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Reconstructing SNP allele 
and genotype frequencies 
from GWAS summary statistics
Zhiyu Yang1, Peristera Paschou1* & Petros Drineas2*

The emergence of genome-wide association studies (GWAS) has led to the creation of large 
repositories of human genetic variation, creating enormous opportunities for genetic research and 
worldwide collaboration. Methods that are based on GWAS summary statistics seek to leverage 
such records, overcoming barriers that often exist in individual-level data access while also offering 
significant computational savings. Such summary-statistics-based applications include GWAS meta-
analysis, with and without sample overlap, and case-case GWAS. We compare performance of leading 
methods for summary-statistics-based genomic analysis and also introduce a novel framework that 
can unify usual summary-statistics-based implementations via the reconstruction of allelic and 
genotypic frequencies and counts (ReACt). First, we evaluate ASSET, METAL, and ReACt using both 
synthetic and real data for GWAS meta-analysis (with and without sample overlap) and find that, 
while all three methods are comparable in terms of power and error control, ReACt and METAL are 
faster than ASSET by a factor of at least hundred. We then proceed to evaluate performance of ReACt 
vs an existing method for case-case GWAS and show comparable performance, with ReACt requiring 
minimal underlying assumptions and being more user-friendly. Finally, ReACt allows us to evaluate, 
for the first time, an implementation for calculating polygenic risk score (PRS) for groups of cases 
and controls based on summary statistics. Our work demonstrates the power of GWAS summary-
statistics-based methodologies and the proposed novel method provides a unifying framework and 
allows further extension of possibilities for researchers seeking to understand the genetics of complex 
disease.

Genome-wide association studies (GWAS) have emerged as a powerful tool, leading to the identification of 
thousands of common genetic variants that underlie human complex disorders and traits. They also led to the 
creation of large repositories of human genetic variation creating enormous opportunities for further analysis. 
However, sharing and transferring of individual-level genotype data is often restricted due to privacy concerns 
as well as logistical issues. On the other hand, GWAS summary statistics, typically including information such 
as odds ratio (OR)/effect size (beta), standard error (SE), p-values, and case/control sample sizes for each SNP 
being analyzed, are often readily  accessible1. The availability of such alternative sources of information has 
spurred intense interest into the development of methodologies seeking to leverage such records effectively in 
order to retrieve as much information as possible. Besides overcoming barriers in individual-level data access, 
summary-statistics-based methods also offer advantages in computational costs, which do not scale as a function 
of the number of individuals in the  study2.

Summary statistics methodologies have been developed to allow a wide array of statistical analyses, including 
effect size distribution  estimation3,4; GWAS meta-analysis and fine  mapping5–9; allele frequency and association 
statistic  imputation10,11; heritability and genetic correlation  estimation12–15; case-case  GWAS16; and polygenic 
 prediction17–19. Many of these methods have to incorporate additional information from publicly available 
sources, such as linkage disequilibrium (LD) statistics from a reference  population10,12,20. Most of the existing 
methodologies analyzing GWAS summary statistics use the summary statistics (OR, SE, p-value) from the input 
“as is”, often via relatively complicated estimation and modeling.

The objective of our work is three-fold. First, we seek to unify GWAS summary-statistics-based analyses 
(meta-analyses and cc-GWAS) under a common framework, as well as determine whether such frameworks 
can lead to novel analyses using only summary statistics. Second, we seek to compare existing summary-statis-
tics-based analyses to each other and also our newly introduced method. Third, we present a novel approach 
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to compute statistics that can be used to evaluate the performance of polygenic risk scores without accessing 
individual level genotype data. Our framework leverages a very straightforward observation: summary statis-
tics information can be expressed as a function of case/control allele frequencies for each SNP. This allows us 
to recover case/control allele frequencies from summary statistics by solving a non-linear system of equations. 
Additionally, if one assumes that the SNPs satisfy Hardy-Weinberg Equilibrium (HWE) (a common and minimal 
assumption in all standard GWAS), the allele frequencies can be used to infer genotype counts. These simple 
observations allow us to use information from case-control GWAS summary statistics to develop a simple, 
user-friendly alternative to summary-statistics-based methods for fixed effect meta-analysis and cc-GWAS. 
Furthermore, we are able to compute group-wise polygenic risk score (PRS) from summary statistics of both 
a base and a target population. We note that even though there have been summary statistics based methods 
estimating the variance explained by SNPs using results from existing PRS  associations21,22, to the best of our 
knowledge, no existing method could return reliable estimates of PRS without any access to individual-level data 
in the validation cohort prior to our work.

Here, we describe the mathematical foundations of our framework and its applications to fixed effect meta-
analysis, cc-GWAS, and group-wise PRS estimation. We compare the performance of existing methods as well 
as our novel method using both simulated and real data. Our methods are implemented in the software package 
Reconstructing Allelic Count (ReACt).

Results
Mathematical foundations. Our framework is motivated by the fact that the summary test statistics from 
publicly available GWAS can be expressed as a function of allele counts of the effect and the non-effective allele 
in cases and controls; as a result, the allele counts can be exactly recovered by solving a system of non-linear 
equations. Interestingly, this rather straight-forward observation has not received much attention in prior work. 
Additionally, assuming that SNPs included in GWAS studies are in Hardy-Weinberg Equilibrium (HWE), we 
can also reconstruct the structure of the genotype vectors for publicly available GWAS studies from just sum-
mary statistics. We can leverage this information in multiple applications, including: (i) the computation of the 
joint effect of a SNP in a meta-analysis involving multiple studies; (ii) to obtain the mean polygenic risk score of 
cases and controls in a population; and (iii) to investigate the genetic differences between traits using a case-case 
GWAS. All of these can be done using only summary statistics, which circumvents the hassle of individual level 
data sharing and, as an added bonus, considerably reduces the necessary computational time. We start by intro-
ducing some notation that will be useful in this section. Let a and u represent effective and non-effective allele 
counts respectively; let superscripts cse and cnt represent cases and controls respectively; and let OR, SE, and N be 
the odds ratio, standard error (of log(OR), as presented in most of the GWAS summary statistics), and sample 
sizes obtained from the summary statistics. Thus, for SNP i, ucnti  represents the count of the non-effective allele 
in controls for SNP i; similarly, acsei  represents the count of the effective allele in cases for SNP i; Ncse represents 
the number of cases, etc. We now note that the allelic effect of SNP i in case-control GWAS summary statistics 
can be expressed as follows:

Additionally, sample sizes can be expressed as:

Therefore, solving the system of the above four non-linear equations allows us to recover the allelic counts of SNP 
i for effective and non-effective alleles in cases and controls, by solving for the four unknowns acsei  , acnti  , ucsei  , and 
ucnti  . Using these counts, we can trivially obtain allele frequencies in case and control groups and, importantly, 
by further assuming that the SNPs strictly follow HWE, we can even compute the genotypic counts for each 
genotype from these frequencies. Note that this approach applies to GWAS reporting OR and SE statistics for 
each SNP, or perhaps other statistics that can be used to compute OR and SE; it may not be applicable to GWAS 
reporting other types of summary statistics. Furthermore, these frequencies will be different from those observed 
from individual level data due to model covariates; the recovered frequencies correspond to the allele counts 
after corrections have been applied. See Section 4.1 and 5.2 in supplementary text for details.

Fixed effect meta-analysis. Our approach. Armed with allelic and genotypic counts, we can provide 
a new perspective on fixed-effect GWAS meta-analysis. Instead of the conventional inverse-variance weighted 
meta-analysis, we can now compute the joint effect of a SNP in a meta-analysis using multiple studies by com-
bining the reconstructed allele and genotype counts from each study and run a complete logistic regression on 
each SNP. Thus, we can essentially proceed with the analysis in exactly the same way as standard GWAS (see 
“Fixed-effect meta-analysis” section for details).

As mentioned in “Mathematical foundations” section we can obtain genotypic counts for any SNP over cases 
and controls from GWAS summary statistics. Then, combining these counts for all available input studies, along 
with the trait status, we can carry out a logistic regression for this SNP as  follows23:
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2Ncnt =acnti + ucnti .
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In the above yj denotes the binary trait for the jth individual, gj denotes the respective genotype, and S(·) stands 
for the standard sigmoid function used in logistic regression. Solving for the coefficients β0 , β1 , and β2 we get 
the overall SNP effect from the meta-analysis. In order to take into account between-study stratification, we 
introduce an additional variable sj as a covariate, using the overall allele frequencies of each study to estimate it 
(see “Fixed-effect meta-analysis” section for details).

Fixed effect meta‑analysis: performance evaluation. First, we tested the performance of two leading meth-
ods used for fixed-effect meta-analysis (namely  METAL24 and  ASSET25) as well as ReACt on synthetic data 
under various conditions. The simulation was carried out using the Balding-Nichols  model26, assuming a minor 
allele frequency of 0.3. For each setting, we predefined the risk for effective alleles of the causal SNPs by setting 
r = 1.15/1.2/1.3 as well as the level of population stratification between cohorts included in the meta-analysis 
setting Fst = 0.01/0.05/0.1 . Apart from meta-analyzing mutually exclusive datasets, we also tested the perfor-
mance of all three methods under different extents of sample overlap between the input studies: When generat-
ing input summary statistics, we evaluated scenarios where the input studies shared Nshr cases and Nshr con-
trols, with the value of Nshr set to zero, 100, and 500 (see “Data” section for details). ASSET corrects for known 
sample overlap through introducing correlations between summary statistics derived from overlapping and 
input sample  sizes25,27. Since the latest stable release of METAL does not include an implementation for sample 
overlap correction, we used the GitHub version of METAL  from28. ReACt allows the user to provide the overlap-
ping sample sizes as an input parameter (ReACt(Exact) in Figs. 1, 2). Furthermore, same as METAL, it allows 
the estimation of unknown sample overlap via Z-scores in input GWAS summary statistics  from28 (ReACt(Est.) 
in Figs. 1, 2). We compared power and type I error rates of all three tested approaches.

The performance comparison on the meta-analysis of two studies with even case/control sample sizes is plot-
ted in Figs. 1, 2 and Table S3. Performance on meta-analyzing two studies with uneven sample sizes (Table S2 in 
supplementary text) as well as meta-analyzing multiple studies (Table S4 in supplementary text) are also tested. 
Results on synthetic data indicated that all three methods have comparable performance namely

when there is no sample overlap. In scenarios where there were samples shared across input studies, METAL 
and ReACt (regardless of whether the exact size of the sample overlap is known or is estimated) always showed 
higher power compared to ASSET

The advantage in power for our method and METAL compared to ASSET was more visible under higher Fst val-
ues and larger sample overlaps. In terms of type I error rates, we observed that all methods showed good control 
on the error rates, while ASSET tended to produce more conservative results. Similar observations can also be 
made when we meta-analyzed multiple studies; see Table S4 in supplementary text for details.

Beyond power and type I error, we also analyzed the running time of the different methods (see Table S1 in 
supplementary text). METAL and ReACt far outperform ASSET in this regard. It should be noted that our C/
C++ implementation of our method in the ReACt software package is comparable (in terms of running time) 
to METAL and much faster than ASSET, despite the fact that it has not been highly optimized for performance.

To demonstrate the scalability of ReACt beyong the Balding-Nichols model, we also looked at the perfor-
mance of ReACt on phenotypes simulated using the UK biobank genotypes and the gcta  tool29 (see “Data” 
section for details). In our simulation, we set the heritability parameter to 0.4 and the disease prevalence to 0.2. 
We do note that, theoretically, the performance of ReACt should be invariant to disease heritability or prevalence. 
For this experiment, all causal SNPs were defined to have effect sizes OR = 1.2 and we evaluated the performance 
of all methods by comparing them with results from GWAS on all samples (see “Evaluation metrics” section 
for details). See Table 1 for our experimental results. We found all methods having comparable power and type 
I error. More specifically, the performance of ReACt(Exact) and ASSET showed high similarity and so did the 
performance of ReACt(Est) and METAL.

We further tested the performance of all three methods on real genotype and phenotype data using the UK 
biobank  dataset30 and analyzing for depressive episode trait. The dataset included a total of 18,368 cases, 312,849 
controls, with 640,756 SNPs after quality control (see “Data” section for details). In this experiment, we treated 
the top 7 SNPs with p-value strictly less than 10−6 from the overall GWAS as “ground truth” and assessed whether 
various meta-analysis method could pick up these 7 SNPs. Each experiment was carried out over ten iterations: 
in each iteration, we split the dataset in two equal sized subsets, generated GWAS summary statistics from each 
of the subsets, and meta-analyzed the resulting summary statistics. We reported average true positive and false 
positive SNPs counts captured by each method over the ten iterations. Table 2 reports our findings and we note 
that, perhaps due to the lack of stratification, the differences in performance were not as visible in experiments 
using the UK biobank samples compared to the Balding-Nichols simulation. A consistent outcome of both 
experiments was that ReACt(Exact) showed essentially identical performance with ASSET, whereas ReACt(Est) 
was more comparable with METAL. This should be expected given that both ReACt(Exact) and ASSET require 
the size of the sample overlap as input, unlike ReACt(Est) and METAL.

Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj).

∣
∣PowerReACt − PowerASSET/METAL

∣
∣ ≤ 0.012,

0.014 ≤ PowerReACt/METAL − PowerASSET ≤ 0.219

|PowerReACt − PowerMETAL| ≤ 0.005.
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Figure 1.  Power of fixed-effect meta-analysis with two input studies under different conditions. We compare 
the power of our method vs. ASSET/METAL for a significance threshold p < 5 · 10−5 . METAL dev refers to 
the latest release in  GitHub28. Two variants of ReACt are tested: Exact and Est, indicating whether the sample 
overlap was exactly known as part of the input or whether it was estimated from the Z-scores28, respectively. 
Sample overlap indicates the number of cases and controls that were shared between two input studies, ie., a 
sample overlap equal to 100 means that there are 100 cases and 100 controls shared between two input studies. 
Total sample sizes for each input study, including the shared samples, are equal to 2000 when the sample overlap 
is equal to zero; 2400 when the sample overlap is equal to 100; and 4000 when the sample overlap is equal to 500. 
In each case, the sample is equally split to cases and controls.
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Figure 2.  Type I error rate of fixed-effect meta-analysis with two input studies under different conditions. We 
compared the type I error rate of our method vs. ASSET/METAL for a significance threshold p < 5 · 10−5 . 
METAL dev refers to the latest release in  GitHub28. Two variants of ReACt are tested: Exact and Est, indicating 
whether the sample overlap was exactly known as part of the input or whether it was estimated from the 
Z-scores28, respectively. Sample overlap indicates the number of cases and controls that were shared between two 
input studies, ie., a sample overlap equal to 100 means that there are 100 cases and 100 controls shared between 
two input studies. Total sample sizes for each input study, including the shared samples, are equal to 2000 when 
the sample overlap is equal to zero; 2400 when the sample overlap is equal to 100; and 4000 when the sample 
overlap is equal to 500. In each case, the sample is equally split to cases and controls.
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cc-GWAS. Case-case GWAS (cc-GWAS) based on summary statistics has only very recently been described 
by Peyrot et al.31. No other methods have been proposed so far. ccGWAS can be used to investigate the genetic 
differences between the patients of two diseases. With some assumptions on SNP effect distributions, Peyrot 
et al. described the case-case effect as a weighted sum of SNP effects from each input GWAS, where the weights 
could be derived from SNP-based heritabilities, prevalence, number of independent causal variants for each 
disease, and their genetic correlation. We observed that the framework of analysis that we introduced above, 
although only requiring minimal assumptions and nothing else apart from basic information come along with 
the GWAS summary statistics (SE, OR/Beta and case control sample sizes), could also be used to implement cc-

Table 1.  Performance of fixed-effect meta-analysis on simulated data using the gcta model. Using 
the simulated phenotypes for UK biobank samples (50,000 cases and 250,000 controls), we compared 
the performance of our method vs. ASSET/METAL. We treated genome-wide significant SNPs (p-value 
< 5× 10

−8 ) as “true signals”, and reported average power and type I error rates on identifying those SNPs 
under the same genome-wide significance threshold for each method. METAL dev refers to the latest release in 
 GitHub28. Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was exactly 
known as part of the input or whether it was estimated, respectively. Sample overlap indicates the number of 
cases and controls that were shared between two input studies, i.e., 5000 sample overlap means that 5000 cases 
and 5000 controls were shared between the two studies when the split was carried out. a With 25,000 cases and 
125,000 controls from each subset. b Out of 27,500 cases and 127,500 controls from each subset. c Out of 30,000 
cases and 130,000 controls from each subset.

 Method

No sample overlapa 5000 sample overlapb

10,000 sample 
overlapc

Power Type I error Power Type I error Power Type I error

ReACt (Exact) 0.9738 7.32× 10
−5 0.8976 6.43× 10

−4 0.8757 6.81× 10
−4

ReACt (Est.) – – 0.9120 8.36× 10
−5 0.8794 7.24× 10

−5

METAL/METAL dev 0.9748 7.55× 10
−5 0.9111 8.23× 10

−5 0.8779 7.13× 10
−5

ASSET – – 0.8898 5.69× 10
−5 0.8660 5.89× 10

−5

Table 2.  Performance of fixed-effect meta-analysis on real genotype data. We applied our method for fixed-
effect meta-analysis to the depressive episode trait (ICD F32 Depressive episode) in UK biobank samples and 
compared the performance of our method vs. ASSET/METAL. SNPs with p-value strictly less than 10−6 in 
the primary GWAS summary statistics using all samples were treated as “true signals”. In each iteration of an 
experiment, we split the dataset evenly into two, generated GWAS summary statistics for each subset, and 
meta-analyzed the summary statistics using our method and ASSET/METAL. We reported the number of 
times (out of ten iterations) that a “true signal” got captured using the “significance threshold” p < 10

−6 by 
each method under different sample overlap conditions. METAL dev refers to the latest release in  GitHub28. 
Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was exactly known 
as part of the input or whether it was estimated, respectively. Sample overlap indicates the number of cases 
and controls that were shared between two input studies, ie., 500 sample overlap means that 500 cases and 
500 controls were shared between the two studies when the split was carried out. The variable P in the table 
indicates the p-value of the target SNP in the primary GWAS using all samples. True positive per iteration 
reports the average number of SNPs with p-value strictly less than 10−6 in the primary GWAS that were 
captured in one iteration; and False positive per iteration reports the average number of extra SNPs being 
captured in one iteration. a With 9184 cases and 156,425 controls from each subset. b Out of 9434 cases and 
156,675 controls from each subset. c Out of 9684 cases and 156,925 controls from each subset.

 SNP  P

Number of times the SNP had p-value < 10
−5 in meta-analysis

No sample overlapa 500 sample overlapb 1000 sample overlapc

Exact ASSET/METAL Exact Est. METAL dev ASSET Exact Est. METAL dev ASSET

rs60939828 2.77·10−9 10 10 10 10 10 10 10 10 10 10

rs17487484 2.61·10−8 10 10 10 10 10 10 10 10 10 10

rs62100766 1.55·10−7 10 10 9 9 8 9 9 4 4 9

rs4510098 5.34·10−7 10 10 5 5 5 5 5 4 3 5

rs1079232 6.69·10−7 2 2 5 4 3 5 3 2 2 3

rs75056899 7.69·10−7 10 10 3 3 3 3 4 4 4 4

rs12044988 7.75·10−7 10 10 5 1 1 5 6 4 3 6

True positive per iteration 6.2 6.2 4.7 4.2 4 4.7 4.7 3.8 3.6 4.7

False positive per iteration 0.2 0.2 1.4 0.6 0.4 1.5 1.6 0.5 0.7 1.7
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GWAS under the same umbrella. We proceed here to describe this implementation and comparison of the two 
methods.

Our approach. Similar to our proposed approach for meta-analysis of multiple GWAS datasets using summary 
statistics, we can also carry out cc-GWAS using regression by simply swapping the labels of the phenotypes. 
Perhaps the biggest challenge in cc-GWAS is the separation of the differential genetic effects from between-study 
stratification. To circumvent this issue, we leverage the difference of SNP effects in control groups to estimate 
the extent of stratification (see “cc-GWAS using summary statistics” section for details). Therefore, with a slight 
modification of the pipeline for meta-analysis of “Fixed-effect meta-analysis” section, we introduce an alternate 
approach for cc-GWAS using our framework.

The underlying theory is quite straightforward and allows us to estimate the genetic differences between two 
traits of interest using their GWAS summary statistics. Using the genotypic counts we can proceed with logistic 
regression using only the cases from the two studies:

In the above, ycsej  is the binary indicator variable denoting which trait case j carries and gcsej  is the genotype of 
this case. We note that in an additive model, the coefficient βcse

1  that is part of the output of this regression is a 
combination of both genetic effects and stratification:

where βg and βs are the genetic effect and stratification coefficients. We are only interested in the genetic effect βg 
and therefore we need to remove βs . Towards that end, we estimate βs using the control samples from the input 
studies; see “cc-GWAS using summary statistics” section for details.

CC‑GWAS: performance evaluation. We first tested the performance of our methods on synthetic data. Simu-
lated data were again generated under the Balding-Nichols model, with predefined risks for effective allele of the 
causal SNPs and the extent of the stratification. Inspired by Peyrot et al.16 we simulated three types of SNPs: (i) 
trait differential SNPs (ii) null SNPs; and (iii) stress SNPs (see “Data” section for details). We expect our method 
to pick up type (i) SNPs and leave the other two. Therefore, in our performance evaluation, we report the power 
for detecting the type (i) SNPs and type I error rates for picking up type (ii) and (iii) SNPs. Moreover, since we 
also expect the performance of our method, especially in terms of error control, to vary with sample size, the 
evaluation was done under different sample sizes in each input study (2000 cases and 2000 controls as well as 
5000 cases and 5000 controls). Power and type I error rates for each type of SNP from the simulation model 
under each setting are shown in Table 3. The method’s performance was evaluated for p-values strictly less than 
5 · 10−5 . For this threshold, our method showed high power and well-controlled type I errors, especially under 
for lower values of Fst . On the other hand, as expected, as stratification increases between two input studies, the 
power of our method drop and the type I error rates increased for null SNPs. However, as a general trend, we 
also see a decrease in such error rates when we increase the control sample size. Meanwhile, slightly higher type 
I error rates for the stress SNPs are observed.

Next, we evaluated the performance of our method on real GWAS summary statistics and compared our 
method with the recently released method  of16. We analyzed  BIP32 and  SCZ33 datasets, for which case-case 
GWAS with individual level data was  available34. We filtered out SNPs that showed untrustworthy estimates of 

Pr(ycsej = 1|gcsej ) = S(βcse

0 + βcse

1 gcsej )

βcse

1 = βg + βs ,

Table 3.  Performance of cc-GWAS as implemented in ReACt with different sample sizes. Three types of SNPs 
have been simulated: (i) trait differential SNPs; (ii) null SNPs; and (iii) stress SNPs. . Under each condition, we 
simulated individual level genotype with these three types of SNPs for N cases and N controls in each study 
( N = 2000 and N = 5000 ) and generated GWAS summary statistics for each study. and generated GWAS 
summary statistics for each study respectively. We subsequently used the summary statistics to run cc-GWAS 
in ReACt. We reported the power for detecting type (i) SNPs, and false positive rates for picking up type (ii) 
SNPs (Type I err.(ii) ) and type (iii) SNPs (Type I err.(iii) ) under a significance threshold p < 5 · 10−5.

 Risk  Fst

2000 cases, 2000 controls 5000 cases, 5000 controls

Power Type I err.(ii) Type I err.(iii) Power Type I err.(ii) Type I err.(iii)

 1.15

0.01 3.67·10−2 2.65·10−5 3.16·10−4 3.51·10−1 1.84·10−5 1.87·10−4

0.05 3.49·10−2 9.80·10−5 5.26·10−4 3.23·10−1 6.33·10−5 3.58·10−4

0.1 2.81·10−2 2.43·10−4 5.02·10−4 2.85·10−1 1.94·10−4 5.21·10−4

 1.2

0.01 1.54·10−1 4.69·10−5 2.47·10−4 7.16·10−1 3.47·10−5 2.03·10−4

0.05 1.34·10−1 1.04·10−4 5.14·10−4 6.62·10−1 8.57·10−5 3.77·10−4

0.1 1.23·10−1 2.33·10−4 5.83·10−4 6.03·10−1 1.65·10−4 5.27·10−4

 1.3

0.01 5.85·10−1 1.63·10−5 1.57·10−4 9.68·10−1 1.43·10−5 5.46·10−4

0.05 5.41·10−1 5.31·10−5 4.45·10−4 9.21·10−1 7.35·10−5 5.79·10−4

0.1 4.85·10−1 2.63·10−4 6.18·10−4 8.71·10−1 1.67·10−4 6.84·10−4
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the stratification effect ( SEs > 0.05 , see “cc-GWAS using summary statistics” section for details). This reduced 
our output size from 8,983,436 SNPs being analyzed to 7,110,776 SNPs. Out of those, our analysis revealed a 
total of 18 genome-wide significant risk loci, including the two regions identified  by34, namely regions 1q25.1 
and 20q13.12). We compared our statistics for SNPs that were also analyzed  in16 and results for this comparison 
are shown in Table  4. The two cc-GWAS methods are mostly comparable. By definition, both we and Peyrot 
et al.16 only used summary statistics as input, and could not apply the individual level quality control steps  of34. 
As a result, both methods identified additional significant loci showing divergent genetic effects between BD and 
SCZ compared  to34, mainly due to a much larger effective sample size. Results for all genome-wide significant 
risk loci are shown in Table S6.

Group PRS. Our approach. We realized that our new method opens up a new opportunity for summary-
statistics-based analysis which was not possible before: even though we still cannot compute individual level PRS 
without access to raw genotypes, we observe that, under the additive model, the mean and standard deviation of 
PRS for a population are just functions of SNP allele frequencies in the target group (see “cc-GWAS and group 
PRS” section for details). Therefore, the novel summary-statistics-based framework for analysis, which returns 
estimates of allele frequencies for cases and controls using GWAS summary statistics, also allows us to estimate 
means and standard deviations of PRS for case and control groups using the GWAS summary statistics of the 
target study. With such information (and a fair assumption of normality in the underlying PRS distribution), we 
can further run a t-test in order to get a p-value comparing the difference of PRS between cases and controls.

More specifically, in the additive model, the mean and variance of PRS for a population can be expressed as 
follows:

In the above Si is the weight of SNP i inferred from the base summary statistics (typically Si = log(ORi)
SEi

 ), M is the 
total number of SNPs used in the PRS computation, and pi and qi = 1− pi are allele frequencies of the effective 

mean(PRS) =
∑M

i=1 Sipi

M
, and

Var(PRS) =
∑M

i=1 S
2
i piqi

2M2
.

Table 4.  Comparison of genomic regions showing significant divergent genetic effects between BD and SCZ 
as detected by ReACt and ccGWAS by Peyrot et al.16. We carried out cc-GWAS with ReACt using summary 
statistics of BD and SCZ and compared our results with the results from Peyrot et al. Only SNPs that are 
analyzed in both studies are included for the comparison. Genomic regions that are identified to show 
significant divergent genetic effects between BD and SCZ in either result are shown. CHR, Start and End 
are chromosomal and base-pair ranges for the region; SNP, BP and p-value (ordinary least squares p-values, 
POLS , for ccGWAS by Peyrot et al.) are properties of the leading SNP (if the regions is reported genome-wide 
significant) or statistics for the matching SNP (if the region is not reported as genome-wide significant, but is 
detected by the other method); p-values in bold are leading SNPs that are reported genome-wide significant by 
each method; Regions with CHR, Start and End in bold are two loci that were also identified by the case-case 
GWAS using individual level  data34.

Region Our method (ReACt) ccGWAS

CHR Start End SNP BP p-value SNP BP p-value ( POLS)

1 50826176 51118253 rs6682989 50826176 3.08 · 10
−8 – – 6.10 ·10−7

1 98325796 98559093 rs2660304 98512127 4.20 · 10
−9 – – 2.20 · 10

−9

1 173867252 174643725 rs6701877 174015259 4.02 · 10
−8 – – 5.80 · 10

−10

2 27498734 27752296 rs113954968 27696207 2.93 · 10
−8 – – 1.10·10−6

3 62563175 62583180 rs1993149 62572944 2.10 · 10
−8 – – 8.10·10−7

3 135807609 136597120 rs9866687 94828190 6.55·10−7 – – 4.00 · 10
−8

3 135807609 136597120 rs7372313 135872958 1.02 · 10
−8 rs1278493 135814009 1.20 · 10

−8

7 28453906 28484317 rs2192303 28478332 3.57 · 10
−8 rs7790864 28478625 2.20 · 10

−8

8 27406353 27453579 rs11778040 27419807 5.39·10−7 – – 4.80 · 10
−8

9 23345347 23362311 rs12554512 23352293 3.58 · 10
−10 – – 4.10 · 10

−8

9 36894685 36963222 rs2039142 36963222 1.95 · 10
−8 – – 2.10·10−6

10 353306 418676 rs35198327 354301 7.69 · 10
−9 – – 1.10·10−7

12 108596308 108633649 rs3764002 108618630 3.28 · 10
−9 – – 6.30 · 10

−11

12 110294902 111212762 rs28637922 110819139 5.11 · 10
−10 – – 8.10 · 10

−12

16 79386766 79463881 rs6564668 79457393 1.86 · 10
−8 rs9319540 79458022 3.70 · 10

−8

19 1812521 1866427 rs1054972 1852582 6.43·10−8 – – 1.80 · 10
−8

20 47511792 47938833 rs6095394 47625544 1.43 · 10
−9 rs11696888 47753265 1.40 · 10

−9
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allele and the non-effective allele for SNP i. Therefore, we can simply use the allele frequencies of cases and con-
trols that were computed in “Mathematical foundations” section in order to get the mean and variance of PRS 
in cases and controls. See “cc-GWAS and group PRS” section for details.

Group PRS: performance evaluation. We first tested our methods on synthetic data without any confounding 
factors (ie., no stratification). After generating GWAS summary statistics for synthetic base and target data-
sets, we compared the estimated group means and standard deviations using our method (which operates on 
summary statistics) with the real group means and standard deviations of PRS computed from the individual 
level genotypes using  PRSice235. The results successfully proved that in this scenario our method is extremely 
accurate. See Table 5 which shows typical representative results from our experimental evaluations; essentially 
identical results were observed in all our experiments on synthetic data.

We further tested our method on real GWAS data, using GWAS summary statistics for  MDD36 as the base 
study and assessing its predicting power on 18,368 independent depressive episode cases and 312,849 ancestry-
matched controls in UK biobank. We did not choose the latest MDD GWAS to be a base study because the latest 
one has included samples from UK biobank. To run ReACt, we generated GWAS summary statistics for the target 
dataset as described. We compared the estimated PRS statistics using our methods with the real PRS statistics 
computed using PRSice2. The results are shown in Table 6; note that since real GWAS datasets are subject to 

Table 5.  Estimated and real group mean and standard deviation of PRS for a synthetic target population. We 
compared group mean and standard deviation of PRS estimated by ReACt from summary statistics of synthetic 
base and target studies to the real group mean and standard deviation of individual level PRS obtained using 
summary statistics of the base and individual level genotype of the target computed by PRSice2. Est stands for 
estimated. Note that the synthetic data is not subject to clumping since the simulation model does not generate 
LD structure.

Risk Group

Our Method (ReACt) PRSice2

Est. group mean Est. group sd Real group mean Real group sd

 1.15
Cases 0.0009 0.0078 0.0009 0.0076

Controls − 0.0037 0.0078 − 0.0036 0.0081

 1.2
Cases 0.0016 0.0060 0.0016 0.0059

Controls − 0.0065 0.0060 − 0.0064 0.0061

 1.3
Cases 0.0021 0.0041 0.0021 0.0040

Controls − 0.0125 0.0041 − 0.0125 0.0040

Table 6.  Estimated and real group mean and standard deviation of PRS for depressive episode cases and 
controls in UK biobank population. We assessed the performance of our method using the summary statistics 
of an independent MDD GWAS as the base study, and the UK biobank samples, including 18,368 cases with 
depressive episode and 312,849 controls, as the target population. We generated summary statistics for the 
target populations and estimated group mean PRS and standard deviation of target PRS using ReACt. We 
computed the individual level PRS for the target study using PRSice2. For both methods, we computed PRS 
using independent SNPs from the base summary statistics with p-values below various thresholds (P-thres) 
and compared the performances under each threshold. For ReACt, mean PRS represents the estimated group 
mean PRS for cases and controls; p-val are the t-test p-values comparing PRS distribution in cases and in 
controls. For PRSice2, mean PRS represents real group mean PRS computed from individual level data and p-
val are the t-test p-values comparing real PRS distribution in cases and in controls; reg. w/o covariate indicates 
regression results without covariates, which include the regression r2 value (reg. r2 ) and the p-value for the 
PRS predictor (p-val); reg. w/top 5PCs indicates the regression results including the top five PCs as covariates, 
which also included the regression r2 value (reg. r2 ) and the p-value for the PRS predictor (p-val).

 P-thres  #SNPs  Trait

Our method (ReACt) PRSice2

t-test t-test Reg. w/o covatiate Reg. w/top 5PCs

Mean PRS p-val Mean PRS p-val r2 p-val r2 p-val

 0.1  4236
Cases −0.0023

 5.50·10−3

−0.0023
3.97 · 10−3 2.48 · 10−5

4.18 · 10−3 3.54 · 10−5
4.14 · 10−3

Controls −0.0023 −0.0024

 0.01  594
Cases −0.0036

 1.47·10−3

−0.0032
1.42 · 10−3  3.06 · 10−5  1.45 ·10−3 4.35 · 10−5  1.44 ·10−3

Controls −0.0036 −0.0032

 0.001  82
Cases 0.0112

 1.09·10−1
0.0147

1.54 · 10−1
6.17 · 10−6  1.53 ·10−1 3.19 · 10−5

1.51 · 10−1

Controls 0.0112 0.0146

 10−4  10
Cases −0.0244

 9.36·10−2

−0.0247
1.16 · 10−1

7.57 · 10−6  1.13 ·10−1 2.96 · 10−5
1.12 · 10−1

Controls −0.0246 −0.0249
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within study population stratification, we did not expect our method to be as accurate as it was on synthetic 
data without such stratification. There was, however, very high concordance between the results returned by our 
methods and ground truth. Finally, we applied our methods on summary statistics of eight psychiatric disorders. 
We evaluated their pairwise PRS predictive power by estimating t-test p-values. For this experiment, we took into 
account potential sample overlap between all pairs of base and target studies; see Section 5.3 in supplementary 
text for details of our sample overlap correction procedure. Results are shown in Table 7 and we observe that, in 
general, our results coincide with pairwise genetic correlation between disorders as discussed  in7.

Discussion
Extracting as much information as possible from easily accessible GWAS summary statistics can help accelerate 
research that aims to elucidate the genetic background of complex disease, allowing fast sharing of results and 
datasets while alleviating privacy concerns. In prior work, GWAS meta-analyses and cc-GWAS were treated as 
separate tasks with different theoretical foundations. In our work, we compare and evaluate leading methods 
and present a novel framework that unifies analyses under the same methodological umbrella, while expanding 
capabilities of summary-statistics-based analysis even further allowing, for the first time, group PRS estimation. 
Our methods do not affect the differential privacy established by sharing GWAS summary  statistics37. Moreover, 
as our allelic frequency reconstruction framework does not make any assumptions, our approach is unlikely 
to introduce additional bias into the results. However, just like any other summary-statistics-based method, it 
is still possible that the performance of ReACt might get affected by preexisting ascertainment bias from the 
input GWAS.

In terms of GWAS meta-analysis, we found that all three methods we tested are comparable in terms of power 
and type I error rates. However, both METAL and ReACt greatly outperform ASSET in terms of running time. 
The reconstruction of the allelic counts for each SNP in ReACt allows us to run a full logistic regression model 
instead of doing the conventional inverse-variance weighted fixed-effect meta-analysis, under the assumption of 
HWE. Our results on real GWAS data showed that just the standard HWE filtering threshold of 10−6 is needed, 
which is a typical quality control step in any GWAS. Note that this assumption is only used when we calculate 
genotype frequencies from the allelic frequencies, which is the case only in the fixed effect meta-analysis part of 
our work. Future work could explore whether we can further relax this threshold, or even remove this assump-
tion. Our approach shows increased power in experiments on synthetic data, especially in cases where there 
is larger Fst difference between the input studies, and provides robust results in real GWAS settings. One of 
the biggest concerns in GWAS meta-analysis is sample overlap between different studies. ASSET only allows 
correction for known sample overlap, whereas METAL’s development version is able to correct for unknown 
sample overlap. Our work here presents, for the first time, a thorough evaluation of correction for known and 
unknown sample overlap; our sample overlap correction is theoretically founded and more intuitive compared 
to previous  methods27.

We further propose a novel perspective on case-case association studies (cc-GWAS), allowing analysis without 
the need for complicated assumptions or side information apart from sample sizes. To the best of our knowledge, 
the only prior work on summary statistics based case-case GWAS  is16. In our work, we achieve this objective in a 
straightforward manner: we directly compare the reconstructed allele frequencies of each SNP in two groups of 
cases, without the need to estimate heritabilities or prevalence of disorders as  in16. The fact that case-case GWAS 
using ReACt analyzes each SNP independently also allows the user to run the analysis even when only a subset 
of the GWAS results are made available, which is a common scenario in practice and could not be addressed by 
prior work. Further, we do not need any extra assumptions on the distribution of SNP effects.

ReACt showed good control of type I errors in null SNPs (type II SNPs) given sufficiently large control 
sample sizes for both input studies. In practice, our experiments demonstrated that we can get accurate results 
with 2000 controls from each input GWAS, which is a reasonable sample size in modern GWAS. It also shows 

Table 7.  Using our method to perform PRS comparisons across eight neuropsychiatric disorders. We further 
applied our method to the summary statistics of eight neuropsychiatric disorders from PGC (see table 6 for 
details). For each disorder, we used PGC GWAS summary statistics to compute the group mean and standard 
deviation of PRS for the other seven disorders. All group PRS were estimated using independent SNPs with 
p < 10

−5 in the base summary statistics. We report p-values from a t-test comparing the group mean PRS of 
cases against controls in the target study, and cells with deeper blue colors correspond to lower p-values. The 
threshold of significance under multiple testing correction is p < 8.93 · 10−4.

Target

OCD TS ED ASD BIP ADHD SCZ MD

B
as
e

OCD – 5.71·10−1 1.26·10−1 7.83·10−2 9.51·10−2 2.64·10−1 4.44·10−1 6.81·10−1

TS 5.17·10−2 – 2.31·10−1 7.78·10−1 3.05·10−1 3.57·10−2 4.50·10−1 5.40·10−3

ED 2.95·10−1 3.31·10−1 – 4.83·10−1 4.29·10−4 6.28·10−4 1.89·10−2 3.27·10−3

ASD 9.95·10−1 7.40·10−3 9.00·10−1 – 1.77·10−1 8.12·10−4 1.17·10−1 3.98·10−13

BIP 3.54·10−3 5.82·10−1 9.84·10−13 4.03·10−7 – 1.29·10−13 1.08·10−79 1.15·10−19

ADHD 2.15·10−1 1.08·10−8 2.32·10−3 2.62·10−45 9.58 ·10−2 – 1.37·10−10 2.88·10−52

SZC 3.23·10−7 9.36·10−1 4.88·10−1 1.28·10−24 1.68·10−133 2.11·10−1 – 7.36·10−94

MD 5.09·10−2 4.48·10−1 3.43·10−1 2.08·10−26 5.35·10−9 6.05·10−21 6.10·10−45 –
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slightly higher, but under-controlled, type I errors in the stress test SNPs (type III SNPs), which is also observed 
by the method  of16. As also pointed out  by16, we do not expect the existence of stress SNPs to be particularly 
common in practice.

A notable difference between our method and the work  of16 is that we do not filter for SNPs showing asso-
ciation due to differential tagging effects. While analyzing such SNPs, our method behaves more like a direct 
case-case GWAS using individual level data.

Our framework also introduces a novel perspective on case-control PRS. Conventionally, PRS for a target 
study is only accessible from individual level genotype data. However, we notice that the group means and stand-
ard errors of PRS can in fact be estimated using only summary statistics of both the base and target studies. With 
such statistics available, a t-test can be carried out instead place of logistic regression, which is commonly used 
for predictability evaluation when the individual level PRS are available. It is worth noting that, for case-control 
studies, t-tests and logistic regression are testing the same hypothesis: whether scores generated from the SNP 
effect of a base study can differentiate individuals in the target study, or, equivalently, whether the base study 
can predict the case/control status of samples in the target study. We applied our method to summary statistics 
of eight psychiatric disorders from PGC for predicting group PRS and found the results in general concordance 
with the genetic correlation obtained by the work of Lee et al.7.

In our work, PRS evaluations use the p-value based clumping and thresholding (PC+T) approach. However, 
the methodology underlying the ReACt group PRS can be easily adapted to any other PRS computation model, 
e.g.,38  (SBLUP39,  LDpred40 , PRS-CS41,  SBayesR42 and other Bayesian based  methods43 etc).

It is worth noting that given SNP effect sizes and weights as input, ReACt does not require the base summary 
statistics to be from a case-control GWAS because, in PRS computations, the base summary statistics provide the 
predictor weights and we do not need to convert them back into allele frequencies. This fact makes ReACt easily 
applicable on any of the aforementioned SNP re-weighting schemes. To date, most PRS improvements target the 
selection and prioritization of SNPs or the adjusting of the weights to build a better prediction model using the 
base study. Our work contributes from a different perspective: it allows the user to evaluate the performance of 
models without access to individual level genotype data. Moreover, results from group PRS using our approach 
can be further connected  with22 to quantify the predisposition to a particular disorder that is explained by a 
certain SNP set. Finally, a notable feature of ReACt is that, theoretically, it can handle known and unknown 
sample overlap between base and target populations; to the best of our knowledge, this is done for the first time 
for PRS computations. Sample overlap has long been known as a problem in PRS and our approach provides 
a good starting point for future work. We do note that, recently, a different method has also been proposed to 
specifically correct the inflation due to known sample overlap between base and target studies in PRS evaluations 
with individual level  data44. An interesting future research direction would be to combine the results  of44 with 
summary statistic methods such as ReACt.

Our framework is robust against within-study stratification effects. However, users should keep in mind that 
general rules of thumb for conventional PRS also apply to our method. For instance, the SNPs used for PRS 
computations are expected to be independent to a certain extent (clump/prune/LASSO shrink the summary 
statistics)19 and the predictive power of output PRS will be subject to the power of the base  study21 and the p-value 
threshold chosen by the user.

Our work opens many future research directions. First, the reconstruction scheme that our framework is built 
upon is based on input summary statistics that are generated using a logistic regression or a χ2-test. We have not 
yet explored how to adapt our framework to operate on summary statistics from other models. Theoretically, all 
we need is GWAS summary statistics that can be converted into OR and SE for each SNP. There exist summary 
statistics-based methods transforming GWAS results obtained from linear mixed model association to odds 
 ratio45, and it will be interesting to further explore how such methods could interface with our approach. Also, 
our meta-analysis module only investigated the most straight forward application of ReACt in a fixed-effect 
model. It would be interesting to explore methodologies that carry out random-effect meta-analyses using the 
same framework. Another interesting topic for future work would be to incorporate information beyond GWAS 
summary statistics. For example, one could consider incorporating external information such as LD structure 
using LD reference maps, or eQTL and SNP to gene annotations. Such information could be used to improve 
the accuracy of sample overlap estimation and to extend the group-PRS applications. Furthermore, although 
outside the scope of our analysis here, one could investigate expanding towards methods that perform haplotype 
(instead of genotype) reconstruction. Overall, our work here highlights the power of summary-statistics-based 
methodology and opens up additional avenues for research.

Methods
Our framework. Notation. Prior to introducing our methods, we discuss notational conventions. We will 
reserve the subscript i to denote SNP number: given, say, M SNPs, i will range between one and M. Similarly, 
we will reserve the subscript ℓ to denote the study number: given L studies from which summary statistics will 
be meta-analyzed, ℓ will range between one and L. We assume that all L studies released summary statistics on 
a common set of M SNPs. For simplicity, we will first describe our methods for the case L = 2 (i.e., when exactly 
two studies are jointly meta-analyzed) and we will generalize our approach in “Meta-analyzing multiple data-
sets” section for L > 2.

We will use the three-letter shorthand cse for cases and the three-letter shorthand cnt for controls. We 
reserve the variable a to represent counts of the effective allele and the variable u to represent counts of the non-
effective allele. We also reserve the variable N to represent counts for the number of cases or controls. Given the 
above conventions, we now present the following table of allele counts (effective and non-effective allele) for 
SNP i ( i = 1 . . .M ) in study ℓ ( ℓ = 1 . . . L ) (Table 8).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8242  | https://doi.org/10.1038/s41598-022-12185-6

www.nature.com/scientificreports/

Using the above table, we can also compute the frequencies of the effective or non-effective allele in cases and 
controls. Table 9 summarizes frequency notation for SNP i ( i = 1 . . .M ) in study ℓ ( ℓ = 1 . . . L).

Obviously,

Reconstructing allele counts. Using Table 8, notice that the odds ratio (OR) and its corresponding standard 
error (SE) for SNP i in study ℓ are given by the following formulas:

Additionally,

By solving the system of non-linear Eqs. (1), (2), (3), and (4), we can recover acseiℓ  , ucseiℓ  , acntiℓ  , and ucntiℓ  for SNP i in 
study ℓ . Notice that ORiℓ , SEiℓ , Ncse

ℓ  , and Ncnt
ℓ  are available from summary statistics. See Appendix 5.2 for details 

on solving the aforementioned system of non-linear equations.

Reconstructing genotype counts. Given the reconstructed allele counts of “Reconstructing allele counts” sec-
tion, we can now reconstruct genotype counts for SNP i in the ℓ-th study. In order to do this, we need to assume 
that SNP i is in HWE in both case and control groups of study ℓ . Note that a well-performed GWAS should have 
SNPs drastically violating HWE filtered out. As demonstrated in our results, SNPs with HWE p-value larger than 
10−6 (a common threshold applied in most GWAS) do not affect the performance of ReACt in practice. More 
precisely, assume that for SNP i in study ℓ we have reconstructed its allele table count (Table 8). Then, by assum-
ing that this SNP is in HWE in study ℓ , we can compute the number of cases and controls that exhibit a particular 
genotype. Recall that there are three possible genotypes: A1A1 , A1A2 , and A2A2 . We will represent each genotype 
by counting the number of copies of the effective allele in each genotype. Thus, A1A1 will correspond to two, 
A1A2 will correspond to one, and A2A2 will correspond to zero.

Following our notational conventions from “Notation” section, we can now compute the entries in Table 10 
of genotype counts for SNP i in study ℓ.

It is worth noting that

pcseiℓ + qcseiℓ = 1

pcntiℓ + qcntiℓ = 1.

(1)ORiℓ =
acseiℓ · ucntiℓ

acntiℓ · ucseiℓ

,

(2)SEiℓ =

√

1

acseiℓ

+
1

ucseiℓ

+
1

acntiℓ

+
1

ucntiℓ

.

(3)2Ncse
ℓ = acseiℓ + ucseiℓ , and

(4)2Ncnt
ℓ = acntiℓ + ucntiℓ .

(5)Ncse
ℓ = Ncse

iℓ (0)+ Ncse
iℓ (1)+ Ncse

iℓ (2),

Table 8.  Table of allele counts for SNP i ( i = 1 . . .M ) in the ℓ -th GWAS ( ℓ = 1 . . . L). The total number of 
cases for the ℓ-th study is Ncse

ℓ  and the total number of controls for the ℓ-th study is Ncnt

ℓ  . Clearly, the total 
number of cases and controls in a study is the same for all SNPs, which is why the variable N does not depend 
on i. The total number of alleles in cases and controls is equal to twice the number of cases and controls, 
respectively.

A1 (effective allele) A2 (non-effective allele) Number of alleles

Cases acseiℓ ucseiℓ 2Ncse
ℓ

Controls acntiℓ ucntiℓ 2Ncnt
ℓ

Table 9.  Notations and definitions of (effective or non-effective) allele frequencies in cases and controls. The 
subscripts i and ℓ indicate SNP number and study number, respectively.

pcseiℓ = acseiℓ
acseiℓ +ucseiℓ

Frequency of the effective allele A1 in cases

pcntiℓ = acntiℓ

acntiℓ +ucntiℓ

Frequency of the effective allele A1 in controls

qcseiℓ = ucseiℓ
acseiℓ +ucseiℓ

Frequency of the non‑effective allele A2 in cases

qcntiℓ = ucntiℓ

acntiℓ +ucntiℓ

Frequency of the non‑effective allele A2 in controls
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Next, we reconstruct the genotype vector for SNP i in study ℓ as follows:

Using Eqs. (5) and  (6), it is easy to conclude that the vector giℓ has a total of

entries, which is equal to the number of samples (cases plus controls) included in the ℓ-th study. We can also 
form the response vector yℓ for the ℓ-th study, indicating whether a sample is a case (i.e., one) or a control (i.e., 
zero) as follows:

 Note that the vectors yℓ and giℓ have the same dimensions (same number of entries). It should be clear that the 
vector yℓ is the same for all SNPs in the ℓ-th study and hence does not depend on the SNP number i.

We conclude the section by discussing the construction of an indicator vector s that will denote the study from 
which a particular sample in our meta-analysis originated. For the sake of simplicity, assume that we meta-analyze 
summary statistics from two studies ( L = 2 ). Then, following the above discussion, we can construct the genotype 
vectors gi1 and gi2 and concatenate them to construct the overall genotype vector for the i-th SNP in both studies:

Similarly, we can construct the overall response vector y for both studies:

Notice that the vectors gi and y have the same dimensions (number of entries), equal to the number of samples 
(cases plus controls) in both studies, i.e., equal to

We can now construct the indicator vector s as follows:

Note that a value of zero in s indicates that the corresponding sample belongs to the first study while a value of 
one in s indicates that the corresponding sample belongs to the second study.

Fixed-effect meta-analysis. Logistic regression. We run logistic regression for each SNP separately; re-
call that we number SNPs in our meta-analysis from one up to M. For notational convenience and since we run 
logistic regression in an identical manner for each SNP, without loss of generality we focus on a single SNP. Let 
the genotype vector for the selected SNP be denoted by g ; let s be the study indicator vector; and let y be the re-
sponse vector, as discussed in the previous section. Recall that all three vectors have the same dimensions (same 
number of entries), equal to N, namely the total number of cases and controls in both studies. Notice that we 
dropped the subscript i from the vector g for notational convenience, since our discussion in this section will focus 
on a fixed SNP i, without loss of generality.

Using notation from the previous section, while dropping the subscript i from the genotype vector g , allows 
us to formulate logistic regression as follows:

where S(x) = (1+ e−x)−1 is the sigmoid function; yj denotes the jth entry of the vector y ; sj denotes the jth entry 
of the vector s ; and β0 , β1 , and β2 are the unknown coefficients of the logistic regression formulation. Here β0 
corresponds to the constant offset, β1 corresponds to the genotype, and β2 corresponds to the study-of-origin. 
We also highlight that gj denotes the jth entry of the vector g ; recall once again that we dropped the subscript i 
from the genotype vector in this section. The range for all subscripts j for the above vectors is between one and N.

(6)Ncnt
ℓ = Ncnt

iℓ (0)+ Ncnt
iℓ (1)+ Ncnt

iℓ (2).

giℓ =
[
0 . . . 0
︸ ︷︷ ︸

Ncse
iℓ (0)

1 . . . 1
︸ ︷︷ ︸

Ncse
iℓ (1)

2 . . . 2
︸ ︷︷ ︸

Ncse
iℓ (2)

0 . . . 0
︸ ︷︷ ︸

Ncnt
iℓ (0)

1 . . . 1
︸ ︷︷ ︸

Ncnt
iℓ (1)

2 . . . 2
︸ ︷︷ ︸

Ncnt
iℓ (2)

]

.

Ncse
ℓ + Ncnt

ℓ

(7)yℓ =
[
1 . . . 1
︸ ︷︷ ︸

Ncse
ℓ

0 . . . 0
︸ ︷︷ ︸

Ncnt
ℓ

]

.

gi = [gi1 gi2].

y = [y1 y2].

N = Ncse
1 + Ncnt

1 + Ncse
2 + Ncnt

2 .

s =
[

0 . . . 0
︸ ︷︷ ︸

Ncse
1 +Ncnt

1

1 . . . 1
︸ ︷︷ ︸

Ncse
2 +Ncnt

2

]

.

(8)Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj),

Table 10.  Genotype counts for cases and controls for SNP i in study ℓ. Using the above formulas, we can 
reconstruct the genotype counts for cases and controls for each of the three possible genotypes.

A1A1 (two copies of A1) A1A2 (one copy of A1) A2A2 (zero copies of A1)

Cases Ncse
iℓ (2) = (pcseiℓ )2Ncse

ℓ
Ncse
iℓ (1) = 2pcseiℓ qcseiℓ Ncse

ℓ Ncse
iℓ (0) = (qcseiℓ )2Ncse

ℓ

Controls Ncnt
iℓ (2) = (pcntiℓ )2Ncnt

ℓ Ncnt
iℓ (1) = 2pcntiℓ qcntiℓ Ncnt

ℓ Ncnt
iℓ (0) = (qcntiℓ )2Ncnt

ℓ
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In order to further describe how logistic regression was implemented in our experiments, it will be convenient 
to introduce additional notation. Let β be the vector

and let x be the vector

Thus, β is the vector of the (unknown) logistic regression coefficients, while xTj  for all j = 1 . . .N is the vector 
representing the constant offset, the genotype, and the study origin for the jth sample in our meta-analysis. This 
allows us to rewrite Eq. (8) as follows:

We can now compute the negative log-likelihood (NLL) function for β as follows:

Thus, β can be estimated using the Iterative Re-weighted Least Squares (IRLS)  algorithm46 as follows:

In the IRLS algorithm, we let D denote the diagonal N × N matrix whose diagonal entries are d1, d2, . . . , dN ; 
we let X denote the N × 3 matrix whose rows are the vectors xTj  for j = 1 . . .N ; and we let z denote the vector 
whose entries are the zj for j = 1 . . .N . Using this notation, the matrix H = XTDX is the 3× 3 Hessian matrix 
of this logistic regression problem. The algorithm iterates over t = 0, 1, 2, . . . and terminates when our conver-
gence criterion, namely the difference �βt+1 − βt� (which is simply the sum of the absolute values of the three 
entries of the vector βt+1 − βt ) drops below the threshold 10−4 , which is the same threshold as the one used by 
 PLink47 for logistic regression.

Note that a drawback for logistic regression is that it can produce anti-conservative results under imbalance, 
which in our case, includes unbalanced sample sizes in cases and controls, as well as unbalanced sample sizes 
among input studies. We apply Firth bias-corrected logistic regression  test48,49 to correct for the estimate under 
input imbalance (triggered when either the total case/control ratio, or maximum/minimum input sample size 
ratio is greater or equal to 5 by default). This approach has been reported with stable performance in both bal-
anced and unbalanced studies, as well as with rare  SNPs50.

We conclude this section by discussing how to compute a p-value for the logistic regression formulation of 
Eq. (8). First, it is well-known that the standard error for the three coefficients of the logistic regression formula-
tion can be computed by using the inverse of the Hessian matrix H . In particular, the standard error for β0 is 
equal to SE0 =

√

(H−1)11 ; the standard error for β1 is equal to SE1 =
√

(H−1)22 ; and the standard error for β2 
is equal to SE2 =

√

(H−1)22  . As is typical in association studies, we focus on SE1 , the standard error for the 
vector of genotypes, and compute the respective p-value for the SNP-under-study using the Wald test. More 
specifically, we find the corresponding p-value of a Z-distribution for the parameter 

∣
∣
∣
β1
SE1

∣
∣
∣.

Correcting for sample overlap (two studies). Sample overlap between studies can lead to an under-estimation 
of test statistics variance and results in an inflated test p-value. To prevent this from happening, we will use an 
“effective sample size” correction as follows. Assume that we are given Table 11, which details the number of 
overlapping samples between the two studies.

Using the counts in Table 11, the number of shared cases between the two studies is equal to:

βT = [β0 β1 β2],

xTj = [1 gj sj].

Pr(yj = 1|gj , sj) = S(βT · xj).

NLL(β) = −
N∑

j=1

log(Pr(yj)) = 1|xj)

= −
N∑

j=1

yj log S(β
T · xj)+ (1− yj) log(1− S(βT · xj)).
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Notice that if the off-diagonal entries in Table 11 are equal to zero then the above number reduces, obviously, to 
Ncse-cse

shr
 . Similarly, we have the number of shared controls equal to:

Then, the correction is simply carried out by multiplying the case/control sample size of each input study by a 
“deflation factor” defined as follows:

We multiply the sample size for cases (respectively, controls) in each study ℓ by �cseℓ  (respectively, �cntℓ  ) before 
proceeding with the logistic regression described in “Logistic regression” section.  See51 for a similar correction 
strategy. We finally note that in practice the exact number of overlapping samples between two studies is usu-
ally not known. In this case, we followed the approach proposed  in28 to estimate the overlapping sample size.

Meta‑analyzing multiple datasets. We now extend our approach to meta-analyze more than two datasets. The 
main difference with our previously described approach is the handling of the indicator variable for multiple 
datasets. We can still reconstruct the genotype count for each input study in exactly the same way as in Table 10 
as well as the response vector following Eq. (4.1.3). Therefore, when multiple studies are meta-analyzed, gi and 
y become

The indicator vector s cannot be binary anymore. Intuitively, one may consider using L binary vectors, each to 
encode samples from each input study. However, this approach would necessitate up to L(L− 1)/2 vectors to 
encode pairwise sample overlap. This increases the computational complexity by O(L2) . A simpler alternative is 
to use categorical variable as the source study indicator. Note that in this case, different rankings of the studies 
can lead to completely different results. A straightforward idea is to encode the studies using their population 
allele frequencies, which can be computed via Table 8 as follows:

Note this is encoding also controls for population stratification across multiple sample sources. Then, when 
analyzing L studies, the indicator vector s becomes:

We can now proceed with the logistic regression as in “Logistic regression” section. In order to handle sample 
overlap across multiple studies, we use the subscript (·)ℓ1ℓ2 to denote properties of shared samples between two 
studies ℓ1 and ℓ2 . Then, generalizing Eqs. (9) and (10), we get, for each pair of input studies ℓ1 and ℓ2,

(9)Ncse

shr
= Ncse-cse

shr
+

Ncse-cnt

shr
+ Ncnt-cse

shr

2
.

(10)Ncnt

shr
= Ncnt-cnt

shr
+

Ncnt-cse

shr
+ Ncse-cnt

shr

2
.

�
cse

ℓ =
Ncse

ℓ

Ncse

ℓ + Ncse

shr

�
cnt

ℓ =
Ncnt

ℓ

Ncnt

ℓ + Ncnt

shr

.

gi = [gi1 . . . giL],

y = [y1 . . . yL].

Iiℓ =
acseiℓ + acntiℓ

acseiℓ + acntiℓ + ucseiℓ + ucntiℓ

s =

[

I1 . . . I1
︸ ︷︷ ︸

Ncse
1 +Ncnt

1

. . . IL . . . IL
︸ ︷︷ ︸

Ncse
L +Ncnt

L

]

.

Ncse

ℓ1ℓ2
= Ncse-cse

ℓ1ℓ2
+

Ncse-cnt

ℓ1ℓ2
+ Ncnt-cse

ℓ1ℓ2

2
,

Ncnt

ℓ1ℓ2
= Ncnt-cnt

ℓ1ℓ2
+

Ncnt-cse

ℓ1ℓ2
+ Ncse-cnt

ℓ1ℓ2

2
.

Table 11.  Number of overlapping cases and controls between the two studies. For example, the first cell of the 
table indicates the number of shared cases between the two studies. In practice, the off-diagonal cells of this 
table are close to zero, since they indicate cases in one study that became controls in the other study and vice-
versa. Large numbers in these off-diagonal cells would indicate high heterogeneity across the two studies, in 
which case a fixed effect meta-analysis is not recommended.

Overlapping Study 2: case Study 2: control

Study 1: case Ncse-cse

shr Ncnt-cse

shr

Study 1: control Ncse-cnt

shr
Ncnt-cnt

shr
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Finally, for any study ℓ1 = 1 . . . L , the sample size correction is

We can now apply �cseℓ1
 to correct the sample size for cases in study ℓ1 and we can apply �cntℓ1

 to correct the sample 
size for controls and proceed with logistic regression.

cc-GWAS and group PRS. cc‑GWAS using summary statistics. cc-GWAS is a straight-forward approach 
to investigate the genetic differences between two traits. However, in practice, it is usually challenging and time 
consuming, due to restrictions in individual level data sharing. Recently, a method for cc-GWAS that relies only 
on summary statistics has been proposed  in16. We propose an alternative perspective on summary-statistics-
based cc-GWAS framework, using the foundations of “Reconstructing allele counts” section.

One of the biggest challenges of cc-GWAS is the differentiation of the genetic effects from trait-trait difference 
and population stratification. Assume that for a fixed SNP, we run logistic regression focusing only on the cases 
of the two studies. Let ycsej = 1 denote that sample j is a case from the first study and let ycsej = 0 denote that 
j is a case from the second study. Let gcsej  be the genotype of the j-th case. Then,

The effect size βcse

1  that is the output of logistic regression will include effects from the real genetic differences 
between trait 1 and trait 2 ( βg ) as well as from population stratification ( βs ). We can assume that these two effects 
are independent of each other:

Assume that the control samples from studies one and two do not carry the traits of interest. Then, we can estimate 
the effect of population stratification by running another logistic regression, focusing only on controls from the 
two studies, as follows:

In the above, ycntj = 1 denotes that sample j is a control from study one, ycntj = 0) denotes that j is a control 
from study two, and gcntj  denotes the the genotype for the j-th control sample. From this logistic regression, we 
can get an estimate of the stratification effect βs . Note that along with βs , we will also get a standard error for 
the estimate of stratification SEs , which essentially corresponds to the sample size of controls in the two input 
studies. If we do not have a good amount of controls, SEs will turn out to be large, indicating that the estimate for 
stratification effect is not reliable and the results from the cc-GWAS should be interpreted carefully.

If SEs is small enough, then it is reasonable to assume that the estimate of the stratification effect is credible 
and we can subsequently treat βs as a fixed value. Then, the genetic effect from the trait-trait difference that we 
are interested in is

It now follows that the standard error of βg is

using the derivations of “Reconstructing genotype counts” section. Logistic regressions on cases (Eqs. (11)) and 
controls (Eq. (12)) can be carried out as discussed in “Logistic regression” section, with minor changes (include 
only the designated samples; relabel the dependent variable; and remove the indicator variable). By running 
these two logistic regressions, we can compute βcse

1 ,βs , SE
cse

1  , and SEs . Then, using Eqs. (13) and (14), we can 
compute βg and SEg for each SNP. Similarly, we can also compute the corresponding p-value using a Z-distribu-
tion for 

∣
∣
∣
βg
SEg

∣
∣
∣.

Mean PRS for cases and controls. Recall that the PRS for the t-th individual in the study is computed as:

where git is the genotype of the i-th SNP for the t-th individual and Si is the weight for SNP i, which is usually 
defined as

�
cse

ℓ1
=

Ncse

ℓ1

Ncse

ℓ1
+

∑L
ℓ2 �=ℓ1

Ncse

ℓ1ℓ2

,

�
cnt

ℓ1
=

Ncnt

ℓ1

Ncnt

ℓ1
+

∑L
ℓ2 �=ℓ1

Ncnt

ℓ1ℓ2

.

(11)Pr(ycsej = 1|gcsej ) = S(βcse

0 + βcse

1 gcsej ).

βcse

1 = βg + βs .

(12)Pr(ycntj = 1|gcntj ) = S(βcnt

0 + βsg
cnt

j ).

(13)βg = βcse

1 − βs .

(14)Var(βg ) = Var(βcse

1 ) =⇒ SEg = SE1,

(15)PRSt =
M∑

i=1

Si · git
2M

,

Si = log(ORbase

i ),
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where ORbase

i  is the odds ratio of SNP i in the base summary statistics. Recall from “Notation” section that M is 
the total number of SNPs. Then, in order to compute the average PRS for, say, cases, we simply need to sum up 
the individual PRS and average over the number of cases. More precisely,

where Ncse is the number of cases in the target study. The above equation can be rewritten as

Notice that in an additive model, 
∑

t∈cse git/2N
cse is the allele frequency of SNP i over all cases in the target 

study, which can be computed using only the summary statistics as shown in “Reconstructing genotype counts” 
section and Table 9. Thus, the mean PRS under an additive model for cases and controls can be computed as 
follows:

All relevant information for this computation can be easily obtained from the summary statistics of the base 
and/or target study.

Estimating the standard deviation of the PRS for cases and controls. Interestingly, we can also estimate the stand-
ard deviation of the PRS for cases and controls, even without individual level genotype information, under mild 
assumptions. First, from Eq. (15), we compute the variance of an individual’s PRS as follows:

Recall that as a general step prior to the computation of PRS, it is recommended to prune or clump the SNPs 
used for the PRS computation. Therefore, our first assumption is that the git ’s are pairwise independent. Then, 
Eq. (16) can be simplified as follows:

Notice that under an additive model, git is a discrete random variable that only takes the value zero, one, and 
two. Consider all cases and, as in “Reconstructing genotype counts” section, assume that the SNPs are in HWE. 
Then, the distribution of git in the cases is presented in Table 12.

We can now compute the variance of git in cases as follows:

Substituting into Eq. (17), we get

PRScse =
1

2MNcse

∑

t∈cse

M∑

i=1

Si · git .

PRScse =
1

2MNcse

M∑

i=1

Si
∑

t∈cse
git .

PRScse =
∑M

i=1 Sip
cse

i

M
,

PRScnt =
∑M

i=1 Sip
cnt

i

M
.

(16)

Var(PRSt) = Var(

M∑

i=1

Si · git
2M

)

=
1

4M2
Var(

M∑

i=1

Si · git).

(17)
Var(PRSt) =

∑M
i=1 Var(Si · git)

4M2

=
∑M

i=1 S
2
i Var(git)

4M2
.

Var(git) = E(g2it)− (Egit)
2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei qcsei + 2(pcsei )2)2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei (pcsei + qcsei ))2

= 2pcsei qcsei + 4(pcsei )2 − 4(pcsei )2 = 2pcsei qcsei .

Table 12.  The probability distribution of git for SNP i. In this table, pcsei  denotes the allele frequency of A1 in 
cases and qcsei = 1− pcsei .

git = 2 (two copies of A1) git = 1 (one copy of A1) git = 0 (zero copies of A1)

(pcsei )2 2pcsei qcsei (qcsei )2
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Similarly, we can compute the estimated variance PRScnt for controls and PRS for the overall population of the 
target study. To summarize, our estimates are

Here pi is the frequency of allele A1 for SNP i in all samples of the target study, and can be computed as:

We can now apply a t-test in order to obtain a p-value for the difference between the PRS distributions in cases 
and controls. Given the estimated group means and standard deviations for cases and controls, we can further 
assume that the individual level PRS follow a normal distribution in each group and use the t-test statistic as 
follows:

Finally, the degrees of freedom are given by df = Ncse + Ncnt − 2.

Experiments. Data. Synthetic data. We used the Balding-Nichols  model26,52 for synthetic genotype gen-
eration, assuming a minor allele frequency (MAF) of 0.3 for each SNPs and a relative risk r (r = 1.15/1.2/1.3) for 
the effective alleles of the causal SNPs in each population. The simulation was carried out under a range of Fst 
values ( Fst = 0.01/0.05/0.1 ). For the fixed-effect meta-analysis, we simulated 1000 cases and 1000 controls for 
each input study. A total of 100,000 SNPs were generated, out of which 1000 are causal SNPs with the predefined 
risk for the effective alleles. Moreover, on top of the independent populations, we also evaluated the performance 
of ReACt under the presence of sample overlap by introducing a predefined amount of samples shared between 
each pair of input studies (100 cases, 100 controls overlap; or 500 cases, 500 controls overlap).

To further demonstrate the scalability of ReACt, we evaluated its performance on UK biobank samples with 
phenotypes simulated using the gcta  tool29. The simulation was carried out using quality controlled geno-
types (removing SNPs and individuals showing missing rate larger than 0.02 and SNPs strongly violating the 
Hardy-Weinberg equilibrium with a p-value larger than 10−6 ), using a predefined trait heritability equal to 0.4 
and prevalence equal to 0.2. We simulated 50,000 cases and 250,000 controls, each genotyped on 634,758 SNPs, 
out of which 1000 SNPs were randomly selected to be causal with effect size OR equal to 1.2. In each iteration, 
we split the samples into two equal sized subsets, each with 25,000 cases and 125,000 controls. Similarly to our 
experiments on the Balding-Nichols model, we tested the performance under various degrees of sample overlap.

For the cc-GWAS, inspired  by16, we used the same simulation model but introduced three types of SNPs for a 
thorough evaluation of the method’s robustness: (i) SNPs with non-zero effect in only one of the studies and zero 
effect in the other; (ii) SNPs with zero effect in both input studies; and (iii) SNPs with the same non-zero effect 
size (predefined r) in both input studies. All of the three types of SNPs would suffer from population stratifica-
tion at a predefined value of Fst . In total, 100,000 SNPs were generated, with 1000 (for each input study) from 
type (i), 49,000 from type (ii), and 49,000 from type (iii). To investigate the effect of study sizes, we evaluated the 
method performance on input studies with 2000 cases and 2000 controls each, as well as on studies with 5000 
cases and 5000 controls each.

Individual level genotype data. We tested the performance of our fixed-effect meta-analysis method and 
group PRS method on the depressive episode trait in UK biobank  dataset30. Only independent European ancestry 
samples identified through PCA and IBD check are included for the analysis. We applied basic quality control 
filters on those samples, which were removing SNPs and samples with a missing rate exceeding 2% or violating 
the Hardy-Weinberg equilibrium ( pHWE < 10−6 ). As a result, 640,756 SNPs and 331,217 samples (18,368 cases 
and 312,849 controls) survived and were used for the experiment. For the evaluation of the fixed-effect meta-
analysis method, we ran a standard GWAS with all samples and treated SNPs with p < 10−6 from the results 
as the “true signals” to be captured. For all GWAS on UB biobank samples, we correct for age, gender, sample 
collection batch and top 10 PCs obtained using software  TeraPCA53.

Generating summary statistics. For synthetic data and individual level genotypes, summary statistics were 
generated using  PLink47, correcting for the top ten principal components (PCs) in the case of admixed datasets. 
For real individual level genotype data, we divided the samples randomly into two equal sized subsets and ran a 
GWAS on each subset separately to obtain summary statistics for each subset. We performed ten such random 
iterations in our experimental evaluations. For the fixed-effect meta-analysis, on top of two independent subsets, 

Var(PRScse) =
∑M

i=1 S
2
i (2p

cse

i qcsei )

4M2
.

Var(PRScse) =
∑M

i=1 S
2
i p

cse

i qcsei

2M2
,

Var(PRScnt) =
∑M

i=1 S
2
i p

cnt

i qcnti

2M2
,

Var(PRS) =
∑M

i=1 S
2
i piqi

2M2
.

pi =
Ncsepcsei + Ncntpcnti

Ncse + Ncnt
,

qi = 1− pi .

t =
PRScse − PRScnt

√
Var(PRS) ·

√
1

Ncse + 1
Ncnt

.



19

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8242  | https://doi.org/10.1038/s41598-022-12185-6

www.nature.com/scientificreports/

we also introduced 100/500 sample overlap for synthetic data under the Balding-Nichols model; 5000/10,000 
sample overlap for synthetic data under the gcta model; and 500/1000 sample overlap for the real GWAS data 
on depression.

Publicly available summary statistics. As part of the performance evaluation for our group PRS method, we 
used summary statistics from an MDD GWAS published in  201336 as the base study. Most recent large-scale 
GWAS often include UK biobank as part of the samples. We chose to use an earlier GWAS published before the 
release of UK biobank data in order to minimize sample overlap between the base and target populations as 
much as possible. The summary statistics contains in total 1,235,109 SNPs on genome build hg18. After  liftover54 
to hg19, 1,234,855 remained for the analysis.

For group PRS and cc-GWAS, we demonstrated the applicability of our methods using publicly available 
summary statistics. We chose the summary statistics of eight neuropsychiatric disorders made available by the 
Psychiatric Genomics Consortium (PGC), since the underlying relationships between this set of disorders has 
been relatively well-studied. Information on the eight summary statistics can be found in Table 13.

Evaluation metrics. Fixed-effect meta-analysis. For synthetic experiments using the Balding-Nichols model 
where all SNPs were simulated independently, results after performing the meta-analysis were compared with 
the predefined causal variants. Under each experimental condition, we reported the average true positive rate 
(i.e., the percentage of predefined causal SNPs identified under the designated significant threshold), as well as 
the false positive rate (type I error, i.e., the percentage of non-causal SNPs falsely identified as causal under the 
same significance threshold) out of ten independent iterations.

For experiments under the gcta simulator it was unreasonable to report power and type I error rates by com-
paring with the predefined causal SNPs, since the SNPs were not independent in the input genotypes. Therefore, 
for this experiment, the performance of ReACt and the other tools was evaluated by comparing results to the 
outcome of a GWAS on all 50,000 cases and 250,000 controls, where 1,886 SNPs were identified as genome-wide 
significant (GWAS p-value < 5× 10−8 ). We considered those 1,886 SNPs as true signals (“causal SNPs”) and 
reported average power and type I error rates over ten iterations for all methods.

For real genotype data, in each iteration, we meta-analyzed summary statistics of two subsets using the pro-
posed methods and standard approaches and compared results with the GWAS results on the complete dataset. 
Following the lines of the experiments using the gcta simulation model, we again reported results averaged 
over ten iterations (random splits) showing, on average, how many times a SNP reported as a “true signal” in the 
overall GWAS got picked up by each meta-analysis method (true positive) as well as how many extra SNPs each 
method identified (false positive). The performance on real genotype data was also evaluated under 0/100/500 
sample overlap. Sample size for each subset under different conditions was 482 cases, 993 controls with no sample 
overlap; 532 cases, 1043 controls with 100 cases and 100 controls overlap; and 732 cases, 1243 controls with 500 
cases and 500 controls overlap.

We compared the performance of ReACt in terms of accuracy as well as running time with  METAL24 and 
 ASSET25, which are both widely used tools for fixed-effect meta-analysis. Note that the latest stable release of 
METAL does not have the sample overlap correction functionality implemented. Therefore, for performance 
comparison, we used the development version available on  GitHub28.

cc-GWAS. Out of the three types of SNPs generated for the cc-GWAS evaluation (see “Data” section), we 
expect ReACt to pick up only type (i) SNPs as they have been designed to be the trait differential SNPs. Therefore, 
we reported the power (i.e., the percentage of type (i) SNPs identified under the significance threshold) of ReACt 
based on the number of type (i) SNPs that were identified as well as type I error rates (i.e., the percentage of type 
(ii) or (iii) SNPs falsely picked up under the same significance threshold) for type (ii) SNPs and type (iii) SNPs. 
Since the randomness introduced by the simulation could lead to false positives that were not due to the method 
itself, we filtered out type (iii) SNPs showing extreme differences in effect size between studies, by removing 
type (iii) SNPs with |ORi1 − ORi2| ≥ 0.1 from performance evaluation. Here ORi1 corresponds to the odd ratio 
for the ith SNP in the first study and ORi2 corresponds to the odd ratio for the ith SNP in the other study. Since 
all three types of SNPs suffered from population stratification, we evaluated the performance of ReACt under a 
challenging scenario. Besides simulation, experiments using summary statistics for schizophrenia (SCZ)33 and 

Table 13.  Information on summary statistics for the eight psychiatric disorders used in the experiments. 
Note that we used summary statistics only for samples of European ancestry. For MD, we used the summary 
statistics generated by UK biobank, excluding the 23andMe samples; for BIP, we used the summary statistics 
including all three patient sub-types.

Disorder #Cases #Controls Total #SNPs Reference

Obsessive-compulsive disorder (OCD) 2688 7037 9725 8,409,516 55

Tourette syndrome (TS) 4819 9488 14,307 8,947,432 56

Eating disorder (ED) 3495 10,982 14,477 10,641,224 57

Autism spectrum disorder (ASD) 18,382 27,969 46,351 9,112,386 58

Bipolar disorder (BIP) 20,352 31,358 51,710 13,413,244 32

Schizophrenia (SCZ) 36,989 113,075 150,064 9,075,843 33

Attention-deficit/hyperactivity disorder (ADHD) 19,099 34,194 53,293 8,094,094 59

Major depression (MD) 69,232 161,009 230,241 9,874,289 60
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bipolar disorder (BIP)32 were also carried out. These two disorders were chosen due to the existence of case-
case association study using the individual level  genotypes34. We tested ReACt using the summary statistics and 
compared the results with the existing case-case association study between SCZ and BIP to see whether it could 
detect possible genetic differences between the two disorders. Since no individual level quality control could be 
carried out, we expected our results to correspond to a case-case GWAS including 36,989 cases from SCZ and 
20,352 cases from all three sub-types of BIP (type 1, type 2, and schizoaffective bipolar disorder). SNPs on the 
X-chromosome were excluded from this analysis. Further, to make our protocol comparable to the ones used 
 in31, we also removed variants on the MHC region (chr6: 25,000,000–35,000,000BP). From a theoretical per-
spective, our approach analyzes each SNP independently. Therefore, removing MHC is not mandatory to run 
ccGWAS using ReACt, unless the study design requires to do so. As a result, a total of 9,018,199 SNPs shared 
between both summary statistics were used for the analysis. The results were compared in detail with the results 
reported by the cc-GWAS  in16.

Group PRS. In order to show that our method outputs reliable estimates of the group-wise statistics for PRS 
without accessing individual level genotypes, we compared the output of our method to the true group mean 
and standard deviation computed from the individual level PRS on synthetic data, as described in “Data” section. 
Performance was evaluated under with a fixed 0.05 Fst between the base and target studies. For a pair of base and 
target studies , we estimated the mean PRS for case/control groups as well as their standard deviation using SNPs 
with p-values strictly less than 5 · 10−5 in the summary statistics. We also computed the individual level PRS 
using PRSise2 to obtain the true group mean and standard deviation. Our experiments show that our estimates 
are numerically close to the real values. Next, we evaluated the performance of ReACt on real GWAS datasets, 
where the individual level genotype of the target study was available. For this experiment, we used an earlier 
GWAS summary statistics of  MDD36 as the base study (see “Data” section for details) and cases and matching 
controls of depressive episode trait in UK biobank as the target  population30. We clumped the base summary 
statistics using the European samples from 1000 Genome Project as reference, under parameters –clump-
p1 1 –clump-kb 250 –clump-r2 0.1. We tested the method and reported results under a range of 
p-value thresholds ( 0.1, 0.01, 0.001, 10−4 ). For each threshold, we used only independent SNPs with a p-value 
smaller than the respective threshold from the base summary statistics for PRS calculation, using both ReACt 
and PRSice2 35. We reported the mean PRS of cases and controls, as well as the resulting p-value from t-test. In 
the case of PRSice2, we also reported the regression r2 value and p-value for the PRS predictor with and without 
correcting for covariates (ie., the top five principal components).

Finally we applied ReACt to summary statistics of eight neuropsychiatric disorders (OCD, TS, ED, ADHD, 
ASD, BIP, SCZ and MDD, see “Data” section for details) and reported the pairwise PRS prediction power in terms 
of t-test p-values for the difference between case/control group PRS means. Prior to the group PRS computa-
tion, each base summary statistics was clumped using  PLink47 using parameters –clump-p1 1 –clump-kb 
250 –clump-r2 0.1, with the European samples from 1000 Genome Project as a reference. All PRS values 
were estimated using independent SNPs with p-values strictly less than 10−5 from the base summary statistics.

Data availability
Summary statistics for the eight disorders used in this study can be downloaded from Psychiatric Genomics 
Consortium (PGC): https:// www. med. unc. edu/ pgc/ downl oad- resul ts/. In-house script used for synthetic data 
generation can be found from our github page https:// github. com/ Pasch ou- Lab/ ReAct/ tree/ main/ Simul ator. 
Some data that support the findings of this study are available from the UK biobank but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of UK biobank. This 
research has been conducted using the UK Biobank Resource under Application Number 61553. An implementa-
tion for ReACt can be found on our github page: https:// github. com/ Pasch ou- Lab/ ReACt.
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