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SPaRe: Selective Partial Replication for
Concurrent Fault-Detection in FSMs
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Abstract—We discuss SPaRe: selective partial replication, a
methodology for concurrent fault detection in finite state machine
(FSMs). The proposed method is similar to duplication, wherein
a replica of the circuit acts as a predictor that immediately
detects errors by comparison to the original FSM. However,
instead of duplicating the FSM, SPaRe selects a few prediction
functions which only partially replicate it. Selection is guided
by the objective of minimizing the incurred hardware overhead
without compromising the ability to detect all faults, yet possibly
introducing fault-detection latency. SPaRe is nonintrusive and
does not interfere with the encoding and implementation of the
original FSM. Experimental results indicate that SPaRe achieves
significant hardware overhead reduction over both duplication
and test vector logic replication (TVLR), a previously reported
concurrent fault-detection method. Moreover, as compared to
TVLR, SPaRe also reduces the average fault-detection latency for
detecting all permanent faults.

Index Terms—Concurrent test, finite state machine (FSMs).

I. INTRODUCTION

E LECTRONIC circuits are employed in a wide variety
of modern life activities, ranging from mission critical

applications to simple commodity devices. As a result, circuit
designers are faced with a broad spectrum of dependability,
reliability, and testability requirements, which necessitate a
range of concurrent test methods of various cost and efficiency
levels. Concurrent test provides circuits with the ability to self-
examine their operational health during normal functionality
and indicate potential malfunctions. While such an indication
is highly desirable, designing a concurrently testable circuit
which conforms to the rest of the design specifications is not
a trivial task. Issues to be addressed include the hardware cost
and design effort incurred, potential performance degradation
due to interaction between the circuit logic and the concurrent
test logic, as well as the level of required assurance.

In this paper, we focus on finite state machines (FSMs) and
we explore the tradeoffs between the aforementioned parame-
ters, in order to devise a cost-effective, nonintrusive, concurrent
fault-detection method. Nonintrusiveness implies that hardware
may only be added in parallel to the FSM, which may not be
modified. The additional logic is expected to detect all faults.
Moreover, test has to be performed concurrently with the FSM
operation and may not degrade its performance.
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Concurrent test is based on the addition of hardware that
monitors the inputs and generates ana priori known property
that should hold for the outputs. A property verifier is utilized
to indicate any violation of the property, thus detecting circuit
malfunctions. The simplest approach is to duplicate the circuit,
imposingan identitypropertybetween theoriginaloutputand the
replica output, which may be simply examined by a comparator,
as shown in Fig. 1(a). With the exception of common-mode
failures [1], duplication will immediately detect all errors.
However, it incurs significant hardware overhead that exceeds
100% of the cost of the original circuit.

While expensive schemes such as duplication detect all func-
tionalerrors, simpler properties detecting only structuralfaults
in a prescribed fault model exist. For example, the method pro-
posed in [2], [3] reduces the functionality of the duplicate so
that it only predicts the output of the circuit for a set of test vec-
tors adequate to detect all stuck-at faults. As a result, the hard-
ware overhead of the prediction logic is also reduced. However,
a functional error is allowed to go undetected by this method
until the structural fault that causes it is eventually detected. The
concept offault-detection latency, the time difference between
appearance of an error and detection of the causing fault is thus
introduced.

We propose a concurrent fault-detection method that further
explores the tradeoff between hardware overhead and fault-de-
tection latency. The paper is organized as follows: related work
in concurrent test is reviewed extensively in Section II. SPaRe:
selective partial replication, the proposed concurrent fault-de-
tection method based on selective partial replication is described
in Section III. Finally, experimental results assessing SPaRe in
terms of hardware overhead, fault coverage, and fault-detection
latency are provided in Section IV.

II. RELATED WORK

To motivate the proposed methodology, we first examine re-
lated work in the areas of concurrent self-test (CST), concurrent
error detection (CED), and concurrent fault detection (CFD)
[4]–[6]. Almost all previous research efforts in these areas share
the objective of being able to detectall faults. What typically
distinguishes them, however, is their position within the tradeoff
space between hardware overhead and fault-detection latency.
Most approaches fall in one of the two ends of this space.

Toward the low end, low-cost CST approaches have been
proposed for combinational circuits. C-BIST [7] employs input
monitoring and existing off-line built-in self-test hardware to
perform CST. While hardware overhead is very low, the method
relies on an ordered appearance of all possible input vectors be-
fore a signature indicating circuit correctness can be calculated,
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(a)

(b)

Fig. 1. (a) Duplication for CED. (b) Test vector logic replication for CFD.

resulting in very long fault-detection latency. This problem is
alleviated in the R-CBIST method described in [8], where the
requirement for a uniquely ordered appearance of all input com-
binations is relaxed at the cost of a small RAM. Nevertheless,
all input combinations still need to appear before any indication
of circuit correctness is provided.

Toward the high end, we find expensive CED methods for
sequential circuits that check the circuit functionality at every
clock cycle, therefore guaranteeing zero error detection latency.
Reducing the area overhead below the cost of duplication
typically requires redesign of the original circuit, thus leading
to intrusive methodologies. Several redesign and resynthesis
methods are described in [9]–[12], wherein parity or various
unordered codes are employed to encode the states of the
circuit. Limitations of [12], such as structural constraints
requiring an inverter-free design, are alleviated in [13], where

partitioning is employed to reduce the incurred hardware
overhead. Utilization of multiple parity bits, first proposed in
[14], is examined in [15] within the context of FSMs. All these
methods render totally self-checking circuits and guarantee
error detection with zero latency; on the down side, they are
intrusive and relatively expensive. Nonintrusive CED methods
have also been proposed for FSMs. The general algebraic model
is introduced in [16]. implementations based on Bose–Lin
and Berger codes are presented in [17] and [18], respectively.
Finally, compression-based CED for combinational circuits is
described in [19].

Among the few existing CFD approaches, a method that
exploits properties of nonlinear adaptive filters is proposed
in [20]. A similar technique is proposed in [21], where the
frequency response of linear filters is used as an invari-
ance property, achieving cost reduction but introducing fault-
detection latency. A method exploiting transparency of RT-level
components is described in [22]. Finally, a concurrent fault-
detection method is proposed for combinational logic in [2]
and extended to FSMs in [3]. Since this method, which we
refer to as test vector logic replication (TVLR), is similar to the
method proposed herein, we briefly describe it below.

A. Test Vector Logic Replication (TVLR)

In order to reduce the overhead of duplication, TVLR repli-
cates only a portion of the original FSM, capable of detecting
all faults in the design. More specifically, ATPG is performed on
the combinational next state logic of the original FSM, treating
the previous state bits as primary inputs, and a complete set
of test vectors is obtained. These test vectors are subsequently
synthesized into a prediction logic that generates the expected
next state of the FSM when an input/previous state combination
matches a test vector. The outputs of the prediction logic for
input/previous state combinations that are not included in the
test vector set are treated asdon’t cares. Thus, during synthesis,
these outputs are chosen to minimize the required hardware. As
a result, the prediction logic is less expensive than the duplicate
next state logic.

However, since the output prediction logic will only generate
the correct next state for input/previous state combinations in-
cluded in the test vector set, the issue offalse alarmsneeds
to be addressed. More specifically, the concurrent test output
should not be asserted during normal functionality, unless a fault
has been detected. Therefore, an additional function is now re-
quired, indicating whether an input/previous state combination
is a test vector. In the opposite case, the comparison outcome
is not a valid indication of operational health of the FSM and
is, therefore, masked through the AND gate in Fig. 1(b). No-
tice also that the predicted next state calculation is driven by the
original FSM state register and not by the predicted state reg-
ister, since the latter may not contain the correct value after an
input/previous state combination that is not a test vector. The test
vector set detects faults in the combinational next state logic. In
order to also detect the faults in the state register, the comparison
of the predicted next state is delayed by one clock cycle, simi-
larly to [15]. If test responses comprise both a logic “1” and a
logic “0” at every output, all faults in the state register will also
be detected.
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As shown in Fig. 1(b), TVLR is nonintrusive, since it leaves
the original FSM intact. Despite the addition of one extra
function (IS INPUT A TEST VECTOR), a considerable hardware
overhead reduction is expected. On the down side, faults
remain undetected until an appropriate test vector appears,
thus introducing latency. However, given a sizeable test set,
tests are performed frequently and low average fault-detection
latency is expected.

III. PROPOSEDMETHOD

While TVLR trades off hardware for fault-detection latency,
it is only one possible solution from a wide array of choices.
Minimality of neither the incurred hardware overhead nor the
introduced fault-detection latency can be ensured and superior
methods may exist. In this section, we propose SPaRe, a CFD
method based on selective partial replication. The key idea is
presented through a small example, followed by an extensive
description of the method.

A. Motivation

Consider the 2-bit up/down counter described in Fig. 2(a). If
the objective is to detect allerrorsoccurring during normal op-
eration, the duplication-based CED scheme will achieve this by
comparing the two outputs of the FSM to the two outputs of its
replica. If, however, the objective is to detect allfaults, allowing
possible fault-detection latency, it is not necessary to compare
both FSM outputs at every clock cycle. When we implemented
the counter we noticed that by observing only one bit per state
transition [shown in boldface in Fig. 2(a)], we are able to detect
all faults in the FSM. Therefore, for the purpose of CFD, it is
sufficient to replicate only partially the FSM, appropriately se-
lecting which bits to predict for each state transition in order to
detect all faults. Partial FSM replication implies cost reduction
over duplication.

This observation is the basis for the SPaRe methodology
which is shown on Fig. 2(b) for the 2-bit up/down counter. A
combinational prediction logic is used to implement the 1-bit
function that generates for each state transition the value shown
in boldface in Fig. 2(a). This value is stored in a D flip-flop and
compared to the corresponding bit of the FSM state register
one clock cycle later. A MUX is used to drive the appropriate
FSM output to the comparator. The select line of the MUX is
driven by a function of the previous state and the inputs of the
FSM, in this case a simple XOR between PS1 and PS0, delayed
by one clock cycle. All faults in the next state logic are, thus,
detected. Additionally, by postponing the comparison by one
clock cycle, faults in the register are also detected.

B. SPaRe: Selective Partial Replication

The optimization objective of SPaRe is to minimize the
output width of the prediction logic. Based on the observation
that a subset of output bits per state transition is typically
sufficient to detect all faults, SPaRe aims at identifying a
minimal such set. The general version of SPaRe is depicted in
Fig. 3. For every -bit input combination, the prediction
logic generates outputs that match a subset ofout of the
FSM outputs. A selection logic is required to choose which

(a)

(b)

Fig. 2. (a) Duplication and (b) SPaRe on a 2-bit up/down counter.

FSM outputs to drive to the comparator for each -bit
input combination. Similarly to [15], comparison is delayed by
one clock cycle to also detect faults in the state register.

Success of SPaRe relies on efficient solutions to two key is-
sues: identification of appropriate output values to be replicated
by the prediction logic and cost-effective selection of circuit
outputs to which they should be compared. Regarding the first
issue, an ATPG tool capable of generating all test vectors and
reporting both the good and faulty circuit outputs for every fault
in the combinational next state logic is required. This informa-
tion indicates the faults that can be detected at each output for
each input vector and may be used to construct a matrix sim-
ilar to the one shown in Fig. 4. SPaRe seeks a set of columns
that covers all faults, such that the maximum number of output
bits to be observed for any input vector is minimized. How-
ever, the exact selection of columns impacts directly the cost of
the selection logic. More specifically, since the prediction logic
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Fig. 3. SPaRe: selective partial replication.

only generates an-bit function, additional logic is necessary
to select among the circuit outputs to which the predicted
bits will be compared. As shown in Fig. 3, this can be viewed
as -to-1 MUXs, each of which requires address bits.
Therefore, if we allow any possible subset of sizefor every

-bit input combination, the address logic will generate
-input functions. Compared to duplication, SPaRe

implements fewer -input functions for the predic-
tion logic, at the cost of implementing -input
functions and -to-1 MUXs for the selection logic. The cost of
the prediction logic is linear in; the cost of the selection logic,
however, increases almost linearly inup to , at which
point it starts decreasing, eventually becoming zero at .
Therefore, if , the total size of the selection
logic and the prediction logic exceeds the cost of duplication.

Imposing such an upper bound oncould reduce fault cov-
erage. Instead, we impose restrictions on the complexity of the
address logic and by extension, on the acceptable solutions on
the matrix of Fig. 4. SPaReeliminates the address logic all to-
gether, therefore allowing that the select inputs of each
multiplexer may only be driven directly by any out of the

previous state and input bits. The form of acceptable so-
lutions under this constraint, as well as a selection algorithm for
identifying an appropriate set of columns that detects all faults
are discussed next.

C. Selection Algorithm

We focus on the next state logic of the FSM, which, given
a previous state and an input generates the next state. The in-
puts to this component are (the previous state) and

(the FSM inputs). The outputs of this component

Fig. 4. Fault-detection matrix.

are (the next state). We denote the set of the
possible previous state/input combinations by.

Assume for the moment that we are given the matrix of Fig. 4,
say . We remind that SPaRe eliminates the ADDRESSLOGIC

component of Fig. 3. For simplicity, we assume that 2specific
input bits, denoted by and , driveall MUXs andalso that

is given. As a result, each MUX selects only among four of
the FSM outputs; we remove this assumption promptly. Thus,
the selection logic component of the diagram is fully speci-
fied. The selection logic splits the input vectors to four dis-
joint groups, each corresponding to a possible value for the pair

; for all vectors in each group thesame
output bits are observed at the output of the selection logic.

We denote the groups by . We now state the
problem formally: given , the groups , and
pick output bits for each group so that the number of covered
faults is maximized.

Prior to presenting an algorithm to solve the above problem,
we revoke the simplifications we made earlier, starting with the
assumption that is given. In practice, we seek the minimum

for which we can detect all faults. Finding such anthough
is trivial; since , use binary search and solve the
above problem times. We also assumed that the addressing
bits ( and ) were given; in practice, we try all possible 2-bit
addressing schemes . If we were to use bits
to feed the MUXs, the number of possible addressing schemes
increases; however, since we only allow up to addressing
bits, it is always a small number. We note that in this case the
number of groups would increase toinstead of 4. Finally, we
assumed that is fully constructed; obviously, for large circuits,
time/space constraints render this assumption infeasible. Thus,
in large circuits, the following strategy is employed: for every
fault, generate a large number (say) of input vectors detecting
it. Thus, assuming faults in our circuit, at most, vectors
are generated. We subsequently identify the faults detected by
each of these vectors, construct an matrix and solve
the aforementioned problem in instead of . Generally,
admits less efficient solutions than; as increases the two
solutions converge.

The size of the solution space for the above problem, as-

suming that and are fixed, is . If and are

small constants, the size of the solution space is polynomial in
both and . In practice, though, might be close to , in
which case the size of the solution space grows exponentially
in and it is impossible to explore it exhaustively. To under-
stand its size, if , and , there are

possible solutions, while, if , there are more than
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possibilities. Thus, we describe an algorithm to explore
the space of possible solutions efficiently; given infinite time,
the algorithm would explore the whole state space. In practice,
we explicitly limit its running time. We note that it is not neces-
sary to drive all MUXs with the same bits; indeed, better fault
coverage might be achieved by using different bits. Yet, the state
space increases with the number of addressing schemes.

Our algorithm is simple: it randomly decides whichoutput
bits to generate for each group of input vectors; we denote by
the set of output bits that we generate for group. Initially all
the s are empty. The algorithm essentially picks a group and
decides which output bit to generate for this group; we decide
which group to pick using biased sampling and favoring groups
whose corresponding contains fewer elements. Biased sam-
pling is also used to decide which output bit to include in.
We assign ascoreto every output bit not already included in:
this score reflects thesignificanceof this particular output bit
for fault detection. Intuitively, thesignificanceof an output bit
is a function of the number of faults it detects, and, in particular,
faults that are not detected by a large number of vectors in.
As an example, we tend to favor an output bit that detects two
faults that no other input vector can detect over an output bit
that detects five faults, each detected by ten other input vectors
as well. Every time an output bit is selected to be included in,
we remove all faults covered by that bit for any input vector in

. The above process is repeated until allcontain exactly
elements and the fault coverage is reported. If the result is unsat-
isfactory, we repeat the process until either a satisfactory result
emerges or a fixed numberof iterations is exceeded; if the re-
sult is still unsatisfactory, we try a different addressing scheme.
TheSPaRealgorithm calls theBasicSPaRealgorithm with dif-
ferent until a target fault coverage is attained or
the run time limit of the scheme is exceeded.

A brief note on : while in our experiments a value of
returned acceptable solutions fast (typically, after trying at most
10 addressing schemes with ), one could try different
values of to fine tune the algorithm. As an example, asin-
creases, our search becomes greedier: the output bit with the
highest score is picked with very high probability. We prefer to
present our algorithm using generic values for; in practice, one
could potentially use training data to learn the “best” value of
for the circuits at hand.

IV. EXPERIMENTAL RESULTS

In this section, we compare SPaRe to TVLR and duplication,
in terms of hardware overhead, fault coverage, and fault-detec-
tion latency. In order to preserve generality, we employ ran-
domly generated FSMs of states and inputs. We
start by building the connected component (a tree) of the FSM,
to guarantee that there exists a path from some ROOT node to
every state; we denote by , the states of the FSM.
Starting from the ROOT, we add a random number of chil-
dren to each state node is picked uniformly at random
from and independently for each state node. We visit
the states nodes in a breadth-first search order and we stop when
a full tree with all states is built. Let denote the number
of children of ; we add edges from state node to

other nodes in the tree. We pick these nodes uniformly at random
with replacement. Finally, we label the states-nodes using a
random permutation of ; we also label the out edges
from each using random permutations of . The ob-
jective of this process is to build complex FSMs in order to as-
sess the proposed method. Although alternative methods may
be suggested, we emphasize that this process has the ability to
generateall possibleFSMs of states and inputs. We
experimented with ten different types of FSMs, namely
(8, 1), (8, 2), (16, 1), (16, 2), (32, 1), (32, 2), (32, 3), (64, 1), (64,
2), and (64, 3).

Algorithm SPaRe

Input:

Output: (initially empty).

(a) Create candidate .

(b) BasicSPaRe

(c) Repeat (a)–(b) until the fault coverage is above target

or the running time limit is exceeded.

Algorithm BasicSPaRe

Input:

Output: , initially empty.

Preprocessing:Assign a score to each fault in,

denotes the number of nonzero elements in the-th row of .

(a) Randomly pick one of the , with probability

Denote the one picked by .

(b) Assign a score to each output bit ( , usually ).

(c) Randomly pick one of the , with probability

Denote the one picked by .

(d)

(e) Remove all faults (rows of ) covered by and any vector in .

(f) Repeat steps (a)–(e) until all the s contain exactly elements and report the fault

coverage.

(iter) Repeat steps (a)–(f) times.

A. Hardware Overhead

In terms of incurred hardware overhead, the major difference
between TVLR, SPaRe, and duplication is in the prediction
logic. Duplication employs a replica of the combinational
next state logic of the original FSM, while TVLR employs a
predictor which is accurate only for test vectors, as well as an
additional function indicating whether the current input is a test
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Fig. 5. Hardware overhead comparison of CED based on duplication, CFD based on TVLR, and CFD based on SPaRe.

vector. In contrast, SPaRe employs a predictor that generates
only a subset of the output bits of the circuit. As a result,
SPaRe uses a narrower state register and a narrower comparator
than duplication and TVLR. However, SPaRe employs a few
additional MUXs, balancing the cost savings of these modules.
Essentially, in order to compare the three methods, it is adequate
to compare the cost of the prediction logic employed by each
of them.

In order to obtain these costs, the next state function of
the FSMs generated through the above process is converted to
pla format, synthesized using theruggedscript of SIS [23],
and mapped to a standard cell library comprising only 2-input
gates. Since the proposed methodology is nonintrusive, no
assumptions are made as to how the FSMs are encoded or
optimized. For TVLR, ATPG is performed using ATALANTA
[24]. The test vector set is subsequently converted topla format,
synthesized using theruggedscript of SIS [23], and mapped
to a standard cell library comprising only 2-input gates. For
input combinations that are not in the test set, the output
of the circuit is set todon’t care, thus allowing SIS [23]
to minimize the hardware. The additional function indicating
whether a current input is a test vector is also synthesized
together with the predictor. For SPaRe, ATALANTA [24] is
used to generate all vectors detecting each fault, and HOPE
[25] is employed to provide both the good machine and the bad
machine responses for every(vector, fault)pair. This reveals
the output bits at which each fault may be detected for every
vector. This information is used to construct the matrix
shown in Fig. 4, through which the prediction logic functions
for SPaRe are identified. These functions are subsequently
converted topla format, synthesized using theruggedscript
of SIS [23], and mapped to a standard cell library comprising
only 2-input gates.

In all three cases, the cost of the prediction logic is reported
by SIS [23] through theprint map statscommand. The results
are summarized in Fig. 5. The cost of duplication is provided
first, followed by the number of test vectors required by TVLR
and the cost of the synthesized TVLR prediction logic. Subse-
quently, the number of prediction logic bits generated through
the algorithm of Section III-C is reported, along with the cost of
the synthesized SPaRe prediction logic. Finally, the three right-
most columns indicate the cost of TVLR as a percentage of the
cost of duplication, and the cost of SPaRe as a percentage of

the cost of duplication and TVLR, indicating the hardware sav-
ings of SPaRe over these approaches. As may be observed, the
hardware overhead of SPaRe is, on average, 45% less than du-
plication and 30% less than TVLR. Furthermore, as the size
of the circuit increases, the percentage of predicted output bits
for SPaRe is expected to decrease, thus resulting in even higher
hardware savings.

B. Fault Coverage

By construction, both TVLR and SPaRe are expected to de-
tect all faults in the original FSM. In order to demonstrate this,
we construct the FSM with duplication-based CED, the FSM
with TVLR-based CFD and the FSM with SPaRe-based CFD in
ISCAS89 [26] format. The next state logic, the prediction logic
for TVLR and the prediction logic for SPaRe are obtained as de-
scribed in the previous section. Two copies of the original FSM
and a comparator are used for duplication. One copy of the orig-
inal FSM, the TVLR prediction logic and a comparator are used
for TVLR. One copy of the original FSM, the SPaRe prediction
logic, a narrower comparator and a few MUXs for the selection
logic are used for SPaRe.

Two experiments are performed employing these circuits. In
the first experiment, we compare the number of faults in the
original FSM detectable by SPaRe to those detectable by TVLR
and duplication. HITEC [27] is used to perform ATPG on the
three constructed FSMs. In all three, ATPG runs only the faults
in the original FSM are targeted and only the Test Output is
made observable. The results are summarized in Fig. 6. Dupli-
cation detects all testable faults in the original FSM, the number
of which is reported in the second row. As expected, all faults
testable by duplication are also detected by both the TVLR-
based CFD method and the SPaRe-based CFD method.

In the second experiment, we demonstrate the ability of
SPaRe to also detect all testable faults in the hardware added
for CFD. Two ATPG runs are performed using HITEC [27] on
the FSM with SPaRe-based CFD, targetingall circuit faults.
Both the test output and the original FSM outputs are made
observable in the first ATPG run, while only the test output
is made observable in the second ATPG run. The results are
summarized in Fig. 7. As demonstrated, all testable faults in the
additional hardware are also detected by SPaRe-based CFD.
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Fig. 6. Fault coverage of duplication, TVLR, and SPaRe on original FSM.

Fig. 7. Fault coverage of SPaRe on all faults.

Fig. 8. Comparison of fault-detection latency of TVLR-based CFD and SPaRe-based CFD on (64, 3) FSM.

C. Fault-Detection Latency

The hardware savings achieved by TVLR and SPaRe come
at the cost of introducing fault-detection latency, unlike dupli-
cation which immediately detects all errors. It is not possible to
predict the exact latency of the method, since it depends on the
values that appear at the FSM inputs during normal operation.
Yet, an experimental indication of how much latency is intro-
duced by TVLR and SPaRe is necessary for their evaluation.

We measure fault-detection latency based on fault simulation
of randomly generated input sequences. More specifically, we
use HOPE [25] to performtwo fault simulations of thesame
sequence of randomly generated inputs, once observing both the
test output and the FSM outputs, and a second time observing
only the test output. The time step at which a fault is detected
during the first fault simulation is thefault-activation time,
while the time step at which it is detected during the second
fault simulation is thefault-detection time. Fault-detection
latency is the time difference between fault activation and
fault detection, therefore we can calculate the fault-detection
latency for each fault, as well as the average fault-detection
latency.

Results on the largest example, the (64,3) FSM, are summa-
rized in Fig. 8 for both TVLR and SPaRe. Similar results hold
for all other circuits. We fault simulate a total of 5000 random
patterns and snapshots of the results are shown after 10, 50,
100, 500, 1000, and finally, all 5000 patterns are applied. For
each snapshot, we provide the number of faultsremaining
nonactivated, the number of faults activated anddetected, and
the number of faults activated butmissed(not yet detected)
by TVLR and SPaRe. We also provide themaximumand
the averagefault-detection latency for the faults that are both
activated and detected. Based on these results we observe the
following.

• While the MAX latency is significant, the AVG latency
ranges only up to 92 vectors for TVLR and 29 vectors
for SPaRe. For example, once all faults are detected, the
MAX latency is 4203 vectors for TVLR and 2714 vectors
for SPaRe. However, the AVG latency is 91.05 vectors for
TVLR and 28.35 vectors for SPaRe, which is only 2.16%
and 1.04% of the respective MAX latency.

• For both TVLR and SPaRe, most faults are detected
quickly and a 90–10 rule applies for the AVG latency:
90% of the faults are detected within 50% of the AVG la-
tency, while the other 50% is contributed by the remaining
10% of the faults. For example, once 500 vectors are
applied, 2660 (i.e., 96.69%) of all faults are activated, out
of which 2492 (i.e., 90.57%) are detected by TVLR and
2577 (i.e., 93.67%) by SPaRe. The AVG fault-detection
latency at this point is 38.94 vectors for TVLR and 11.60
vectors for SPaRe, which represents 42.76% and 40.91%
of the AVG latency when all faults are detected.

Furthermore, a comparative examination of TVLR and
SPaRe leads to the following two observations.

• SPaRe detects more faults slightly faster than TVLR. A
plot of the faults activated, faults detected by TVLR, and
faults detected by SPaRe as the number of applied random
patterns increases is given in Fig. 9 for circuit (64, 3).
As demonstrated, SPaRe consistently detects more faults
faster than TVLR, up to the convergence point where all
faults are detected by both methods.

• SPaRe detects faults with significantly lower AVG latency
than TVLR. A plot of the AVG fault-detection latency
of SPaRe and TVLR as the number of applied random
patterns increases is given in Fig. 10 for circuit (64, 3).
As demonstrated, SPaRe consistently detects faults with
lower AVG latency than TVLR.
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Fig. 9. Fault coverage versus number of random patterns for (64, 3) FSM.

Fig. 10. Average latency versus number of random patterns for (64, 3) FSM.

V. CONCLUSION

Design of controller circuits with cost-effective concurrent
test capabilities requires careful examination of the tradeoffs
between the conflicting objectives of low hardware overhead,
low fault-detection latency, and high fault coverage. SPaRe, the
proposed CFD method, explores the tradeoff between fault-de-
tection latency and hardware overhead, under the additional
constraint that the original circuit design may not be altered.
Thus, a comparison-based approach is employed, wherein the
next state logic of the original FSM is partially replicated
into a smaller prediction logic which selectively tests the cir-
cuit during normal operation. The problem of identifying the
minimum number of adequate prediction functions is theoreti-
cally formulated and an algorithm for efficient selective partial
replication is proposed. Experimental results demonstrate that
SPaRe reduces significantly the incurred hardware overhead
over both duplication and TVLR, a previously proposed CFD
method, while preserving the ability to detect all permanent
faults in the circuit. Further reduction of this overhead is
anticipated as the size of the circuit increases. While these
savings come at the cost of introducing fault-detection latency,
the experimentally observed average latency is smaller than

the average fault-detection latency of TVLR and scales favor-
ably with the size of the circuit. In conclusion, when nonzero
fault-detection latency can be tolerated, SPaRe constitutes a
powerful alternative to both duplication and TVLR.
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