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SPaRe: Selective Partial Replication for
Concurrent Fault-Detection in FSMs

Petros Drineas and Yiorgos Makriglember, IEEE

Abstract—We discuss SPaRe: selective partial replication, a  Concurrent test is based on the addition of hardware that
methodology for concurrent fault detection in finite state machine  monitors the inputs and generatesapriori known property
(FSMs). The proposed method is similar to duplication, wherein a4 should hold for the outputs. A property verifier is utilized

a replica of the circuit acts as a predictor that immediately to indicat iolati fth tv thus detecti ircuit
detects errors by comparison to the original FSM. However, 0 Indicate any violation of the property, thus detecting circul

instead of duplicating the FSM, SPaRe selects a few prediction Mmalfunctions. The simplest approach is to duplicate the circuit,
functions which only partially replicate it. Selection is guided imposinganidentity property betweenthe original outputand the
by the objective (_)f_ minimizin_g_ the incurred hardware overhead replica output, which may be simply examined by a comparator,
yvlthout compromising the ability to detect aII_fauIts,_yet p_053|bly as shown in Fig. 1(a). With the exception of common-mode
introducing fault-detection latency. SPaRe is nonintrusive and fail 11 duplicati i diatelv detect all
does not interfere with the encoding and implementation of the ailures [ _]'_ up 'Ca_ |0r_1_ will iImmediately detect all errors.
original FSM. Experimental results indicate that SPaRe achieves However, it incurs significant hardware overhead that exceeds
significant hardware overhead reduction over both duplication 100% of the cost of the original circuit.
and test Vte?wflt'ggitc rtt_aplicaticm (dTVll\-/lR), a previously reporctjecti While expensive schemes such as duplication detect all func-
concurrent fault-detection method. Moreover, as compared to ; ; ;
TVLR, SPaRe also reduces the average fault-detection latency for .tlonal error;, simpler properﬂe; detecting only structuralits

in a prescribed fault model exist. For example, the method pro-

detecting all permanent faults. . . - ;
posed in [2], [3] reduces the functionality of the duplicate so

Index Terms—Concurrent test, finite state machine (FSMs).  hat jt only predicts the output of the circuit for a set of test vec-
tors adequate to detect all stuck-at faults. As a result, the hard-
|. INTRODUCTION ware overhead of the prediction logic is also reduced. However,

o . , . a functional error is allowed to go undetected by this method
LFCTEONllc.f C'rctl.'ti. are employ(?d na W!de Va_‘tr_'eulluntilthe structural fault that causes itis eventually detected. The
of modern i€ activities, ranging from mission critica concept offault-detection latencgythe time difference between

earance of an error and detection of the causing fault is thus
designers are faced with a broad spectrum of dependabiﬁ}ﬁ’éfoduced I using fauttis thu

reliability, and testability requirements, which necessitate a\e propose a concurrent fault-detection method that further

range of concurrent test me.t hOdS.Of various cost anq efficien plores the tradeoff between hardware overhead and fault-de-
levels. Concurrent test provides circuits with the ability to sel e

e thei tional health duri | functionali ction latency. The paper is organized as follows: related work
examine their operational heaith during normar TUNClonay, ey rrent test is reviewed extensively in Section Il. SPaRe:
and indicate potential malfunctions. While such an indicatio

o ' N Al e ctive partial re lication, the proposed concurrent fault-de-
is highly desirable, designing a concurrently testable circ P P prop

Yction method based on selective partial replication is described

which conforms to the rest of the design specifications is " section 111. Finally, experimental results assessing SPaRe in

a trivial t_ask. ISSUE.ES to be address_ed include the hardware 48%hs of hardware overhead, fault coverage, and fault-detection
and design effort incurred, potential performance degradatl%qency are provided in Section IV.

due to interaction between the circuit logic and the concurrent
test logic, as well as the level of required assurance.

In this paper, we focus on finite state machines (FSMs) and
we explore the tradeoffs between the aforementioned paramelT0 motivate the proposed methodology, we first examine re-
ters, in order to devise a cost-effective, nonintrusive, concurrdated work in the areas of concurrent self-test (CST), concurrent
fault-detection method. Nonintrusiveness implies that hardweggor detection (CED), and concurrent fault detection (CFD)
may only be added in parallel to the FSM, which may not Hé]-[6]. Almost all previous research efforts in these areas share
modified. The additional logic is expected to detect all faultshe objective of being able to deteaft faults. What typically

Moreover, test has to be performed concurrently with the FSflistinguishes them, however, is their position within the tradeoff
operation and may not degrade its performance. space between hardware overhead and fault-detection latency.

Most approaches fall in one of the two ends of this space.
Toward the low end, low-cost CST approaches have been
Manuscript received November 30, 2002; revised July 2, 2003. proppsgd for Comb.m‘_rmonal (.:IrCUItS.. Cj'BIST [7] employs Input
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\ partitioning is employed to reduce the incurred hardware

,R,fl'JTT overhead. Utilization of multiple parity bits, first proposed in
3 v [14], is examined in [15] within the context of FSMs. All these
methods render totally self-checking circuits and guarantee
COMBINATIONAL COMBINATIONAL . . X .
—»  NEXT STATE NEXT STATE <€ error detection with zero latency; on the down side, they are
LoGIC (DUPLICATE) intrusive and relatively expensive. Nonintrusive CED methods
\ | have also been proposed for FSMs. The general algebraic model
NEXS STATE sl d) is introduced in [16]. implementations based on Bose-Lin
v A/ and Berger codes are presented in [17] and [18], respectively.
KBIT SkT-ﬁITTE Finally, compression-based CED for combinational circuits is
STATE REGISTER described in [19].
REGISTER (DUPLICATE) Among the few existing CFD approaches, a method that
. exploits properties of nonlinear adaptive filters is proposed
+ + in [20]. A similar technique is proposed in [21], where the
k'Sg“;“,iiS‘,i’éggY frequency response of linear filters is used as an invari-
~ ; ance property, achieving cost reduction but introducing fault-
FSM ouwuﬂEéEé’RUE’h’I detection latency. A method exploiting transparency of RT-level
v components is described in [22]. Finally, a concurrent fault-
@ detection method is proposed for combinational logic in [2]
and extended to FSMs in [3]. Since this method, which we
n‘||3|T refer to as test vector logic replication (TVLR), is similar to the
INPUT method proposed herein, we briefly describe it below.
* .
m comsm!mom i v A. Test Vector Logic Replication (TVLR)

4 NEXT STATE g NEXT STATE li'T'\lEpsUTT In order to reduce the overhead of duplication, TVLR repli-
Loaic ! L\/%%?JF?SRJEEJ VECTOR? cates only a portion of the original FSM, capable of detecting
k-éIT PREDIC‘IEED BT all faults in th(_e design. More spegifically, ATEQ is performed on

NEXT STATE ‘ NEXT STATE \—\ the combinational next state logic of the original FSM, treating
\4 / the previous state bits as primary inputs, and a complete set
k-BIT ‘ PREDICTED k-BIT o of test vectors is obtained. These test vectors are subsequently
AL { L REGISTER synthesized into a prediction logic that generates the expected
: : next state of the FSM when an input/previous state combination
. . + i Ty # matches a test vector. The outputs of the prediction logic for
’ input/previous state combinations that are not included in the
k'gg“}lﬁig%gg i test vector set are treateddan’t cares Thus, during synthesis,
} i ‘ these outputs are chosen to minimize the required hardware. As
FSM OUTPUT — Igg;ggﬁf,ﬂ aresult, the prediction logic is less expensive than the duplicate
v v next state logic.
(b) However, since the output prediction logic will only generate

the correct next state for input/previous state combinations in-
cluded in the test vector set, the issuefalse alarmsneeds
to be addressed. More specifically, the concurrent test output
resulting in very long fault-detection latency. This problem ishould not be asserted during normal functionality, unless a fault
alleviated in the R-CBIST method described in [8], where theas been detected. Therefore, an additional function is now re-
requirement for a uniquely ordered appearance of all input conuired, indicating whether an input/previous state combination
binations is relaxed at the cost of a small RAM. Nevertheless,a test vector. In the opposite case, the comparison outcome
all input combinations still need to appear before any indicatios not a valid indication of operational health of the FSM and
of circuit correctness is provided. is, therefore, masked through the AND gate in Fig. 1(b). No-
Toward the high end, we find expensive CED methods fdice also that the predicted next state calculation is driven by the
sequential circuits that check the circuit functionality at evemyriginal FSM state register and not by the predicted state reg-
clock cycle, therefore guaranteeing zero error detection latenisger, since the latter may not contain the correct value after an
Reducing the area overhead below the cost of duplicatiorput/previous state combination that is not atest vector. The test
typically requires redesign of the original circuit, thus leadingector set detects faults in the combinational next state logic. In
to intrusive methodologies. Several redesign and resynthesider to also detect the faults in the state register, the comparison
methods are described in [9]-[12], wherein parity or various the predicted next state is delayed by one clock cycle, simi-
unordered codes are employed to encode the states of [Hréy to [15]. If test responses comprise both a logic “1” and a
circuit. Limitations of [12], such as structural constraintsogic “0” at every output, all faults in the state register will also
requiring an inverter-free design, are alleviated in [13], whetee detected.

Fig. 1. (a) Duplication for CED. (b) Test vector logic replication for CFD.



DRINEAS AND MAKRIS: SPaRe: SELECTIVE PARTIAL REPLICATION 1731

As shown in Fig. 1(b), TVLR is nonintrusive, since it leaves uD
the original FSM intact. Despite the addition of one extra #;1—_
function (Is INPUT A TEST VECTOR), a considerable hardware v
overhead reduction is expected. On the down side, faults ST‘T%TE NEggITgTE _
remain undetected until an appropriate test vector appears,| | Logic (DUPLICATE) 2-Bit Up/Down Counter
thus introducing latency. However, given a sizeable test set, i [ U/D PS1PS0| NS1 NSO
tests are performed frequently and low average fault-detection 2 % 0 o0 0 1
latency is expected. 2BIT 2-BIT 2 8 ? é } ?
STATE | pegisren | | 0 1 10 0
ll. PROPOSEDMETHOD REGISTER | pupLicAT®) | | 1 0 0 |1 1
. ) Fé 1 0 1 |0 0
While TVLR trades off hardware for fault-detection latency, 1 1.0 10 1
it is only one possible solution from a wide array of choices. --2—f»—2—+ 3 111 1 0
Minimality of neither the incurred hardware overhead nor the e e
introduced fault-detection latency can be ensured and superior COMPARATOR
methods may exist. In this section, we propose SPaRe, a CFD TEST OUTPUT
method based on selective partial replication. The key idea is + (ERROR IF '1)
presented through a small example, followed by an extensive v
description of the method. (@
A. Motivation ulo
Consider the 2-bit up/down counter described in Fig. 2(a). If . 1
the objective is to detect adlrrors occurring during normal op- ; +
eration, the duplication-based CED scheme will achieve this by C?:g('pggNEAL L C%'\ABE'E';@TT'%%AL
comparing the two outputs of the FSM to the two outputs of its LOGIC TT = LOGIC
replica. If, however, the objective is to detectfallilts, allowing | Psﬁso |
possible fault-detection latency, it is not necessary to compare 2 ‘
both FSM outputs at every clock cycle. When we implemented ,—ZTEF:F 1
the counter we noticed that by observing only one bit per state REGISTER v ¢
transition [shown in boldface in Fig. 2(a)], we are able to detect ; ;
all faults in the FSM. Therefore, for the purpose of CFD, it is —2 o  DFlip-Flop DFu;T-F:Op
sufficient to replicate only partially the FSM, appropriately se- , I / 4_| 1
lecting which bits to predict for each state transition in order to ﬂ‘j; \/
detect all faults. Partial FSM replication implies cost reduction L 5 1-5&/'#532%‘;'\(
over duplication. :
This observation is the basis for the SPaRe methodology out IE&;S#ITFPHI
which is shown on Fig. 2(b) for the 2-bit up/down counter. A # v

combinational prediction logic is used to implement the 1-bit

function that generates for each state transition the value shown ()

in boldface in Fig. 2(a). This value is stored in a D flip-flop andfi9- 2. (a) Duplication and (b) SPaRe on a 2-bit up/down counter.
compared to the corresponding bit of the FSM state register

one clock cycle later. A MUX is used to driv_e the appropriat_pSM outputs to drive to the comparator for edeh+ k)-bit
FSM output to the comparator. The select line of the MUX iBput combination. Similarly to [15], comparison is delayed by
driven by a function of the previous state and the inputs of th@e clock cycle to also detect faults in the state register.
FSM, in this case a simple XOR between PS1 and PS0, delayed,ccess of SPaRe relies on efficient solutions to two key is-
by one clock cycle. All faults in the next state logic are, thugyes: identification of appropriate output values to be replicated
detected. Additionally, by postponing the comparison by ong; the prediction logic and cost-effective selection of circuit
clock cycle, faults in the register are also detected. outputs to which they should be compared. Regarding the first
issue, an ATPG tool capable of generating all test vectors and
reporting both the good and faulty circuit outputs for every fault
The optimization objective of SPaRe is to minimize thé the combinational next state logic is required. This informa-
output width of the prediction logic. Based on the observatidion indicates the faults that can be detected at each output for
that a subset of output bits per state transition is typicalgach input vector and may be used to construct a matrix sim-
sufficient to detect all faults, SPaRe aims at identifying #ar to the one shown in Fig. 4. SPaRe seeks a set of columns
minimal such set. The general version of SPaRe is depictedliat covers all faults, such that the maximum number of output
Fig. 3. For every(n + k)-bit input combination, the prediction bits to be observed for any input vector is minimized. How-
logic generateg outputs that match a subset6but of thek  ever, the exact selection of columns impacts directly the cost of
FSM outputs. A selection logic is required to choose whide selection logic. More specifically, since the prediction logic

B. SPaRe: Selective Partial Replication
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IN ¢ . I VECTOR 0 = VECTOR 21
n | n
I A 1 v
NEXTSTATE |, _ | PREDICTION Fault, 1
oaic 1] LOGIC Faul, 1 1
s rn
k-BIT STATE || PREDICTED
| REGISTER | ; 1-BIT REGISTER
| ‘ |
——k—9 | ! Fault 1 . 1
vy v =
SELECTION INEQUALITY
k LoaGIC COMP/’IRATOR Fig. 4. Fault-detection matrix.
TEST k
ouT y OUTPUT are O; ... 0O, (the next state). We denote the set of g

possible previous state/input combinationsiby

SELECTION LOGIC ) , .
Assume for the moment that we are given the matrix of Fig. 4,

\ n '3 say A. We remind that SPaRe eliminates theDRESSLOGIC
M R § component of Fig. 3. For simplicity, we assume thap2cific
) B A ADDRESS LOGIC input bits, denoted by, andI,, driveall £ MUXs andalso that
. I MUXers . o £ is given. As a result, each MUX selects only among four of
v v FLIP-FLOPS | the FSM outputs; we remove this assumption promptly. Thus,
. kto1 < logk— ktol  <logk—! § the selection logic component of the diagram is fully speci-

i L ] | § fied. The selection logic splits the input vectors to four dis-
‘ r § joint groups, each corresponding to a possible value for the pair
} L1, € {00,01,10,11}; for all vectors in each group tteame
......... Y £ output bits are observed at the output of the selection logic.
We denote the groups b§, Gy, G3, G4. We now state the
problem formally: givenA, the groups=,, Go, G3, G4, and/
pick £ output bits for each group so that the number of covered
only generates af-bit function, additional logic is necessaryfaults is maximized.
to select’ among thek circuit outputs to which the predicted Prior to presenting an algorithm to solve the above problem,
bits will be compared. As shown in Fig. 3, this can be viewede revoke the simplifications we made earlier, starting with the
as/ k-to-1 MUXs, each of which requireleg k address bits. assumption that is given. In practice, we seek the minimum
Therefore, if we allow any possible subset of sizfer every £ for which we can detect all faults. Finding such athough
(n + k)-bit input combination, the address logic will generatis trivial; sincel < ¢ < k, use binary search and solve the
l-log k (n+k)-input functions. Compared to duplication, SPaR&bove probleniog 4 times. We also assumed that the addressing
implementst — ¢ fewer (n + k)-input functions for the predic- bits (; and/;) were given; in practice, we try all possible 2-bit
tion logic, at the cost of implementing- log k (n + k)-input  addressing schemés (n+#k)?/2). If we were to use > 2 bits
functions and k-to-1 MUXs for the selection logic. The cost ofto feed the MUXs, the number of possible addressing schemes
the prediction logic is linear if; the cost of the selection logic, increases; however, since we only allow ugdg . addressing
however, increases almost linearly/inp to/ = k/2, at which  bits, it is always a small number. We note that in this case the
point it starts decreasing, eventually becoming zerb at k. number of groups would increaseZbinstead of 4. Finally, we
Therefore, ift > k/(logk + 1), the total size of the selectionassumed that is fully constructed; obviously, for large circuits,
logic and the prediction logic exceeds the cost of duplicationtime/space constraints render this assumption infeasible. Thus,
Imposing such an upper bound ércould reduce fault cov- in large circuits, the following strategy is employed: for every
erage. Instead, we impose restrictions on the complexity of tfailt, generate a large number (sgyof input vectors detecting
address logic and by extension, on the acceptable solutionsitoif hus, assumingy faults in our circuit, at mostynr vectors
the matrix of Fig. 4. SPaReliminates the address logic all to- are generated. We subsequently identify the faults detected by
gether therefore allowing that thivg k select inputs of each each of these vectors, constructark mr matrix A’ and solve
multiplexer may only be driven directly by aye k out of the the aforementioned problem it instead ofA. Generally, A’
(n+ k) previous state and input bits. The form of acceptable sadmits less efficient solutions tha#; asr increases the two
lutions under this constraint, as well as a selection algorithm feelutions converge.
identifying an appropriate set of columns that detects all faults The size of the solution space for the above problem, as-

are discussed next. suming that’ andc are fixed, is( " t k )( ]; )2, If £ andc are

small constants, the size of the solution space is polynomial in
bothn andk. In practice, though{ might be close td:/2, in

We focus on the next state logic of the FSM, which, givewhich case the size of the solution space grows exponentially
a previous state and an input generates the next state. Therink and it is impossible to explore it exhaustively. To under-
puts to this component arg ... I, (the previous state) andstand its size, ifh = 2,k = 6,/ = 3, andc = 2, there are
Iyt ... Inix (the FSM inputs). The outputs of this component.5 - 106 possible solutions, while, if = 3, there are more than

Fig. 3. SPaRe: selective partial replication.

C. Selection Algorithm
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14-10'! possibilities. Thus, we describe an algorithm to explorather nodes in the tree. We pick these nodes uniformly at random
the space of possible solutions efficiently; given infinite timewith replacement. Finally, we label ti#¢ states-nodes using a
the algorithm would explore the whole state space. In practicendom permutation df . . . 2*; we also label th@” out edges
we explicitly limit its running time. We note that it is not necesfrom eachs; using random permutations @f...2". The ob-
sary to drive all MUXs with the same bits; indeed, better faujéctive of this process is to build complex FSMs in order to as-
coverage might be achieved by using different bits. Yet, the statess the proposed method. Although alternative methods may
space increases with the number of addressing schemes. be suggested, we emphasize that this process has the ability to

Our algorithm is simple: it randomly decides whi€loutput generatell possibleFSMs of K = 2* states ana. inputs. We
bits to generate for each group of input vectors; we denote;by experimented with ten different types @, n) FSMs, namely
the set of output bits that we generate for gréup Initially all (8, 1), (8, 2), (16, 1), (16, 2), (32, 1), (32, 2), (32, 3), (64, 1), (64,
the R;s are empty. The algorithm essentially picks a group a, and (64, 3).
decides which output bit to generate for this group; we decide
which group to p|cI§ using b|a§ed sampling and favqnng groxwpilgorithm SPaRe
whose corresponding; contains fewer elements. Biased sa-
pling is also used to decide which output bit to includefin
We assign acoreto every output bit not already includedi?:
this score reflects thsignificance of this particular output bit
for fault detection. Intuitively, theignificanceof an output bit
is a function of the number of faults it detects, and, in particu
faults that are not detected by a large number of vectois.i
As an example, we tend to favor an output bit that detects two
faults that no other input vector can detect over an output| biigorithm BasicSPaRe
that detects five faults, each detected by ten other input vegtomut: A, G1, G2, Gs, G4, €
as well. Every time an output bit is selected to be includel@;in | output: R, R», R, R4, initially empty.
we remove all faults covered by that bit for any input vector|inpreprocessing:Assign a score to each fault ia,
G;. The above process is repeated until/gllcontain exactly
elements and the fault coverage is reported. If the result is urjsat- score(F;) = nnz(A(;)), j=1...m
isfactory, we repeat the process until either a satisfactory rgsult
emerges or a fixed numb@tof iterations is exceeded:; if the rg- »1#(A(;) denotes the number of nonzero elements invitferow of A.
sult is still unsatisfactory, we try a different addressing schemé? Randomly pick one of théz;, with probability
TheSPaRealgorithm calls théBasicSPaRe&lgorithm with dif- 4
ferentG1, G, G, G4 until a target fault coverage is attained or Pr(picking R;) = (¢ — [Ri|)/ Z:l(“ - IRil)
the run time limit of the scheme is exceeded. -

A brief note onz: while in our experiments a value of= 1 | Denote the one picked biz;.
returned acceptable solutions fast (typically, after trying at mjogt) Assignascoretoeachoutput@h, € Ri,p =1...k(z € R, usuallye = 1).
10 addressing schemes with= 100), one could try different x
values ofz to fine tune the algorithm. As an example,a- score(Op) = ( > Score(Fj)>
creases, our search becomes greedier: the output bit with the Fies
highest score is picked with very high probability. We prefer|to
present our algorithm using generic valuesifpin practice, one
could potentially use training data to learn the “best” value of

for the circuits at hand. Pr(picking O,) = score(Oy,)
Ep: OpeR; score(Op,)

Input: A, ¢
Output: R1, R2, R3, R4 (initially empty).
(a) Create candidat&’y, G2, G3,G4.
(b) BasicSPaRe4, G1, G2, G3, Gy, £)
a 'gc) Repeat (a)—(b) until the fault coverage is above target

dr the running time limit is exceeded.

S = {Fj: Op, and any vector in Gj cover F;}

(c) Randomly pick one of th€,, with probability

IV. EXPERIMENTAL RESULTS Denote the one picked b9,
(d R; = R; U{Op}

In this section, we compare SPaReto TVLR and duplicatioqe) Remove all faults (rows ofi) covered byO,, and any vector irG;.
in terms of hardware overhead, fault coverage, and faUIt'dete@)'Repeat steps (a)—(e) until all te; s contain exactly elements and report the faul
tion latency. In order to preserve generality, we employ rangyerage.
domly generated FSMs ok = 2F states and: inputs. We (iter) Repeat steps (a)—(1 times.
start by building the connected component (a tree) of the FSM,
to guarantee that there exists a path from soroeRhode to
every state; we denote By, i = 1...2*, the states of the Fsm, A+ Hardware Overhead
Starting from the ROT, we add a random numbey of chil- In terms of incurred hardware overhead, the major difference
dren to each state nodg;r; is picked uniformly at random between TVLR, SPaRe, and duplication is in the prediction
from 0...2™ and independently for each state node. We vidibgic. Duplication employs a replica of the combinational
the states nodes in a breadth-first search order and we stop whext state logic of the original FSM, while TVLR employs a
a full tree with all2* states is built. Let; denote the number predictor which is accurate only for test vectors, as well as an
of children ofs;; we add2™ — r; edges from state nodg to additional function indicating whether the current input is a test
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101.39 % 86.00% | 84.83%

33408 10/16 33872 28734
70374 19/32 65578 | 2/3 52846 93.18 % 75.09 % 80.58 %
95275 20/32 83210 | 2/4 52515 87.33 % 55.11 % 63.11 %
186219 35/64 153429 | 2/4 102294 82.39 % 54.93 % 66.67 %
222411 38/64 178794 | 2/5 100303 80.38 % 45.09 % 56.09 %
423014 69 /128 325882 | 2/5 204086 77.03 % 48.24 % 62.62 %
832571 128 /256 615573 | 2/5 369779 73.93 % 44.41 % 60.07 %
504368 70/128 384346 | 3/6 276888 76.20 % 54.89 % 72.04 %
937744 129 /256 688112 | 3/6 522590 73.37 % 55.72 % 75.94 %
1809757 237/512 | 1227689 | 3/6 | 1022400 67.83 % 56.49 % 83.27%

Fig. 5. Hardware overhead comparison of CED based on duplication, CFD based on TVLR, and CFD based on SPaRe.

vector. In contrast, SPaRe employs a predictor that generates cost of duplication and TVLR, indicating the hardware sav-
only a subset of the output bits of the circuit. As a resulings of SPaRe over these approaches. As may be observed, the
SPaRe uses a narrower state register and a harrower comparaaiware overhead of SPaRe is, on average, 45% less than du-
than duplication and TVLR. However, SPaRe employs a feplication and 30% less than TVLR. Furthermore, as the size
additional MUXs, balancing the cost savings of these moduled.the circuit increases, the percentage of predicted output bits
Essentially, in order to compare the three methods, itis adequieSPaRe is expected to decrease, thus resulting in even higher
to compare the cost of the prediction logic employed by eatlardware savings.
of them.

In order to obtain these costs, the next state function of
the FSMs generated through the above process is converte&td-ault Coveage
pla format, synthesized using theigged script of SIS [23],
and mapped to a standard cell library comprising only 2-input By construction, both TVLR and SPaRe are expected to de-
gates. Since the proposed methodology is nonintrusive, i@gt all faults in the original FSM. In order to demonstrate this,
assumptions are made as to how the FSMs are encodedvgrconstruct the FSM with duplication-based CED, the FSM
Optimized_ For TVLR, ATPG is performed using ATALANTA with TVLR-based CFD and the FSM with SPaRe-based CFD in
[24]. The test vector set is subsequently convertgdadormat, |SCAS89 [26] format. The next state logic, the prediction logic
synthesized using theiggedscript of SIS [23], and mapped for TVLR and the prediction logic for SPaRe are obtained as de-
to a standard cell library comprising only 2-input gates. F@cribed in the previous section. Two copies of the original FSM
input combinations that are not in the test set, the outpafid a comparator are used for duplication. One copy of the orig-
of the circuit is set todon't care thus allowing SIS [23] inal FSM, the TVLR prediction logic and a comparator are used
to minimize the hardware. The additional function indicatinér TVLR. One copy of the original FSM, the SPaRe prediction
whether a current input is a test vector is also synthesiz@gic, a narrower comparator and a few MUXs for the selection
together with the predictor. For SPaRe, ATALANTA [24] islogic are used for SPaRe.
used to generate all vectors detecting each fault, and HOPHwo experiments are performed employing these circuits. In
[25] is employed to provide both the good machine and the btk first experiment, we compare the number of faults in the
machine responses for evefyector, fault)pair. This reveals original FSM detectable by SPaRe to those detectable by TVLR
the output bits at which each fault may be detected for eveaynd duplication. HITEC [27] is used to perform ATPG on the
vector. This information is used to construct the matdx three constructed FSMs. In all three, ATPG runs only the faults
shown in Fig. 4, through which the prediction logic functionin the original FSM are targeted and only the Test Output is
for SPaRe are identified. These functions are subsequentipde observable. The results are summarized in Fig. 6. Dupli-
converted topla format, synthesized using thregged script cation detects all testable faults in the original FSM, the number
of SIS [23], and mapped to a standard cell library comprisingf which is reported in the second row. As expected, all faults
only 2-input gates. testable by duplication are also detected by both the TVLR-

In all three cases, the cost of the prediction logic is reportédised CFD method and the SPaRe-based CFD method.
by SIS [23] through therint_map statscommand. The results In the second experiment, we demonstrate the ability of
are summarized in Fig. 5. The cost of duplication is provideégPaRe to also detect all testable faults in the hardware added
first, followed by the number of test vectors required by TVLRor CFD. Two ATPG runs are performed using HITEC [27] on
and the cost of the synthesized TVLR prediction logic. Substite FSM with SPaRe-based CFD, targetad{ circuit faults.
guently, the number of prediction logic bits generated throuddoth the test output and the original FSM outputs are made
the algorithm of Section IlI-C is reported, along with the cost afbservable in the first ATPG run, while only the test output
the synthesized SPaRe prediction logic. Finally, the three riglg-made observable in the second ATPG run. The results are
most columns indicate the cost of TVLR as a percentage of ttemmarized in Fig. 7. As demonstrated, all testable faults in the
cost of duplication, and the cost of SPaRe as a percentagedflitional hardware are also detected by SPaRe-based CFD.
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Fig. 6. Fault coverage of duplication, TVLR, and SPaRe on original FSM.
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Fig. 7. Fault coverage of SPaRe on all faults.

g ] s G
TVLR | SPaRe | TVLR | SPaRe | TVLR | SPaRe | TVLR | SPaRe | TVLR | SPaRe | TVLR | SPaRe
REMAINING 1970 1970 1081 1081 640 640 91 91 25 25 0 0
DETECTED 589 669 1286 1525 1669 1983 2492 2577 2657 2680 2751 2751
2751 MISSED 192 112 384 145 442 128 168 83 69 46 0 0
MAX LAT 7 8 41 46 94 94 451 466 936 947 4203 2714
AVG LAT 0.18 1.32 2.97 2.16 7.86 4.02 38.94 11.66 60.75 20.51 91.05 28.35

Fig. 8. Comparison of fault-detection latency of TVLR-based CFD and SPaRe-based CFD on (64, 3) FSM.

C. Fault-Detection Latency

* While the MAX latency is significant, the AVG latency

The hardware savings achieved by TVLR and SPaRe come
at the cost of introducing fault-detection latency, unlike dupli-
cation which immediately detects all errors. It is not possible to
predict the exact latency of the method, since it depends on the
values that appear at the FSM inputs during normal operation.
Yet, an experimental indication of how much latency is intro-

duced by TVLR and SPaRe is necessary for their evaluation.

ranges only up to 92 vectors for TVLR and 29 vectors
for SPaRe. For example, once all faults are detected, the
MAX latency is 4203 vectors for TVLR and 2714 vectors
for SPaRe. However, the AVG latency is 91.05 vectors for
TVLR and 28.35 vectors for SPaRe, which is only 2.16%
and 1.04% of the respective MAX latency.

* For both TVLR and SPaRe, most faults are detected

We measure fault-detection latency based on fault simulation
of randomly generated input sequences. More specifically, we

use HOPE [25] to perforntwo fault simulations of thesame

sequence of randomly generated inputs, once observing both the

test output and the FSM outputs, and a second time observing
only the test output. The time step at which a fault is detected

during the first fault simulation is théault-activation time,

while the time step at which it is detected during the second

fault simulation is thefault-detectiontime. Fault-detection

latency is the time difference between fault activation and
fault detection, therefore we can calculate the fault-detectionFurthermore, a comparative examination of TVLR and
latency for each fault, as well as the average fault-detectiGPaRe leads to the following two observations.

« SPaRe detects more faults slightly faster than TVLR. A

latency.

Results on the largest example, the (64,3) FSM, are summa-
rized in Fig. 8 for both TVLR and SPaRe. Similar results hold
for all other circuits. We fault simulate a total of 5000 random
patterns and snapshots of the results are shown after 10, 50, As demonstrated, SPaRe consistently detects more faults
100, 500, 1000, and finally, all 5000 patterns are applied. For

each snapshot, we provide the number of fauisaining
nonactivated, the number of faults activated aetectedand
the number of faults activated buatissed(not yet detected)
by TVLR and SPaRe. We also provide tmeaximumand

the averagefault-detection latency for the faults that are both
activated and detected. Based on these results we observe the As demonstrated, SPaRe consistently detects faults with

following.

quickly and a 90-10 rule applies for the AVG latency:
90% of the faults are detected within 50% of the AVG la-
tency, while the other 50% is contributed by the remaining
10% of the faults. For example, once 500 vectors are
applied, 2660 (i.e., 96.69%) of all faults are activated, out
of which 2492 (i.e., 90.57%) are detected by TVLR and
2577 (i.e., 93.67%) by SPaRe. The AVG fault-detection
latency at this point is 38.94 vectors for TVLR and 11.60
vectors for SPaRe, which represents 42.76% and 40.91%
of the AVG latency when all faults are detected.

plot of the faults activated, faults detected by TVLR, and
faults detected by SPaRe as the number of applied random
patterns increases is given in Fig. 9 for circuit (64, 3).

faster than TVLR, up to the convergence point where all
faults are detected by both methods.

SPaRe detects faults with significantly lower AVG latency
than TVLR. A plot of the AVG fault-detection latency
of SPaRe and TVLR as the number of applied random
patterns increases is given in Fig. 10 for circuit (64, 3).

lower AVG latency than TVLR.
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the average fault-detection latency of TVLR and scales favor-
: ably with the size of the circuit. In conclusion, when nonzero
fault-detection latency can be tolerated, SPaRe constitutes a
powerful alternative to both duplication and TVLR.

g
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