
SPaRe: Selective Partial Replication for Concurrent Fault Detection in FSMs

Petros Drineas ∗ and Yiorgos Makris
Departments of Computer Science and Electrical Engineering

Yale University
{petros.drineas, yiorgos.makris}@yale.edu

Abstract

We propose a non-intrusive methodology for concurrent
fault detection in FSMs. The proposed method is similar to
duplication, wherein a replica of the circuit acts as a pre-
dictor that immediately detects potential faults by compar-
ison to the original FSM. However, instead of duplicating
the FSM, the proposed method selects a few prediction func-
tions which only partially replicate it. Selection is guided
by the objective of minimizing the incurred hardware over-
head without compromising the ability to detect all faults, yet
possibly introducing fault detection latency. Furthermore, in
contrast to concurrent error detection approaches which pre-
sume the ability to re-synthesize the FSM and exploit parity-
based state encoding, the proposed method does not inter-
fere with the encoding and implementation of the original
FSM. Experimental results indicate that the proposed method
achieves significant hardware overhead reduction over du-
plication, while detecting more than 99% of all permanent
faults with very low average fault detection latency.

1. Introduction

Concurrent test methods provide circuits with the ability
to self-examine their operational health during normal func-
tionality and indicate potential malfunctions. While such an
indication is highly desirable, designing a concurrently self-
testable circuit which, at the same time, conforms to the rest
of the design specifications is not a trivial task. Issues to
be addressed include the hardware cost and design effort in-
curred, potential performance degradation due to interaction
between the circuit logic and the concurrent self-test logic,
as well as the level of assurance required.

In this paper, we focus our interest on Finite State
Machines (FSMs) and we explore the trade-offs between
the aforementioned parameters, in order to devise a non-
intrusive design method for concurrent fault detection. Non-
intrusiveness implies that hardware may only be added in
parallel to the given FSM which is encoded, optimized, and
implemented to meet specific requirements and may not be
modified. The additional logic is expected to detect all circuit
faults. Moreover, self-test has to be performed concurrently
with the operation of the FSM and may not degrade it.

In concurrent test, additional hardware is added to the cir-
cuit in order to monitor its inputs during normal operation
and generate an a priori known property that is expected
to hold for the circuit output. A property verifier is subse-
quently utilized to identify and indicate any violation of the
expected property, thus detecting potential circuit malfunc-
tions. An important requirement in concurrent test is that

∗The author is supported in part through NSF grant CCR-9820850.

the normal operation of the circuit may not be interrupted by
false alarms; in other words, the concurrent test output in-
dicator of the property verifier may not be asserted unless a
malfunction is detected in the circuit.

The simplest approach is to duplicate the circuit, thus im-
posing an identity property between the original circuit out-
put and the replica output, which may be simply examined
by a comparator operating as the property verifier. With the
exception of common-mode failures, duplication will imme-
diately detect any error in the circuit. However, it incurs sig-
nificant hardware overhead that exceeds 100% of the original
circuit, which may or may not be justifiable depending on the
application that the circuit is intended for. While expensive
schemes such as duplication detect all functional errors, sim-
pler properties detecting only structural faults in a prescribed
fault model exist. For example, the method proposed in [1]
reduces the functionality of the duplicate so that it only pre-
dicts the output of the circuit for a set of test vectors adequate
to detect all stuck-at faults. The latter, however, allows func-
tional errors to go undetected until the structural fault that
causes it is eventually detected. The concept of fault detec-
tion latency, the time difference between appearance of an
error and detection of the causing fault is thus introduced.

Since electronic circuits are employed in a wide spectrum
of applications, ranging from mission-critical to simple com-
modity devices, concurrent test methods of various cost and
efficiency are required. Related work is reviewed in section
2 and SPaRe, a concurrent fault detection method based on
selective partial replication is proposed in section 3. Experi-
mental results in terms of hardware overhead, fault coverage,
and fault detection latency are provided in section 4.

2. Related Work

Related research efforts in concurrent test can be roughly
classified in one of the following two categories:

Concurrent Error Detection (CED): Approaches in this
category require that all functional errors be detected with
zero (or very small, bounded) latency. Duplication is the sim-
plest CED method, limited however by its expensive hard-
ware overhead. Reducing the area overhead below the cost
of duplication typically requires redesign of the original cir-
cuit, thus leading to intrusive methodologies. One of the first
successful attempts along this direction is described in [2],
where resynthesis is employed to favorably encode the cir-
cuit, incorporating parity information and employing TSC
checkers. Structural limitations requiring an inverter-free de-
sign were alleviated in [3], where a single parity bit and par-
titioning is employed. Multiple parity bits are used in [4].
While these methods are intrusive, they render totally self-
checking circuits, guarantee zero latency, and typically pro-
vide hardware savings in the range of 15% over duplication.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

U/D PS1 PS0 NS1 NS0
0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 0

2-Bit Up/Down Counter

COMBINATIONAL
NEXT STATE

LOGIC

U/D

2-BIT
STATE

REGISTER

2

2

OUT

COMBINATIONAL
NEXT STATE

LOGIC
(DUPLICATE)

2-BIT
STATE

REGISTER
(DUPLICATE)

2

1

2-BIT INEQUALITY
COMPARATOR

2

TEST OUTPUT
(ERROR IF '1')

ORIGINAL
FSM H/W

TESTABILITY
H/W

2

2

COMBINATIONAL
NEXT STATE

LOGIC

U/D

2-BIT STATE
REGISTER

2

OUT

COMBINATIONAL
PREDICTION

LOGIC

D Flip-Flop

1

1

1-BIT INEQUALITY
COMPARATOR

2

TEST OUTPUT
(ERROR IF '1')

1
2 to 1
MUX

D Flip-Flop

PS1 PS0

Figure 1. Duplication-based CED and SPaRe-based CFD on a 2-Bit Up/Down Counter

Concurrent Fault Detection (CFD): Approaches in this
category require that for every structural fault in a prescribed
fault model there exists at least one input combination that
will detect the fault. Yet it is not guaranteed that every input
combination that activates a fault will also detect it. While
fault detection latency is, thus, introduced, this relaxation
allows for significant hardware savings of CFD over CED
methods. Among the few existing CFD schemes, properties
specific to non-linear adaptive filters are used in [5], achiev-
ing a 30% cost reduction with near-zero latency. Frequency
response of linear filters is used as an invariance property
in [6], achieving a 50% cost reduction but introducing sig-
nificant latency. Finally, a CFD approach exploiting trans-
parency of RTL components is described in [7], achieving
over 90% fault security with 40% hardware overhead.

3. Proposed Method

SPaRe, a CFD method based on Selective Partial Repli-
cation is proposed in this section. The key idea supporting
SPaRe is presented through a small example, followed by an
extensive description and analysis of the proposed method.

3.1. Motivation

Consider the 2-bit Up/Down Counter described in the ta-
ble of figure 1. If the objective is to detect all errors occurring
during normal operation, the duplication-based CED scheme
shown on the left side of the figure will achieve this by com-
paring the two outputs of the FSM1 to the two outputs of its
replica. If, however, the objective is to detect all faults, al-
lowing possible fault detection latency, it is not necessary to
compare both FSM outputs at every clock cycle. When we
implemented the counter we noticed that by observing only
one bit per state transition (shown in boldface in the table of
figure 1), we detect all faults. Therefore, for the purpose of
CFD it is sufficient to replicate only partially the FSM, ap-
propriately selecting which bits to predict for each state tran-
sition in order to detect all faults. Partial FSM replication
implies cost reduction over duplication.

This observation is the basis for the SPaRe methodology
which is shown on the right side of figure 1 for the 2-bit
Up/Down Counter. A combinational prediction logic is used
to implement the 1-bit function that generates for each state

1 For simplicity, we assume that FSM outputs are directly driven by the
state register. SPaRe is readily extendible to include output logic.

transition the value shown in boldface in the table of figure 1.
This value is stored in a D Flip-Flop and compared to the cor-
responding bit of the FSM state register one clock cycle later.
A MUX is used to drive the appropriate FSM output to the
comparator. The select line of the MUX is driven by a func-
tion of the previous state and the inputs of the FSM, in this
case a simple XOR between PS1 and PS0, delayed by one
clock cycle. All faults in the next state logic are, thus, de-
tected. Additionally, by postponing the comparison by one
clock cycle, faults in the state register are also detected.

3.2. SPaRe: Selective Partial Replication

The optimization objective of SPaRe is to minimize the
output width of the prediction logic. Based on the observa-
tion that a subset of output bits per state transition is typi-
cally sufficient to detect all faults, SPaRe aims at identifying
a minimal such set. The general version of SPaRe is depicted
in figure 2. For every (n + k)-bit input combination, the
prediction logic generates � outputs that match a subset of
� out of the k FSM outputs. A Selection Logic is required
to choose which FSM outputs to drive to the comparator for
each (n + k)-bit input combination. Comparison is delayed
by one clock cycle to also detect faults in the state register.

Success of SPaRe relies on efficient solutions to two key
issues: identification of appropriate output values to be repli-
cated by the prediction logic and cost-effective selection of
circuit outputs to which they should be compared. Regard-
ing the first issue, an ATPG tool capable of generating all test
vectors and reporting both the good and faulty circuit out-
puts for every fault in the combinational next state logic is
required. This information indicates the faults that can be
detected at each output for each input vector and may be
used to construct a matrix similar to the one shown in fig-
ure 3. SPaRe seeks a set of columns that covers all faults,
such that the maximum number of output bits to be observed
for any input vector is minimized. However, the exact se-
lection of columns impacts directly the cost of the Selection
Logic. More specifically, since the prediction logic only gen-
erates an �-bit function, additional logic is necessary to select
� among the k circuit outputs to which the predicted � bits
will be compared. As shown in figure 2, this can be viewed
as � k-to-1 MUXes, each of which requires log k address bits.
Therefore, if we allow any possible subset of size � for every
(n+k)-bit input combination, the Address Logic will gener-
ate �·log k (n+k)-input functions. Compared to duplication,

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

k-BIT STATE
REGISTER

PREDICTION
LOGIC

n n

INEQUALITY
COMPARATOR

l

SELECTION
LOGIC

k

1

IN

TEST
OUTPUTOUT

k

n

k to 1

1

k

k to 1

1

kl MUXers

k

l

 logk logk

ADDRESS LOGIC

n

FLIP-FLOPS

logk

NEXT STATE
LOGIC

PREDICTED
l -BIT REGISTER

l

k

Figure 2. SPaRe: Selective Partial Replication

SPaRe implements k−� fewer (n+k)-input functions for the
Prediction Logic, at the cost of implementing �·log k (n+k)-
input functions and � k-to-1 MUXes for the Selection logic.
The cost of the Prediction Logic is linear in �; the cost of the
Selection Logic, however, increases almost linearly in � up
to � = k/2, at which point it starts decreasing, eventually
becoming zero at � = k. Therefore, if � > k/(log k + 1),
the total size of the Selection Logic and the Prediction Logic
exceeds the cost of duplication.

Imposing such an upper bound on � could significantly
reduce the fault coverage of this scheme. Instead, we im-
pose restrictions on the complexity of the Address Logic and
by extension, on the acceptable solutions on the matrix of
figure 3. SPaRe eliminates the Address Logic all together,
therefore allowing that the log k select inputs of each mul-
tiplexer may only be driven directly by any log k out of the
(n+ k) previous state and input bits. The form of acceptable
solutions under this additional constraint, as well as a selec-
tion algorithm for identifying an appropriate set of columns
that detects all faults are discussed in the following section.

3.3. Selection Algorithm

We focus on the next state logic of the FSM, which, given
a previous state and an input generates the next state. The in-
puts to this component are I1 . . . Ik (the previous state) and
Ik+1 . . . In+k (the FSM inputs). The outputs of this compo-
nent are O1 . . . Ok (the next state). We denote the set of the
2n+k possible previous state/input combinations by V .

Assume for the moment that we are given the matrix
of figure 3, say A. We remind that SPaRe eliminates the
ADDRESS LOGIC component of figure 2. For simplicity,
we assume that 2 specific input bits, denoted by I1 and I2,
drive all � MUXes and also that � is given. As a result,
each MUX selects only among four of the FSM outputs;
we remove this assumption promptly. Thus, the SELEC-
TION LOGIC component of the diagram is fully specified.
The SELECTION LOGIC splits the input vectors to 4 disjoint
groups, each corresponding to a possible value for the pair
I1I2 ∈ {00, 01, 10, 11}; for all vectors in each group the
same � output bits are observed at the output of the SELEC-
TION LOGIC. We denote the groups by G1, G2, G3, G4.

. . .

VECTOR 0

OUT0 OUTk-1...

VECTOR 2n+k-1

OUT0 OUTk-1...

Fault1
Fault2

1

.

.

.

Faultm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

1 1

1 1

. . .

. . .

Figure 3. Fault Detection Matrix

We now state the problem formally: given A, the groups
G1, G2, G3, G4 and �, pick � output bits for each group so
that the number of covered faults is maximized.

Prior to presenting an algorithm to solve the above prob-
lem, we revoke the simplifications we made earlier, starting
with the assumption that � is given. In practice, we seek the
minimum � for which we can detect i.e. 99% of the faults.
Finding such an � though is trivial; since 1 ≤ � ≤ k, use
binary search and solve the above problem log k times. We
also assumed that the addressing bits (I1 and I2) were given;
in practice we try all possible 2-bit addressing schemes (≈
(n+k)2/2). If we were to use c > 2 bits to feed the MUXes,
the number of possible addressing schemes increases; how-
ever, since we only allow up to log k addressing bits, it is
always a small number. We note that in this case the num-
ber of groups would increase to 2c instead of 4. Finally, we
assumed that A is fully constructed; obviously, for large cir-
cuits, time/space constraints render this assumption infeasi-
ble. Thus, in large circuits, the following strategy is em-
ployed: for every fault, generate a large number (say r) of
input vectors detecting it. Thus, assuming m faults in our
circuit, at most mr vectors are generated. We subsequently
identify the faults detected by each of these vectors, construct
an m × mr matrix A′ and solve the aforementioned problem
in A′ instead of A. Generally, A′ admits less efficient solu-
tions than A; as r increases the two solutions converge.

The size of the solution space for the above problem, as-

suming that � and c are fixed, is
(
n+k

c

)(
k
l

)2c

. If � and c are
small constants, the size of the solution space is polynomial
in both n and k. In practice, though, � might be close to k/2,
in which case the size of the solution space grows exponen-
tially in k and it is impossible to explore it exhaustively. To
understand its size, if n = 2, k = 6, l = 3 and c = 2 there
are 4.5·106 possible solutions, while, if c = 3, there are more
than 14 ·1011 possibilities. Thus, we describe an algorithm to
explore the space of possible solutions efficiently; given in-
finite time, our algorithm explores the whole state space. In
practice, we explicitly limit its running time. We should also
note that it is not necessary to drive all MUXes with the same
input bits; indeed, better fault coverage might be achieved by
using different bits. Thus, the state space is even larger, since
the number of possible addressing schemes increases.

Our algorithm is simple: it randomly decides which � out-
put bits to generate for each group of input vectors; we de-
note by Ri the set of output bits that we generate for group
Gi. Initially all the Ri’s are empty. The algorithm essen-
tially picks a group and decides which output bit to generate
for this group; we decide which group to pick using biased
sampling and favoring groups whose corresponding Ri con-
tains fewer elements. Biased sampling is also used to decide
which output bit to include in Ri. We assign a score to every
output bit not already included in Ri: this score reflects the
significance of this particular output bit for fault detection.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

Intuitively, the significance of an output bit is a function of
the number of faults it detects, and, in particular, faults that
are not detected by a large number of vectors in V . As an
example, we tend to favor an output bit that detects 2 faults
that no other input vector can detect over an output bit that
detects 5 faults, each detected by 10 other input vectors as
well. Every time an output bit is selected to be included in
Ri, we remove all faults covered by that bit for any input
vector in Gi. The above process is repeated until all Ri con-
tain exactly � elements and the fault coverage is reported. If
the result is unsatisfactory, we repeat the process until either
a satisfactory result emerges or a fixed number T of itera-
tions is exceeded; if the result is still unsatisfactory, we try a
different addressing scheme. The SPaRe algorithm calls the
BasicSPaRe algorithm with different G1, G2, G3, G4 until a
target fault coverage is attained or the run time limit of the
scheme is exceeded.

A brief note on x: while in our experiments a value of
x = 1 returned acceptable solutions fast (typically, after try-
ing at most 10 addressing schemes with T = 100), one could
try different values of x to fine tune the algorithm. As an
example, as x increases, our search becomes greedier: the
output bit with the highest score is picked with very high
probability. We prefer to present our algorithm using generic
values for x; in practice, one could potentially use training
data to learn the “best” value of x for the circuits at hand.

3.4. Analysis

SPaRe is non-intrusive and, by construction, guarantees a
pre-specified fault coverage; in our case, 98.5%. Further-
more, since SPaRe predicts and compares the appropriate
portion of the circuit output for every state transition, no false
alarm is possible. SPaRe introduces latency in the detection
of an activated fault, which will remain undetected until an
appropriate state transition is performed. We stress, how-
ever, that SPaRe checks for faults for every state transition;
since most stuck-at faults are detected by many state transi-
tions, we may conjecture that the average latency of SPaRe is
small. In Section 4 we see that this prediction is justified. We
outline the expected hardware overhead of SPaRe. The fol-
lowing statement relates the hardware - assuming multilevel
implementation using 2-input gates - required to implement
a function of n + k input bits and one output bit to the hard-
ware required to implement a function of n+k input bits and
k output bits (k 	 2n+k).

Remark 1 Almost all boolean functions f : {0, 1}n+k →
{0, 1}k require at least k2n+k/(n + k) gates if the k output
bits are uncorrelated.

Proof (sketch): We observe that the number of functions

f : {0, 1}n+k → {0, 1}k is
(
22n+k

)k

= 22(n+k)k

. Thus,

Shannon’s counting argument [8] proves our statement.
Assume for the moment that the k output bits are uncor-

related; then, the minimum hardware required for SPaRe is
�/k times the minimum hardware required for the original
circuit. We can only examine how the lower bound of the
size of SPaRe behaves; indeed, tight bounds for circuit sizes

are notoriously hard to prove even under stringent assump-
tions. In practice, the output bits of the PREDICTION LOGIC
and the original FSM are correlated, otherwise some states
of our FSM would be unreachable. It is not clear though that
as correlation increases the ratio of the size of SPaRe over
the size of the original circuit increases; one expects the size
of the SPaRe to decrease as correlation increases. In section
4 we observe that our predictions on the hardware overhead
are quite accurate, even in the presence of correlation.

Algorithm BasicSPaRe

Input: A, G1, G2, G3, G4, �
Output: R1, R2, R3, R4, initially empty.

Preprocessing: Assign a score to each fault in A,

Score(Fj) = nnz(A(j)), j = 1 . . .m

nnz(A(j)) denotes the number of non-zero elements in
the i-th row of A.

(a) Randomly pick one of the Ri, with probability

Pr(picking Ri) = (� − |Ri|)/
4∑

i=1

(� − |Ri|)

Denote the one picked by Ri.

(b) Assign a score to each output bit Op /∈ Ri,p =
1 . . .k (x ∈ R, usually x = 1).

Score(Op) =
(∑

Fj∈S Score(Fj)
)x

S = {Fj : Op and any vector in Gi cover Fj}

(c) Randomly pick one of the Op, with probability

Pr(picking Op) =
Score(Op)∑

p:Op /∈Ri
Score(Op)

Denote the one picked by Op.

(d) Ri = Ri ∪ {Op}
(e) Remove all faults (rows of A) covered by Op and
any vector in Gi.

(f) Repeat steps (a)-(e) until all the Ri’s contain exactly
� elements and report the fault coverage.

(iter) Repeat steps (a)-(f) T times.

Algorithm SPaRe

Input: A, �
Output: R1, R2, R3, R4 (initially empty).

(a) Create candidate G1, G2, G3, G4.

(b) BasicSPaRe(A,G1, G2, G3, G4, �)

(c) Repeat (a)-(b) until the fault coverage is above target
or the running time limit is exceeded.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

Figure 5. Fault Coverage on Original FSM Faults

4. Experimental Results Figure 6. Fault Coverage on All FSM Faults

3.4. Finally, the cost of the prediction logic is reported. The
rightmost column provides this cost as a percentage of the
cost of the next state logic, indicating the hardware savings of
SPaRe over duplication. As may be observed, the hardware
overhead is, on average, 45% less than duplication. Further-
more, the average deviation between the expected overhead
and the actual overhead is around 7%, implying that the ratio
of predicted bits over next state logic bits is an accurate indi-
cation of incurred hardware overhead. We anticipate that this
ratio will decrease further as the number of next state logic
bits increases, thus resulting in even more savings.

In this section, we compare SPaRe to duplication, in tenDs
of hardware overhead, fault coverage, and fault detection la-
tency. In order to preserve generality, we employ random
FSMs with K = 2k states and n inputs. We experiment with
ten different types of (K, n) FSMs, where K is the num-
ber of states and n is the number of inputs. The ten types are
(8,1), (8,2), (16, 1), (16,2), (32, 1), (32,2), (32,3), (64, 1),
(64,2), and (64,3). Average results over five FSMs of each
type are reported.

4.1. Hardware Overhead

4.2. Fault Coverage

In order to assess the effectiveness of the proposed
method, we construct the FSM with SPaRe-based CFD and
the FSM with duplication-based CED in ISCAS89 [10] for-
mat. The next state logic and the prediction logic are avail-
able from the hardware overhead experiment. Two copies of
the next state logic, two state registers and a comparator are
used for duplication. One copy of the next state logic, one
copy of the prediction logic, a comparator and the MUXes
for the selection logic are used for SPaRe.

Two experiments are performed employing these circuits.
In the first experiment, we compare the number of faults in
the original FSM detectable by SPaRe to those detectable by
duplication. HITEC [13] is used to perform ATPG on the
two constructed FSMs. In both ATPG runs only the faults
in the original FSM are targeted and only the Test Output is
made observable. The results are summarized in the table of
figure 5. Duplication detects all testable faults in the original
FSM, reported in the second row of the table. SPaRe, on the
other hand, detects all faults that are covered in the solution
provided by the algorithm of section 3.3. In our experiments,
the threshold for algorithm termination was set to covering
98.5% of all faults. This is validated by ATPG, which yields
an average fault coverage of 99% of all testable faults.

In the second experiment, we demonstrate the ability of
SPaRe to also detect all testable faults in the hardware added
for CFD. Two ATPG runs are performed using HITEC [13]
on the FSM with SPaRe-based CFD, targeting all circuit
faults. Both the test output and the original FSM outputs
are made observable in the first ATPG run, while only the
test output is made observable in the second ATPG run. The
results are summarized in the table of figure 6. The num-
ber of faults missed by SPaRe in the tables of figures 5 and
6 is equal, indicating that all testable faults in the additional
hardware are detected. On average, SPaRe-based CFD de-
tects 99.4% of all testable faults.

In terms of incurred hardware overhead, SPaRe and dupli-
cation differ in the following aspects: duplication employs a
replica of the combinational next state logic of the original
FSM, while SPaRe employs a prediction logic which gener-
ates fewer output bits. As a result, SPaRe uses a narrower
state register and a narrower comparator than duplication.
However, a few additional MUXes are employed in SPaRe,
balancing the cost savings of these modules. Essentially, in
order to compare SPaRe to duplication, it is adequate to com-
pare the cost of the next state logic of the FSM to the cost of
the prediction logic of SPaRe.

In order to obtain these costs, the next state function of
the FSMs generated through the above process is converted
to pia format, synthesized using the rugged script of SIS [9],
and mapped to a standard cell library comprising only 2-input
gates. Since the proposed methodology is non-intrusive, no
assumptions are made as to how the FSMs are encoded or
optimized. The hardware cost of the circuit is reported by
SIS through the printJnap-stats command and the circuit is
then converted to ISCAS89 [10] format. ATALANTA [11] is
used to generate all vectors detecting each fault, and HOPE
[12] is employed to provide both the good machine and the
bad machine responses for every (vecto1; fault) pair, reveal-
ing the output bits at which each fault may be detected for
every vector. This information is used to construct the matrix
A necessary for SPaRe, through which the prediction logic
functions are identified. These functions are subsequently
converted to pia format, synthesized using the rugged script
of SIS [9], and mapped to a standard cell library comprising
only 2-input gates. The cost of the prediction logic is re-
ported by SIS [9] through the printJnap-stats command and
the circuit is converted to ISCAS89 [10] format.

The results are summarized in the table of figure 4. The
cost of the next state logic is reported, along with the number
f of prediction logic bits generated through the algorithm of
section 3.3. The percentage in the parenthesis indicates the
expected hardware overhead, based on the analysis of section

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

4.3. Fault Detection Latency

The hardware savings achieved by SPaRe come at the cost
of introducing fault detection latency. It is not possible to
predict the exact latency of the method, since it depends on
the values that appear at the FSM inputs during normal oper-
ation. Yet, an experimental indication of how much latency
is introduced by SPaRe is necessary for its evaluation.

We measure fault detection latency based on fault simu-
lation of randomly generated input sequences. More specif-
ically, we use HOPE [12] to perform two fault simulations
of the same sequence of randomly generated inputs, once
observing both the test output and the FSM outputs, and a
second time observing only the test output. The time step at
which a fault is detected during the first fault simulation is
the Fault Activation time, while the time step at which it is
detected during the second fault simulation is the Fault De-
tection time. Fault Detection Latency is the time difference
between Fault Activation and Fault Detection, therefore we
can calculate the Fault Detection Latency for each fault, as
well as the average Fault Detection Latency.

Worst-case results for each of the 10 different FSM types
are summarized in the table of figure 7. We fault simulate a
total of 5000 random patterns and snapshots of the results are
shown after 10, 50, 100, 500, 1000, and finally all 5000 pat-
ters are applied. For each snapshot, we provide the number of
faults remaining non-activated, the number of faults activated
and detected, and the number of faults activated but missed
(not yet detected) by SPaRe. We also provide the maximum
and the average fault detection latency for the faults that are
both activated and detected. Figure 8 presents a plot of faults
activated and faults detected by SPaRe on the (64, 3) FSM,
as well as a plot of the average fault detection latency on the
(64, 1), (64, 2), and (64, 3) FSMs versus the number of ap-
plied random patterns.

While the maximum latency is significant, ranging up to
2714 clock cycles for the (64,3) circuit, the average latency
is small, ranging up to only 28.35 clock cycles, which is
1.05% of the maximum latency. Additionally, most faults
are detected quickly and the typical 90-10 rule applies for
the average latency. More specifically, 90% of the faults are
detected within 50% of the average latency, while the other
50% is contributed by the remaining 10% of the faults. For
example, once 500 random vectors are applied to the (64,3)
circuit, 96.69% of the faults are activated and 93.67% are
detected. The average fault detection latency at this point is
11.66, which is 41.12% of the average latency when all faults
are detected. Furthermore, the plot of Figure 8(a) shows that
the number of faults activated but not yet detected by SPaRe
is constantly small. Finally, as indicated in the plot of Fig-
ure 8(b), both the average and the maximum latency increase
sub-linearly with the size of the circuit, guaranteeing scaling
of SPaRe. Similar observations hold for all other circuits.

5. Conclusions

Cost-effective CFD requires careful examination of the
trade-offs between the conflicting objectives of low hardware
overhead, low fault detection latency, and high fault cover-
age. SPaRe explores the trade-off between fault detection la-

tency and hardware overhead, under the additional constraint
that the original circuit design may not be altered. Thus,
a comparison-based approach is employed, where the next
state logic of the original FSM is partially replicated into a
prediction logic, selectively testing the circuit during normal
operation. The problem of identifying cost-effective predic-
tion logic functions is theoretically formulated and an algo-
rithm for efficient selective partial replication is proposed.
Experimental results demonstrate that SPaRe reduces the in-
curred hardware overhead by an average of 45% over dupli-
cation, while preserving the ability to detect more than 99%
of the circuit permanent faults. Further reduction of this over-
head is anticipated as the size of the circuit increases. While
these savings come at the cost of introducing fault detection
latency, the experimentally observed average latency is very
low, ranging up to 28 clock cycles in the largest of our FSMs
and scaling sub-linearly with the size of the circuit. In con-
clusion, when non-zero fault detection latency may be toler-
ated, SPaRe constitutes a powerful alternative to duplication.

References

[1] R. Sharma and K. K. Saluja, “An implementation and analysis
of a concurrent built-in self-test technique,” in Fault Tolerant
Computing Symposium, 1988, pp. 164–169.

[2] N. K. Jha and S.-J. Wang, “Design and synthesis of self-
checking VLSI circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, no.
6, pp. 878–887, 1993.

[3] N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 7, pp. 783–789, 1997.

[4] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state ma-
chine synthesis with concurrent error detection,” in Interna-
tional Test Conference, 1999, pp. 672–679.

[5] A. Chatterjee and R. K. Roy, “Concurrent error detection
in non-linear digital circuits with applications to adaptive fil-
ters,” in International Conference on Computer Design, 1993,
pp. 606–609.

[6] I. Bayraktaroglu and A. Orailoglu, “Low-cost on-line test for
digital filters,” in VLSI Test Symposium, 1999, pp. 446–451.

[7] Y. Makris, I. Bayraktaroglu, and A. Orailoglu, “Invariance-
based on-line test for RTL controller-datapath circuits,” in
VLSI Test Symposium, 2000, pp. 459–464.

[8] C. E. Shannon, “The synthesis of two-terminal switching cir-
cuits,” Bell System Technical Journal, vol. 28, pp. 59–98,
1949.

[9] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldahna, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “SIS: a system for sequential cir-
cuit synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS
UC Berkeley CA 94720, 1992.

[10] “ISCAS’89 benchmark circuits information,” Available from
http://www.cbl.ncsu.edu.

[11] “ATALANTA combinational test generation tool,” Available
from http://www.ee.vt.edu/ha/cadtools.

[12] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

[13] T. Niermann and J. H. Patel, “HITEC: A test generation pack-
age for sequential circuits,” in European Conference on De-
sign Automation, 1992, pp. 214–218.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

~'1

53

AVG I.AT
n

DETECTED I ~n
2-
]17 120 I 122 I

, I 1 I123

56 ~ 1"

::JR ~-
4

140
143 15

MAX I.AT

259 ill 2R2
286

n
2Q4 llO : 351 I 354

: -,-.; I -R
-!L
?.,

362

~~
461 I

..Q.
';';,

0
631 I

-.- i I

0
633
Iii

ill
j"'i:;:-649 MI!;!;RD

1£
QQR

"25 ~ n
767"" 1217 I 1260 I 1281

7f) 1 47 1111312 Mr RD '/111

451
255
&2

54
/iRQ

0
771'640 7/;4 771\

788 12

I REMAINING I QQQ n~
IlQ4972 11&4 14nl 1408

2~1433 52
MAX I.AT

IQ70 1081

1525

1.10;

n
19R1 2~77

25 I-v ~
l:2.sL-1 2720 i

2751

Figure 7. Fault Detection Latency of SPaRe-based CFD

~
If

173
Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

