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Short Papers
Entropy-Driven Parity-Tree Selection for Low-Overhead
Concurrent Error Detection in Finite State Machines

Sobeeh Almukhaizim, Petros Drineas, and Yiorgos Makris

Abstract—This paper presents discuss the problem of parity-tree selec-
tion for performing concurrent error detection (CED) with low overhead in
finite state machines (FSMs). We first develop a nonintrusive CED method
based on compaction of the state/output bits of an FSM via parity trees
and comparison to the correct responses, which are generated through
additional on-chip parity prediction hardware. Similar to off-line test-
response-compaction practices, this method minimizes the number of par-
ity trees required for performing lossless compaction. However, while a few
parity trees are typically sufficient, the area and the power consumption
of the corresponding parity predictor is not always in proportion with
the number of implemented functions. Therefore, parity-tree-selection
methods that minimize the overhead of the parity predictor, rather than
the number of parity trees, are required. Towards this end, we then extend
our method into a systematic search that exploits the correlation between
the area and the power consumption of a function and its entropy, in order
to select parity trees that minimize the incurred overhead. Experimental
results on benchmark circuits demonstrate that this solution achieves
significant reduction in area and power consumption over the basic method
that simply minimizes the number of parity trees.

Index Terms—Concurrent error detection (CED), entropy, on-line test,
parity trees.

I. INTRODUCTION

Parity constitutes a powerful tool for examining the functional
correctness of a circuit and has been extensively used in both off-
line- [1]–[3] and on-line-test [4]–[6] methods. In an off-line test,
for example, parity trees are often employed to perform lossless
compaction of the circuit responses, in order to reduce the amount
of test data. Since the correct responses are stored in the memory
of the automatic test equipment (ATE), the optimization objective of
this compaction is the minimization of the number of parity trees
necessary and, by extension, the corresponding ATE bandwidth and
storage requirements. The same compaction principle can also be
used for performing on-line concurrent error detection (CED). In this
case, however, the correct responses are not explicitly stored but are
generated through additional parity prediction functions implemented
in hardware. Therefore, the compaction optimization objective should
be the minimization of the overhead incurred by the parity prediction
hardware, rather than the minimization of the number of parity trees.
Interestingly, selecting the minimum number of parity trees does not
necessarily result in a minimal overhead implementation of the parity
predictor.
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In this paper, we develop a low-overhead solution to the problem
of nonintrusive parity-based CED in finite state machines (FSMs).
First, in Section III, we demonstrate the general principle of this CED
method, which is based on compaction of the state/output bits of an
FSM via parity trees and comparison to the correct responses that are
generated by on-chip parity prediction functions. We follow the para-
digm of off-line-test methods and we set our optimization objective as
the minimization of the number of parity trees necessary for lossless
compaction. We formulate the problem as an integer program and
we employ an algorithm based on linear-programming relaxation and
randomized rounding to identify feasible solutions. The compaction
ratio achieved by this method is typically substantial. This implies that
the number of parity prediction functions implemented in hardware is
significantly reduced as compared to duplication, which is the extreme
case of nonintrusive parity-based CED with zero compaction ratio.
Nevertheless, as explained through an example in Section IV, the
corresponding savings in area and power are not always commensurate
with this reduction.

To address this problem, in Section V, we then propose a systematic
method for selecting parity trees based on the overhead incurred by
the corresponding parity prediction functions. The proposed method
estimates the overhead of potential solutions by estimating the en-
tropy of the parity prediction functions. Cheng and Agrawal [7]
pioneered the use of entropy for estimating the complexity of a
multioutput function. Their observations have been followed by other
works [8]–[11], establishing the correlation between the entropy of
a function and the area and power-consumption overhead incurred
by its implementation. Hardware estimators that are more accurate
than entropy would certainly be of great interest, yet to the best of
our knowledge, no such estimators have been proposed either in the
theoretical computer science or the CAD community. The proposed
algorithm is based on the following three principles:

1) Low entropy corresponds to nonrandom functions and thus, to
cheaper and less power-consuming hardware implementations.

2) Entropy estimation is feasible via uniform sampling.
3) A biased random walk in the set of feasible solutions, using

entropy as the potential function and a bias towards entropy
minimization, converges to optimal feasible solutions.

We emphasize the high complexity of the problem at hand, which
arises from the twofold objective of achieving lossless compaction
while minimizing the overhead incurred by the parity predictor. Al-
though lossless compaction can be expressed as a linear optimization
problem, overhead minimization leads to nonlinearities that are much
harder to handle. In particular, these nonlinearities arise from the
attempt to minimize and compute the entropy of candidate predictor
circuits. In order to address these issues, we combine several algo-
rithmic techniques. Randomized rounding is again used to solve the
integer-linear-programming (ILP) formulation of lossless compaction;
Monte Carlo sampling techniques are used to estimate the entropy
of a function and, by extension, the incurred overhead; and the
Markov-chain–Monte Carlo method and, in particular, the metropo-
lis random walk are used to minimize an entropy-based potential
function.

As demonstrated through experimental results on benchmark FSMs
in Section VI, the basic method that selects the minimal number of par-
ity trees yields a CED solution that requires on average 52.04% fewer
parity prediction functions than duplication, yet only saves an average
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of 20.72% in area and 20.97% in power consumption. However, when
parity-trees are selected by the entropy-driven algorithm, additional
savings of 24.81% in area and 23.16% in power consumption are
achieved.

II. RELATED WORK IN COST-DRIVEN

PARITY-TREE SELECTION

The only previous work wherein parity-tree selection is driven by
the actual hardware cost of the implementation is [5]. This method
partitions the outputs of the circuit into multiple groups and computes
the parity of each of these groups using parity trees. A check symbol
generator generates the expected parity of each of these groups and
a checker compares the computed parity to the expected parity. The
method proposed in [5] ensures that any single fault will affect at most
one output of each group by resynthesizing the circuit such that no
logic sharing exists between outputs belonging to the same group. To
minimize the incurred area overhead, a cost function is used, which
reflects the exact total cost of the resynthesized circuit and the CED
overhead as obtained through actual synthesis. Subsequently, they
guide the heuristic formation of the parity groups towards minimiza-
tion of this cost function.

The method in [5] shares many similarities with our method. Both
methods detect any error that results in an odd number of incorrect
output bits in one or more groups and use a simple comparator
as the checker. However, the two methods have many fundamental
differences. First, the method in [5] is intrusive, since it resynthesizes
the circuit, while the proposed method is nonintrusive, since the
original circuit is intact. Second, the cost function of [5] is exact, based
on synthesis of potential solutions. In contrast, our method uses an
entropic potential function that allows rapid exploration of a larger
search space. Finally, the method in [5] employs structural analysis to
identify the set of errors to be addressed. In addition to this structural
analysis, which our method also uses for large circuits, we provide the
option of functional analysis via fault-simulation to identify a more
accurate set of errors of interest.

III. PARITY-BASED CED FOR FSMS

In this section, we develop a parity-based implementation of the
general algebraic CED method for FSMs [12], wherein a set of parity
trees performs lossless compaction of the circuit responses. Additional
hardware is subsequently used to predict the compacted error-free
responses, and a comparator is employed to identify any discrepancy
between the output of the compactor and the output of the predictor.
In an effort to reduce the incurred overhead, this method minimizes
the number of parity trees required for lossless compaction and, by
extension, the number of parity prediction functions that will be imple-
mented on-chip. The proposed method detects all errors in a specified
error model. Such a model is prescribed by providing the error-
free response and all erroneous responses of interest for every FSM
transition. We note that this general method can accommodate any
error model, regardless of whether they result from a single or multiple
error sources. Target error models are expected to be restricted, in the
sense that the set of resulting erroneous responses should be a subset of
all possible circuit responses. Indeed, for an unrestricted error model,
wherein an error-free response may be transformed into any erroneous
response, information theory proves that any nonintrusive CED circuit
will be as complex as the original circuit [13], making duplication
the most appropriate solution. However, more cost-effective solutions
may be devised through compaction [14] when a restricted error
model is specified.

Fig. 1. FSM example and EDT.

A. Method Overview

Consider the next state/output combinational logic of the FSM
shown in Fig. 1(a), which has m inputs and n = ns + no outputs,
out of which ns are state bits and no are outputs bits. For every
combination of input and previous state, any error will manifest
itself as a difference between the correct response and the erroneous
response. This difference is detectable in a nonempty set of state and
output bits. Each such set constitutes an erroneous case (EC). Clearly,
several combinations of a transition and an error may lead to the same
EC, i.e., the same set of bits on which the error may be detected during
the transition. The set of all ECs may be represented in the tabular
format of Fig. 1(b), where columns correspond to the n state/output
bits, rows correspond to the f distinct ECs, and entries of “1” in the
table indicate the state/output bits at which each EC is detectable [15].
This error detectability table (EDT) is the mechanism for prescribing
any target error model.

Given a model for the source of the errors (e.g., single-line faults),
construction of the EDT can be done in two ways, depending on the
size of the circuit. For small circuits, exhaustive fault simulation can
be performed to construct an EDT that contains the exact ECs that
can occur. For large circuits where exhaustive fault simulation is not
an option, a structural analysis based on cones of logic, similar to
the one performed in [5], can be employed. Since the functionality
of the circuit is not taken into account in this case, the resulting EDT
is pessimistic, in the sense that it contains ECs that may never occur
in practice. While this places additional unnecessary constraints that
may lead to a more expensive solution, nevertheless, it enables the
application of the proposed method to small and large circuits alike.

Detecting all errors requires that at least one state/output bit in each
EC is predicted through additional hardware and compared to its actual
run-time value. Instead of duplicating the circuit, however, we employ
state/output compaction via parity trees. The key observation is that
the parity (XOR) function of several state/output bits, an odd number
of which detects an EC, also detects the EC. Therefore, it is possible
that a small number of parity functions compacting the state/output bits
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Fig. 2. Parity-based CED method.

will be adequate to cover all ECs in a prescribed error model. Using
the information in the EDT, the optimization objective of our method
is to minimize the number of parity bits k that need to be constructed
out of the next state/output bits such that all ECs are detected. An EC
is detected by a parity tree if and only if the parity tree comprises an
odd number of bits that detect the EC.

Based on the above observations, the proposed methodology is
rather straightforward, as depicted in the form of a block diagram in
Fig. 2. Given an FSM, k parity trees are used for lossless compaction
of the state/output bits. Combinational logic is employed to predict the
values of the k bits that compact the n state/output bits for each FSM
transition, and a comparator is used to detect any discrepancy. Similar
to [16], registers are added to hold the output and the predicted parity
so that comparison is performed one clock cycle later to detect faults
in the state register. Thus, all FSM errors are detected without latency
but are reported one clock cycle later.

B. Lossless Compaction via ILP

We now demonstrate how to model parity-tree selection for lossless
compaction as a set of integral inequalities. First, in Section III-B1,
we review the necessary notation. Then, in Section III-B2, we for-
mulate a set of integral constraints that detect all ECs, given a fixed
number of parity trees. Subsequently, in Section III-B3, we discuss the
use of randomized rounding for identifying feasible points, namely
points that satisfy all the constraints of the integer program. Then, in
Section III-B4, we present the overall algorithm that performs binary
search to minimize the number of necessary parity trees.
1) Notation: We start by introducing some notations and useful

facts that will be repeatedly used throughout this section. Let [x]
denote the sequence 1, 2, 3, . . . , x for any nonzero positive inte-
ger x. Given an FSM, let m be the total number of inputs of
the FSM, and let n = ns + no be the total number of outputs
of the next state/output combinational logic, which we denote by
{b1, b2, . . . , bn}. The set of ECs that need to be detected is denoted
by F = {EC1,EC2, . . . ,ECf}, where |F| = f . The EDT of Fig. 1(b)
is stored in a matrix, which we denote by V . The dimensions of matrix

V are f × n, and we denote its (i, j)th element by V (i, j) for all
i ∈ [f ], j ∈ [n]. We remind the reader that for Boolean variables x1,
x2, x1 ⊕ x2 = (x1 + x2) mod 2. Also, any subset of {b1, b2, . . . , bn}
may be represented by an n-dimensional 0–1 vector, e.g., the subset
{b1, b3, b4} may be represented by [1 0 1 1 . . . 0].
2) Integer Program Formulation: We first define the entries of the

f × n matrix V , which can be either 0 or 1.
Definition 1: For all i ∈ [f ], j ∈ [n]; V (i, j) is set to 1 if and

only if ECi is detectable by the jth output bit bj . Otherwise, V (i, j) is
set to 0.

Our problem may now be stated as follows.
Statement 1: Given a positive integer k, find k subsets β1, . . . , βk

of {b1, b2, . . . , bn} such that

cov(⊕β1) ∪ cov(⊕β2) ∪ · · · ∪ cov(⊕βk) = F

or report the lack thereof.
Here,⊕β� (for all 
 ∈ [k]) denotes the parity tree formed by the next

state/output bits in β� and cov(⊕β�) denotes the ECs detected by this
parity tree. An ECi is detected by the parity tree formed by the bits in
β� if and only if


 ∑

by∈β�

V (i, y)


mod 2 ≥ 1.

The above formula essentially checks whether the XOR of the bits
in β� detects ECi. Thus, we can check whether the k parity trees (the
parity trees corresponding to β�, for all 
 ∈ [k]) detect all ECs. The
problem may now be stated in a matrix notation.

Statement 2: Given a positive integer k, find k n-dimensional
0–1 vectors β(1), . . . , β(k) such that

k∑
�=1

[
V · β(�) mod 2

]
≥ �1f

or report the lack thereof. Here, �1f is an f -dimensional vector of 1’s.
We now remove the mod operator by adding new variables.
Statement 3: Given a positive integer k, find vectors β(�), r(�),

w(�), 
 ∈ [k], such that

V · β(1) =2 · w(1) + r(1)

V · β(2) =2 · w(2) + r(2)

...

V · β(k) =2 · w(k) + r(k)

r(1) + . . .+ r(k) ≥�1f

β(�) ∈{0, 1}n

r(�) ∈{0, 1}f

w(�) ∈
{

0, 1, . . . ,
⌊
n

2

⌋}f

or report the lack thereof.
In order to understand the above constraints, observe that the

remainder r(1) is an f -dimensional 0–1 vector denoting whether
EC1, . . . ,ECf are detected by the parity tree corresponding to β(1).
We note that w(1) is also an f -dimensional vector that removes the
mod 2 operation. Each element in the sum of the remainders r(�)

is required to be at least one, in order to guarantee that all ECs are
detected.
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Algorithm 1. Randomized-rounding algorithm.

Algorithm 2. Parity-tree-count-minimization algorithm.

3) Randomized Rounding: In Statement 3, we described our prob-
lem as an integer program. Our goal is to find a feasible point; namely,
values for all r(�), w(�), and β(�) such that all the constraints of
Statement 3 are satisfied. In order to identify a feasible point for the
integer program, we employ a technique called randomized rounding
[17]. The idea of randomized rounding is simple: Solve the linear
program relaxation of the integer program, which is easily done in
polynomial time using, for example, the ellipsoid [18] or interior-
points methods [19]; and round the resulting real values probabilis-
tically. More specifically, if x̃ denotes such a value, we create x as
follows:

x =
{

1, with probability x̃
0, otherwise.

(1)

It is easy to argue that, using this randomized-rounding scheme, the
constraints of Statement 3 are satisfied in expectation. However, the
variance is quite large; and thus, the constraints might be violated.
Raghavan and Thompson [17], who were the first to introduce this
simple but powerful randomized-rounding scheme, argue that simple
modifications of the rounding probabilities are sufficient to guarantee
that all the constraints are satisfied with high probability instead of
in expectation. In practice, we probabilistically round the resulting
real values for a fixed number of times and explicitly verify that the
resulting solution satisfies all the constraints. Algorithm 1 answers the
existence problem for a given number of parity trees k.
4) Parity-Tree-Count-Minimization Algorithm: The above formu-

lation answers the existence problem for a given number of parity
trees k. However, our objective is to minimize k, which is now
straightforward. If we can solve the problem of Statement 3 in time
T , then we can easily minimize k in T logn time: Since 1 ≤ k ≤ n,
we can perform binary search and find the optimal k, as shown in
Algorithm 2.

Fig. 3. Motivation example. Parity-based CED on a 2-bit multiplier.

IV. LIMITATIONS OF PARITY-TREE COUNT MINIMIZATION

The optimization objective of the parity-based CED methodology
described in the previous section is the minimization of the number
of parity trees necessary for lossless compaction. The rationale behind
this objective is to minimize the number of parity prediction functions
that will need to be built on-chip and, by extension, the corresponding
overhead in area and power consumption. However, as we demonstrate
through a toy example in this section, this expectation is not always
met in practice.

Consider the gate-level implementation of a 2-bit multiplier shown
in Fig. 3(a), and assume that we want to perform the proposed parity-
based CED as shown in Fig. 3(b). For the purpose of defining a
restricted error model for this example, we simulated all single errors
in the circuit for all possible input combinations and we obtained
the nine ECs shown in the EDT of Fig. 3(c). Essentially, this means
that any single error will result in a discrepancy between the correct
and erroneous response in one of these nine sets of output bits. The
problem now reduces to choosing, out of the 15 possible parity trees
that can be constructed from the four outputs, the minimum number k
that compact the outputs while preserving the detectability of all ECs.
This can be done through the ILP formulation and the solution based
on randomized rounding that were described in the previous section.
On the multiplier, these methods yield the minimum number of parity
trees that detect all ECs, k = 2. One such solution is P1 = O1 ⊕O0

and P2 = O3 ⊕O2 ⊕O1. When we synthesize the parity predictor
for the two parity functions P1 and P2, the area overhead is 22 gates,
and the power-consumption overhead estimated by SIS [20], based on
the switching activity in the circuit, is 178.8 µW. Surprisingly, these
two functions are even more expensive than the circuit itself, which
generates four functions and incurs an area overhead of 11 gates and
a power-consumption overhead of 173.9 µW. Yet other solutions exist
that yield a cheaper parity prediction circuit. For example, another set
of k = 2 parity trees, P3 = O3 ⊕O1 and P4 = O3 ⊕O2 ⊕O0, will
also detect all ECs and the corresponding parity predictor only incurs
an area overhead of ten gates and a power-consumption overhead of
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155.6 µW. Moreover, there exists a solution with k = 3 parity trees,
P3 = O3 ⊕O1, P5 = O0, and P6 = O3 ⊕O2, which also detects all
ECs and has a parity predictor that incurs an area overhead of only
seven gates and a power dissipation overhead of only 138 µW.

As demonstrated through this toy example, the number of on-
chip parity prediction functions is not the most accurate indication
of the incurred overhead. The underlying reason is that functions
implemented by practical circuits are typically structured and simple,
resulting in inexpensive implementations. Yet when XORed together
they may result in random functions that are expensive to imple-
ment. Therefore, minimizing the number of parity trees is not the
best optimization objective for methods that generate the responses
through on-chip hardware. Rather, methods that select parity trees
for lossless compaction based on the actual overhead incurred by the
parity predictor are required. Such a method, based on the entropy of
the predictor, is proposed in the following section.

V. ENTROPY-DRIVEN PARITY-TREE SELECTION

We start by briefly sketching our approach. First, given a circuit
and its EDT, we use Algorithm 1 to find a specific feasible solution,
namely a set of k parity trees for compacting the circuit outputs
that detect all ECs. Notice that the output of the k parity trees is a
k-bit 0–1 string. Then, we estimate the hardware cost of the predictor
associated with this specific set of parity trees by approximating its
entropy, as detailed in Section V-A. Again, notice that the predictor is a
function whose domain is the set of all possible inputs to the circuit and
whose output is a k-bit string. We then examine a neighboring feasible
solution, namely a solution that preserves detection of all ECs and is
“close” to the previous solution in some well-defined proximity metric.
Subsequently, we estimate the overhead of the new solution, again by
estimating its entropy. We then accept or reject a move to this neighbor
with a probability that depends on the estimated overhead of the
new solution. More specifically, “better” solutions are almost always
accepted, while “worse” solutions are accepted with a probability
that becomes exponentially smaller as their quality decreases. This
is essentially the classical Metropolis Algorithm, described in detail
in Section V-B. The Metropolis Algorithm is the basis of simulated
annealing techniques [21] that have been very successful in tackling
nonlinear optimization problems in various contexts. The Overall
Algorithm, which repeats the above procedure for all values of k from
1 to n and selects the best solution, is presented in Section V-C.

A. Hardware Estimation via Entropy

We start by defining the entropy of the parity-predictor function.
Recall that the domain of this function is {0, 1}m (all possible input
combinations) and its range is {0, 1}k, where k is the number of parity
trees. Let y denote the output of the predictor, which is a k-bit string of
zeros and ones. Then, given a set of parity trees B = {β(1), . . . , β(k)},
the entropy of the corresponding parity-predictor function is

H(B) = −
∑

x∈{0,1}k

Pr(y = x) · log2 Pr(y = x). (2)

In order to put the above formula in words, we notice that the
variable x assumes all possible values in {0, 1}k. The parity-predictor
function (the set of parity trees B) has 2m possible input combinations
and each such combination returns a specific k-bit output string. The
Pr(y = x) counts the number of times that the output of the parity
predictor (y) is equal to a fixed string x over all possible 2m input
combinations of the parity predictor divided by 2m. The entropy
ranges between 0 and k. Smaller values imply that the function is less
random; and hence, its implementation overhead is expected to be low.

Algorithm 3. The approximate entrophy algorithm [22].

On the other hand, values of entropy close to k imply that the function
is random; and hence, its implementation overhead is expected to
be high. Exact computation of the entropy takes time exponential in
m. Fortunately, we can approximate the entropy using sampling. The
technique that we use was presented by Batu et al. in [22], and we
briefly summarize it in Algorithm 3. The interested reader might seek
more details in [22].

B. Cost-Driven Selection Using the Metropolis Filter

Let Ω denote the set of all possible feasible solutions to the
ILP of Statement 3. Each feasible solution is a set of vectors B =
{β(1), β(1), . . . , β(k)}, and recall that each β(i) belongs to {0, 1}n.
Let each element of Ω be a vertex of a graph G. We will perform
a biased random walk on G. However, we first need to define the
edges of G. An edge in a graph usually denotes some “similarity”
between the corresponding vertices. In our case, two vertices (feasible
solutions) will be “similar” if at most t elements of their corresponding
sets of vectors (parity trees) are different, where t < k · n is a small
constant value. Intuitively, this notion of similarity means that the
two feasible solutions corresponding to the vertices of G have almost
the same parity trees, with at most t changes. Using this “similarity”
definition, we can construct the graph G. Notice that the maximal
possible number of neighbors of a vertex is exactly equal to MAX =∑t

j=1

(
kn
j

)
. Clearly, not all these neighbors correspond to feasible

solutions. We can now construct a Markov chain in the form of a biased
random walk in G, as shown in Algorithm 4.

This random walk essentially corresponds to the Metropolis random
walk [23]. We note here that the constant 2 in (2) could be replaced
by any constant α > 1. Notice that if H(B) is larger than H(B̃),
namely the solution at w is better than the solution at v, then the move
happens with a probability of 1. Otherwise, the probability of moving
drops rapidly. Usually, values of α close to 1 correspond to random
walks that explore a large fraction of Ω and, thus, are slow. On the
other hand, large values of α (e.g., α → ∞) correspond to myopic
greedy approaches that are fast, but could get stuck in local optima.
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Algorithm 4. Metropolis-random-walk algorithm.

Algorithm 5. Overall algorithm.

Finally, the choice of t also impacts our approach. Small values of t
(e.g., t = 1, MAX = kn neighbors per vertex) result in graphs with
a small number of edges and usually many independent connected
components. Obviously, a random walk in such a graph is unable
to explore the solution space Ω efficiently. In our experiments with
benchmark circuits, we observed that small perturbations of feasible
solutions resulted to new feasible solutions.

C. Overall Algorithm

The overall entropy-driven-selection method is shown in Algo-
rithm 5. In essence, for every possible value of k, we run the Metropo-
lis random walk on the graph G generated by the set of feasible
solutions to the ILP of Statement 3. Recall that k is the number of
parity trees and ranges from 1 up to n. We normalize the entropy of
the best solution for each k by dividing by k, and we pick the solution
with the lowest normalized entropy. Notice that larger values of k may
return solutions with lower overhead; thus, we have to run the random
walk for all possible values of k.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate experimentally the overhead of the pro-
posed methods for parity-based CED in FSMs. First, in Section VI-A,
we describe the setup of the experiments. Then, in Section VI-B,
we compare the overhead of parity-based CED with the minimum-
tree-count number selection, which was described in Section III, to

the overhead of duplication-based CED. Finally, in Section VI-C, we
compare the overhead of parity-based CED with entropy-driven tree
selection, which was described in Section V, to the overhead of parity-
based CED with minimum-tree-count number selection.

A. Experimental Setup

We experiment with the standard set of Microelectronics Center
of North Carolina (MCNC) and ITC99 benchmark FSM circuits. The
circuits are synthesized using the rugged script of SIS [20] and are
mapped to a standard library containing only 2-input gates. For the
purpose of comparison, we first implement the duplication-based CED
method. Then, we construct the EDT for all single errors. For the
MCNC benchmark circuits, we perform exhaustive functional fault
simulation using internally developed software, which is built around
the fault simulator HOPE [24] and identifies all pairs of error-free and
erroneous responses. For the ITC99 benchmark circuits, we perform
the structural analysis method of [5], and we include an entry in the
EDT for every possible subset of outputs driven by each line in the
circuit. Starting from the EDT, we first apply the parity-based CED
method that selects the minimum number of trees kmin, which was
described in Section III and which we implemented around linear
programming solver (lpsolve) [25]. Finally, we use internally devel-
oped software that implements the entropy-driven parity-tree-selection
method of Section V.

We now discuss our choices for the parameters α, t, and M , as
defined in Algorithm 4 and Section V-B. We experimented with values
of α ranging from 1 to 5, in increments of 0.2, as well as with a few
very large values of α (i.e., 102, 103, 104, 105). The latter values
were poor choices, since our random walk converged immediately to
inferior (expensive) solutions. Among the former values, α = 2 was
typically a good choice, and all our experimental results are reported
for α = 2. We conjecture that small values of α should typically be
the best choice for exploring the state space of the entropy-driven
parity-tree-selection problem. Regarding t, we first experimented with
t = 1, which resulted in a very disconnected graph with many in-
dependent components and very expensive solutions to the problem.
The t = 2 value already gave significant improvements, as reported
in our experimental results, whereas larger values of t (i.e., 3 and 4)
marginally decreased the overall cost of the solution, at the expense
of significantly increasing the running time of the algorithm. Finally,
M = 103 iterations sufficed to detect convergence (in a global or local
optimal point) in all benchmark circuits. For a subset of the circuits,
we experimented with larger values of M (up to 105), without being
able to improve the hardware complexity of the predictor.

The key conjecture of this work is that entropy can be used as a cost
function to drive the selection of parity trees with a low-area and low-
power-consumption parity-predictor implementation. With regards to
delay overhead, the parity predictor of the proposed method operates
in parallel with the next state/output logic of the FSM, in the same
way that a replica of the next state/output logic operates in parallel
with the circuit in duplication-based CED. Thus, as long as the parity
predictor is faster than the next state/output logic of the FSM, no
delay is incurred on the operational clock period of the FSM. While
this holds true for all circuits in our experiments, we refrain from
emphasizing this point since no correlation between the delay of the
parity predictor and its entropy can be inferred.

B. Duplication Versus Minimum Parity-Tree Count

The results of duplication-based CED and parity-based CED with
minimum tree count are summarized in Table I. Under the first and
second major headings, we provide details about the FSM circuits that
were used: name, number of primary inputs, number of state bits, and
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TABLE I
DUPLICATION-BASED CED VERSUS PARITY-BASED CED WITH MINIMUM TREE COUNT

TABLE II
PARITY-BASED CED WITH MINIMUM TREE COUNT VERSUS PARITY-BASED CED WITH ENTROPY-DRIVEN TREE SELECTION

number of primary outputs. Under the third major heading, we provide
the results of duplication-based CED: number of parity functions;
number of gates; hardware cost reported by SIS in λ2, where λ is the
smallest feature size; and power consumption in microwatts. Under
the fourth major heading, the same information is reported for parity-
based CED with minimum-tree-count selection. The average reduction
in parity function count over all benchmark circuits is 52.04%, while
the average reduction in area overhead and power consumption is
20.72% and 20.97%, respectively. On several benchmarks, the number
of parity functions reduces by more than 50%. For example, this is
the case for circuits cse, pma, sse, s1, s386, and tma. However, due
to the reasons discussed in Section IV, the corresponding reduction
in area overhead and power consumption is not always commensurate
with the reduction in the number of parity functions. More importantly,

in several cases the reduction in the number of prediction functions
results in an increase in area and power-consumption overhead. For
example, the number of parity functions for dk512 reduces by 43%,
while the area overhead and power consumption increase by more
than 8%. Similar observations hold for circuits dk16, tav, and tbk.
These results corroborate that while parity-based CED outperforms
duplication-based CED, tree-selection methods that account for area
and power-consumption overhead are necessary.

C. Minimum Count Versus Entropy-Driven Parity-Tree Selection

The results of parity-based CED with the minimum number
of parity-trees-selection method and with the entropy-driven-tree-
selection method are summarized in Table II. We provide the name
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of the circuit under the first major heading. Under the second major
heading, we provide the results of parity-based CED with minimum
tree count: number of parity functions, normalized entropy, number of
gates, hardware cost, and power consumption. Under the third major
heading, the same information is reported for parity-based CED with
entropy-driven tree selection. The average reduction in area overhead
and power consumption over all benchmark circuits is 24.81% and
23.16%, respectively.

On many benchmarks, the proposed entropy-driven-selection
method yields a set of parity trees of minimum cardinality k = kmin.
Yet the selected solution is picked based on a lower entropy and
therefore results in a less expensive hardware implementation and a
lower power consumption. For example, this is the case for circuits
tav, s27, dk16, s1, pma, and s386. In some cases, such as s27 and pma,
the overhead of the solution is reduced by more than 50%.

Additionally, the proposed method selects a set of k parity trees
with k > kmin, if the entropy of the k-bit parity predictor is lower
than the entropy of kmin-bit parity predictor. For example, on circuit
dk512, the proposed method yields a solution with k = 6 parity trees
and a normalized entropy of 0.818; while selection of the minimum
number of parity trees yields a solution with kmin = 4 parity trees
and a normalized entropy of 0.973. As may be observed, selecting a
solution with a higher number of parity trees, yet with a lower entropy,
results in a less expensive parity prediction circuit.

Occasionally, the proposed method will fail to provide hardware or
power reduction over the solution selecting the minimum number of
parity trees. This is, for example, the case for circuit tma, where the
entropy of the proposed solution with k = 7 parity trees is slightly
lower than the entropy of the solution with kmin = 5 parity trees,
but the implementation of the latter is slightly less expensive and
consumes less power. This is attributed to the heuristics employed
for exploring the search space of the problem. Additionally, the
entropy is a statistical and not an exact metric. Significant entropy
differences provide a good indication of the relative circuit complexity.
However, the comparison resolution may degrade as the absolute
value of the difference between the entropy of two circuits becomes
smaller. Definitely, since the selection of the minimum number of
parity trees for k = kmin is the starting point for the entropy-driven
metropolis filter, one could always keep this as the best solution seen
so far. We chose not to do this and report the actual negative results
to emphasize that this is a heuristic search based on a statistical
metric.

VII. CONCLUSION

We introduced a nonintrusive method for performing CED in
FSMs that compacts the state/output bits of the circuit through par-
ity trees and compares them to the expected correct values that
are computed through an on-chip parity predictor. We formulated
the problem of identifying the minimal number of required parity
bits as an ILP and we devised an algorithm based on randomized
rounding to solve it. As demonstrated experimentally, a small num-
ber of parity trees is typically sufficient for lossless compaction,
thus reducing the number of on-chip parity prediction functions as
compared to duplication. However, the area and power-consumption
overhead incurred by the parity predictor is not necessarily pro-
portional to the number of functions. To address this discrepancy,
we then presented a method that utilizes the entropy of the parity
predictor as a potential function for guiding a search algorithm that
selects parity trees that incur low overhead. Our methodology takes
an important step towards tackling the question of simultaneously
achieving lossless compaction and minimizing the overhead of the
parity-predictor function in nontrivial ways. Experimental data on

benchmark circuits indicate that entropy-driven tree selection yields
significant overhead reduction in both area and power consumption as
compared to the basic method that selects the minimum number of
parity trees.
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