits?

e Would it be advantageous to use a time inhomogeneou
random walk by varyingv over time? (This is the sim-
ulated annealing approach described in [15]).

Original Circuit Minimum # of Parity Trees Cost-Driven Selection
Circuit Name | PI | PO | Gates| Cost | #of Trees| Gates| Cost Entropy | #of Trees| Gates| Cost Entropy | Savings
(kmin) (k)

cse 11| 11 196 | 256128 5 131 | 171680 | 0.641 5 97 127136 | 0.598 | 25.95%
donfile 7 6 97 128064 4 57 74704 0.716 4 56 75632 0.692 | -1.24%
dk16 7 8 240 | 316448 6 323 | 428736 0.953 6 294 | 389760 | 0.883 9.09%
dk512 5 7 74 96048 4 79 104400 | 0.973 6 61 80272 0.818 | 23.11%
keyb 12| 7 228 | 298352 5 82 107648 | 0.512 5 67 86304 0.439 | 19.83%
pma 13 | 13 347 | 453792 6 186 | 243136 | 0.247 6 138 | 180496 | 0.210 | 25.76%
sse 11| 11 131 | 178640 5 80 104864 | 0.771 5 59 77488 0.753 | 26.12%
styr 14 | 15 413 | 547056 8 217 | 287216| 0.463 8 162 | 213904 | 0.394 | 25.53%
sl 13| 11 167 | 217616 5 121 | 156832| 0.680 5 61 77024 0.512 | 50.89%
sla 13| 11 153 | 199056 6 96 124816 | 0.533 7 61 77024 0.314 | 38.23%
s27 7 4 20 25056 3 15 18096 0.952 3 7 8352 0.813 | 53.85%
s386 13 | 13 123 | 158688 4 83 105328 | 0.420 4 72 92336 0.400 | 12.35%
tav 6 6 28 34336 4 31 39440 0.723 4 26 33408 0.685 | 15.22%
tbk 1] 8 146 | 190240 5 160 | 207872| 0.683 5 151 | 198592 | 0.647 4.46%
tma 12 | 11 219 | 285824 5 130 | 169824 | 0.258 7 131 | 172144 | 0.224 | -1.37%

Table 1. Experimental Results on MCNC Benchmark Circuits

Occasionally, the proposed method will fail to provide

(3]

hardware reduction over the solution with the minimum num-

ber of trees. This is for example the case for circuita,

where the entropy of the proposed solution with= 7 par-

(4]

ity trees is slightly less than the entropy of the solution with

kmin = 5 parity trees, yet the implementation of the latter is

(5]

slightly less expensive. This may be attributed to the heuris-
tics employed for reducing the search space of the problem.

Additionally, the entropy is a statistical and not an exact met-

(6]

ric. Significant entropy differences provide a good indication

of the relative circuit complexity. However, the comparison
resolution may degrade as the absolute value of the difference

between the entropy of two circuits becomes smaller.

6. Conclusion

(7]

(8]

Parity trees that achieve lossless compaction while incur- [g)
ring inexpensive parity prediction functions are necessary for
test methods that generate the correct compacted responses
on-chip. Towards this end, we presented a method that uti-[10]

lizes the entropy of the prediction circuit as a potential func-
tion for guiding our search algorithm and selecting appropri-

[11]

ate parity trees. We also discussed the limitations of the pro-
posed methodology and pointed towards directions for fur- [12]
ther improvement. Experimental data on several benchmark
circuits indicated that the proposed methodology yields sig-
nificant cost reduction for the parity predictor of the selected [13]
parity trees, as compared to methods that select the minimum

number of parity trees.

References

[14]

[15]

[1] K. Chakrabarty and J. P. Hayes, “Test response compaction[le]
using multiplexed parity trees /EEE Transactions on Com-

puter Aided Design of Integrated Circuits and Systenus.
15, no. 11, pp. 1399-1408, 1996.

(2]

[17]

O. Sinanoglu and A. Orailoglu, “Space and time compaction

schemes for embedded cores,” lilernational Test Confer-

ence 2001, pp. 521-529.

Proceedings of the 22nd IEEE VLSI Test Symposium (VTS 2004)
1093-0167/04 $20.00 © 2004 1EEE

M. Goessel and S. Grak&rror Detection Circuits McGraw-

Hill, 1993.
N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-

tilevel circuits with concurrent error detectionEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and

Systemsvol. 16, no. 7, pp. 783-789, 1997.
S. Almukhaizim, P. Drineas, and Y. Makris, “On concurrent

error detection with bounded latency in FSMs,” Dresign
Automation and Test in Europe Conferen2@04.
K-T. Cheng and V. D. Agrawal, “An entropy measure for

the complexity of multi-output boolean functions,” esign
Automation Conferencd 990, pp. 302—-305.

M. R. Garey and D. S. Johnso@pmputers and Intractability:

A Guide to the Theory of NP-Completene®é H. Freeman,
1979.

VI. V. Saposhnikov et al., “Self-dual parity checking - a new
method for on-line testing,” iIVLSI Test Symposiun996,

pp. 162—-168.

K. Mohanram et al., “Synthesis of low-cost parity-based par-
tially self-checking circuits,” ininternational On-Line Test
Symposium2003, pp. 35-40.

R. Motwani and P. RaghavaRandomized Algorithm&am-
bridge University Press, 3rd edition, 1995.

S. Rajgopal, “Spatial Entropy - A Unified Attribute to Model
Dynamic Communication in VLSI Circuits,” Tech. Rep.

UIUC TR92-041, 1, 1992.
N. Shanbhag, “A mathematical basis for power-reduction in

digital VLSI systems,” IEEE Transactions on Circuits and

Systemgsvol. 44, pp. 935-951, 1997.
M. Nemani and F. N. Najm, “Delay Estimation VLSI Circuits

from a High-Level View,” inDesign Automation Conference
1998, pp. 591-594.

N. Metropolis et al., “Equation of state calculation by fast
computing machines Journal of Chemical Physic4953.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vlecchi, “Optimization

by Simulated Annealing,” Science, Number 4598, 13 May

1983 pp. 671-680.
E. M. Sentovich et al., “SIS: a system for sequential circuit

synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS UC
Berkeley CA 94720, 1992.

H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuit$2EE Trans-
actions on Computer-Aided Design of Integrated Circuits and

Systemsvol. 15, no. 9, pp. 1048-1058, 1996.

COMPUTER
SOCIETY

	Abstract
	1. Introduction
	2. Motivation
	3. Cost-Driven Parity Tree Selection
	3.1. Related Work
	3.2. Proposed Method Overview

	4. Proposed Algorithm
	4.1. Lossless Compaction via ILP
	4.2. Hardware Estimation via Entropy
	4.3. CostDriven
Selection via Random Walk
	4.4. Overall Algorithm
	4.5. Open Issues

	5. Experimental Results
	6. Conclusion
	References
	Return to Table of Contents

