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Abstract

We consider the problem of dividing a set of m points in Euclidean n—space into
k clusters (m,n are variable while k is fixed), so as to minimize the sum of distances
squared of each point to its “cluster center”. This formulation differs in two ways from
the most frequently considered clustering problems in the literature, namely, here we
have k fixed and m, n variable, and we use the sum of squared distances as our measure;
we will argue that our problem is natural in many contexts.

We consider a relaxation of the discrete problem: find the k—dimensional subspace
V so that the sum of distances squared to V (of the m points) is minimized. We
show: (i) The relaxation can be solved by the Singular Value Decomposition (SVD) of
Linear Algebra. (ii) The solution of the relaxation can be used to get a 2-approximation
algorithm for the original problem. More importantly, (iii) we argue that in fact the
relaxation provides a generalized clustering which is useful in its own right. Finally,
(iv) we show that the SVD of a randomly chosen submatrix (according to a suitable
probability distribution) of the matrix provides an approximation to the SVD of the
whole matrix, thus yielding a very fast randomized algorithm. This can be applied to
problems of very large size which typically arise in modern applications.

1 Introduction

We consider in this paper the problem of clustering the rows of a given m x n matrix A
- i.e., the problem of dividing up the set of rows into k clusters where each cluster has
“similar” rows. Our notion of similarity of two rows (to be discussed in detail below) will
be a function of the length of the vector difference of the two rows. So, equivalently, we
may view the problem geometrically - i.e., we are given m points in Euclidean n-space and
we wish to divide them up into k clusters, where each cluster contains points which are
“close to each other”. This problem includes as a special case the problem of clustering the
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vertices of a (directed or undirected) graph where the matrix is just the adjacency matrix of
the graph. Here the similarity of two vertices depends on the number of common neighbors.

There are many notions of similarity and many notions of what a good clustering is. In
general clustering problems turn out to be NP-hard. In some cases, there are polynomial-
time approximation algorithms. Our aim here is to deal with very large matrices (with
upwards of 10° rows and columns and upwards of a million non-zero entries), where a
polynomial time bound on the algorithm is not of much value. Formally, we deal with the
case where m,n vary and k, the number of clusters is fixed. We seek linear time algorithms
with small constants.

We will show that the basic Singular Value Decomposition (SVD) of Linear Algebra
provides us with an excellent tool. We will first show that SVD helps us solve approximately
the clustering problems described in the abstract. More importantly, we argue that the SVD
itself directly gives us what we call a “continuous clustering” - where each point will belong
to a cluster with a certain “intensity” and clusters are not necessarily disjoint. Using basic
Linear Algebra, we show several natural properties of this continuous clustering which we
argue are useful for our problems. Then we develop a linear time randomized algorithm for
approximate SVD which makes the procedure feasible for the very large matrices in modern
applications.

1.1 Discrete Clustering.

First consider the following clustering problem: we are given m points A = {A(l) JAQ) A(m)}
in n-dimensional Euclidean space and a positive integer k£ where k& will be considered to be
fixed as m, n vary. The problem is to find k points B = {B(), B ... B®)} such that

m

fa(B) = 3 (dist(4D, B))?

=1

is minimized. Here dist(A®,B) is the (Euclidean) distance of A(®) to its nearest point
in B. Thus, in this problem we wish to minimize the sum of squared distances to the
nearest “cluster center”. We call this the “Discrete Clustering Problem” (DCP). The DCP
is NP-hard even for £ = 2 (via a reduction from minimum bisection).

Note that this defines £k clusters S;, j = 1,2,... k. The cluster center BU) will be the
centroid of the points in S;, j = 1,2,...,k. This is easily seen from the fact that for any
set S={XM, X® .. XM} and any point B we have

T T
SIX® — BR =37 X0~ XP 4 4B - XP, )
i=1 i=1
where X is the centroid (X + X 4 ... 4 X)) /r of S.

The DCP is thus the problem of partitioning a set of points into clusters so that the
sum of the variances of the clusters is minimized.



We define a relaxation which we call the Continuous Clustering Problem (CCP), as the
problem of finding the subspace V' of R™ of dimension at most & which minimizes

ga(V) =" dist(AD, V).
=1

It is easy to see that the optimal value of DCP is an upper bound for the optimal value of
the CCP. Indeed for any set B of k points,

fa(B) > ga(Va) (2)
where V3 is the subspace generated by the points in B.

It will follow from standard Linear Algebra that the continuous clustering problem
can be solved in polynomial time exactly since the optimal subspace can be read off from
the Singular Value Decomposition (SVD) of the matrix A containing A1), A®) . A(m)
as its rows, see Section 2. Also, we can attempt to solve DCP as follows: we first solve
CCP to find a subspace V; then we project the problem to V' and now solve the discrete
clustering problem in the k-dimensional space (where now k is fixed). we will show that
the k-dimensional problem can be solved exactly in polynomial time and this will give
us a 2-approximation algorithm for DCP. We will discuss this in Section 2, but such an
approximation algorithm is not our focus.

1.2 Fast SVD.

As stated earlier, our focus is two-fold. Firstly, we will give a very fast randomized algorithm
which finds an approximation D* to A of rank at most &, satisfying (with high probability)

|A=D*[; < min [|A~D|% +e|All% (3)
D:rank(D)<k

where
m n
2 2
1411 =2 > 4%
i=1 j=1
is the sum of squares of all the entries in the matrix and € > 0 is a given error parameter.
Thus the D* found is nearly the best rank k& approximation to A in the sense described

above. (It is known that D* satisfying (3) with even ¢ = 0 can be read off from the SVD
and thus such a D* can be found in polynomial time. )

After making one pass through the entire matrix, our algorithm will run in time
0(6_6 + 6—47'),

where r is the maximum number of non-zero entries in any column of A. [In fact, r
be replaced by the average number of entries in a column according to the probability
distribution used in the algorithm. (see section 4).



Instead of computing the SVD of the entire matrix A, we show that it is sufficient
to compute the SVD of a matrix consisting of O(e%) randomly picked columns of A; the
columns have to be randomly picked according to a distribution satisfying some conditions
(see section 4 for details.) We will also see that though we can only prove that if O(e%)
columus are picked, then (3) holds with high probability, we may pick fewer rows in practice,
then check (in a randomized way) whether (3) holds; this lets us use less time than the
worst case bound if the problem is not worst case.

(We note that [8] gives an algorithm which also achieves (3), but there the running time
is O(k'2/e°) which is prohibitively large for even modest values of k, 1/e. We follow many
ideas from that paper. Note that their algorithm has a running time which does not grow
with m,n while ours does, but only linearly with m.)

Clearly an approximation of the form (3) is only useful if A has a good approximation of
“small” rank k and further m,n are large (so exact algorithms are not feasible.) There are
many examples of situations where these conditions prevail; we describe briefly two typical
examples.

1.2.1 Latent Semantic Indexing.

This is a general technique for analyzing a collection of “documents” which are assumed
to be related (for example, they are all documents dealing with a particular subject; see
[4]). Suppose there are m documents and n “terms” which occur in the documents. The
model hypothesizes that (because there are relationships among the documents), there are
a small number & of main (unknown) “topics” which the documents are about. The first
aim of the technique is to find a set of & topics which best describe the documents. (This
is the only part which concerns us here.)

A topic is modeled as an n—vector of non-negative reals where the interpretation is that
the jth component of a topic vector gives the frequency with which the jth term occurs in (a
discussion of) the topic. With this model on hand, it is easy to argue (using Linear Algebra
and a line of reasoning similar to the field of “Factor Analysis” in Statistics) that the k
best topics are the top k singular vectors of the so-called “document-term” matrix, which
is an m X n matrix A with A;; being the frequency of the jth term in the ith document.
Alternatively, one can define A;; as 0 or 1 depending upon whether the jth term occurs in
the 7th document.

The second example has to do with clustering documents on the web which we discuss
in section 3.

1.3 Generalized Clustering.

The second main focus of this paper is to argue that the approximately best rank k£ approxi-
mation to A yields a “generalized clustering” of A. A “generalized” clustering differs in two
respects from normal clustering - first each cluster instead of being a subset (or equivalently



a m—vector with 0 or 1 components) is a m—vector of reals where the ith component gives
the “intensity” with which the ith point belongs to the cluster and secondly the requirement
that the clusters be disjoint in the discrete clustering is replaced by a requirement that the
vectors corresponding to the different clusters be orthogonal. We will see why this notion
of clustering is quite natural and allows for some desirable features not allowed by discrete
clustering - like having overlapping clusters which is often realistic in practice.

1.4 Review of related literature.

Clustering and location are well-studied subjects and there are many notions of how to
measure the effectiveness of a cluster. We discuss them in relation to what we defined
above as the problem considered in this paper. See Agarwal and Sharir [1], Bern and
Eppstein [3], Drezner [5], Everitt [7], Jambu and Lebeaux [12], Lorr [15], Tryon and Bailey
[17] for surveys and [14] for some recent related work.

One traditional clustering problem is the “k—center” problem. Here, one defines the
cluster size to be the maximum pairwise distance between two points in the cluster and
we wish to minimize the maximum cluster size among all divisions into k clusters. In
the “k—median”problem, we again have to partition into k£ clusters; we also have to find
for each cluster a “cluster center” or median. The optimal solution minimizes the sum of
distances of each point to the median of its cluster. The k—center problem is easier in that
there are constant factor approximation algorithms known for it, Dyer and Frieze [6] and
Hochbaum and Shmoys [11]. For the k—median problem, good approximation algorithms
have been harder to come by. Most notably, Arora, Raghavan and Rao [2] have only very
recently discovered Polynomial Time Approximation Scheme when the points are located
in the Euclidean plane. (or more generally in a fixed dimensional space) We note that in
our problem, the number of dimensions is variable whereas the number of clusters is fixed.

1.5 Notation.

Every real matrix A can be expressed as
" T
A= Z o (A)uby®
t=1

where o1 (A) > 09(A) > ... > 0,(A) > 0 are called the singular values of A and the u(*) form
an orthonormal set of vectors and so do the v®). Also u®" A4 = g,v®”" and Av® = gu®
for 1 <t < r. This is the singular value decomposition of A.

(From Linear Algebra, [9] we know that the matrix Dy producing the minimum 7 of
||A — D||r among all matrices D of rank % or less is given by

k k
Dy = Z w4 = Z Ap®y®"
t=1

t=1



This implies that

s
1= ot

t=k+1

2 The Discrete Clustering Problem

We first show how to solve DCP in O(m*’@/2) time when the input A C R? — here k,d are
considered to be fixed. Each set B of “cluster centers” defines a Voronoi diagram where cell
Ci={X eR*: |X—-BW| <|X —BU)|for j # i} consists of those points whose closest
point in B is B, Each cell is a polyhedron and the total number of faces in C;, Cs, ..., Cj

is no more than (’29) (since each face is the set of points equidistant from two points of B).

We have seen in (1) that it is the partition of A that determines the best B (via
computation of centroids) and so we can move the boundary hyperplanes of the optimal
Voronoi diagram, without any face passing through a point of .4, so that each face contains
at least d points of A.

Assume that the points of A are in general position and 0 ¢ A (a simple perturbation
argument deals with the general case). This means that each face now contains d affinely
independent points of 4. We have lost the information about which side of each face to
place these points and so we must try all possibilities for each face. This leads to the
following enumerative procedure for solving DCP:

Algorithm for DCP in d dimensions

k m
e Enumerate all Zt(i)k ((;{)) = O(m**/2) sets of k < t < k(k — 1)/2 hyperplanes, each
of which contains d affinely independent points of A.

e Check that the arrangement defined by these hyperplanes has exactly k cells.

e Make one of 2!¢ choices as to which cell to assign each point of A which is lying on a
hyperplane

e This defines a unique partition of A. Find the centroid of each set in the partition
and compute f4.

As remarked previously, CCP can be solved by Linear Algebra. Indeed, let V be a
k-dimensional subspace of R" and AW, A2 . . A(m) be the orthogonal projections of
AW A@) CAM™) onto V. Let A be the m x n matrix with rows A1), A®) AM)
Thus A has rank at most k¥ and

m m

14— Al = 314D — 4O = 3 (dist(4D, V)2

i=1 i=1
Thus to solve CCP, all we have to do is find the first k£ vectors of the SVD of A (since it is
known that these minimize ||A — A||% over all rank k matrices A) and take the space Vsyp
spanned by the first k singular vectors in the row space of A.



We now show that combining the above two ideas gives a 2-approximation to DCP.
Let A = {A_(l), A, - , A(M} be the projection of A onto the subspace Vgyp above. Let
B= {B(l), B@, ... ,B(k)} be the optimal solution to DCP with input A.

Algorithm for general DCP

e Compute Vsyp.
e Solve DCP with input A to obtain B.

e Output B.

It follows from (2) that the optimal value ZZ°F of the DCP satisfies

m
ZQCP > Z |A(z) _ A(z)|2 (4)
=1

Note also that if B = {B(l), B@ .. B(k)} is an optimal solution to the DCP and B consists
of the projection of the points in B onto V', then

ZRCP =3 " dist(AD), B)? > ) " dist(AY), B)?.
=1 =1

Combining this with (4) we get

22390 > 314D — AOP 4 dist(A), B)?)
i=1

= ) dist(49, B)
=1
= fa(B)

proving that we do indeed get a 2-approximation. |

3 Generalized Clusters and SVD

In this section, we will argue that there is a natural way of generalizing clusters which leads
to singular vectors. To do this, we introduce a typical motivation for this paper. Suppose
we wish to analyze the structure of a large portion of the web. Consider the underlying
directed graph with one vertex per URL and a edge from vertex ¢ to vertex j if there
is a hypertext link from ¢ to j. It turns out to be quite useful to cluster the vertices of
this graph. But obviously very large graphs can arise in this application and traditional
heuristics (even polynomial time ones) are not good enough. We examine this particular
application in some more detail. So we have a directed graph G(V, E) here and we wish to
divide the vertex set into “clusters” of “similar” vertices. Since all our information is in the



graph, two vertices are “similar” if they share a lot of common neighbors. More generally,
the assumption we make is that all the relevant information is captured by the matrix A
given to us. We do not dwell on the “modeling” part - the translation of the real problem
into the matrix; we assume this has been done already for us.

Going back to the example of clustering the vertices of the graph into clusters of similar
vertices, we will examine how “similarity” may be precisely defined. It is useful for this
purpose to think of the web example - here an edge from ¢ to 7 means that ¢ thinks of
j as important. So, intuitively, similar vertices “reinforce” each others opinions of what
documents are important.

Often by “clustering”, one means the partition of the node set into subsets of similar
nodes. But a partition is too strict, because it is quite common to have overlapping clusters.
Also in traditional clustering, one finds subsets; by going to characteristic vectors, one may
view them as 0-1 vectors. But this again is too strict. Different nodes may belong to a
cluster with different “intensities”. For example, if N (v) (the set of neighbors of v) is large
and there are many nodes u such that N(u) is a subset of N(v), a good cluster intuitively
would include v and many of the u ’s (for reinforcement) but again intuitively, v is more
important in the cluster than the w’s.

So, we define a cluster z as just an m—vector of reals. [So, z(u) is the “intensity” with
which u belongs to x.] What should we assign as the “weight” or importance of the cluster
x ? A crucial quantity in this regard is the vector 27 A because (z7 A); is the “frequency”
of occurrence of node 4 in the neighborhood of the cluster z. So high values of |(z7 A);|

mean high reinforcement. So,
n

S (@A) = o AP

i=1
is a measure of the importance of the cluster. We note also that if = is scaled by some A,
so is every component of 27 A. So we make the following central definition:

DEFINITION A cluster (of A) is an m—vector z with |z| = 1. The weight of the
cluster z, denoted W (z) is |27 Al.

[Here |z| denotes the Euclidean length.]
Reasoning behind the Definition

Why Euclidean lengths? While we cannot exhaustively discuss all other possible mea-
sures, we look at the two other obvious norms possible; (I, and [1) the examples illustrate
the advantage of Euclidean norm over these also carry over for many other norms.

We have used the Euclidean norm for both = and 7 A. First suppose we used instead
l; norm for x. Then if there are k nodes of G all with the same neighborhood set, putting
x; = 1 for one of them and zero for the others as well as putting x; = 1/k for each gives
us the same 7 A and so the same weight. However, we prefer larger clusters (greater
reinforcement). It is easy to see that if we restrict to |z| = 1, then we would choose the
larger cluster. Similarly if the [, is used for z, then we will always have z; = 1 for all ¢
being the maximum weight cluster, which obviously is not always a good choice. It is also



easy to see that if the [, norm is used for |z7 A, then x will be based only on the highest
in-degree node which is not always desirable. A similar example can be provided for the
case when the [y norm is used for z7 A.

Having defined the weight of a cluster, we next want to describe the decomposition
process mentioned earlier which successively removes the maximum weight cluster from the
graph. Let u be the maximum weight cluster and v any other cluster. If we write v as
v = Au + w where X is a scalar and w is orthogonal to u, it is known from basic Linear
Algebra that w” A is also orthogonal to u” 4, so [vT A|? = A2|uT A|? + |wT A]2. So the larger
the A the higher the weight of v. So if we only require v to be different from wu, it may be
arbitrarily close to u. This leads us to the correct requirement - namely that v be (required
to be) orthogonal to u. [Orthogonality replaces disjointness in the traditional partition.]
With this, we make another crucial definition:

DEFINITION An optimal clustering of A is a set of orthonormal vectors z(1), 22 ...
so that () is a maximum weight cluster of A subject to being orthogonal to z(!), ... z(-1).

We will argue (directly from Linear Algebra) in the final paper that corresponding to
“removing” the first k clusters is the operation of subtracting the m x n matrix

k
Z 2007 4
t=1
from A. So if i
R® — A Z MO 4,
t=1

R®) defines a “residual” graph after removing the first k clusters. (Actually it represents
a weighted graph with edge weights.) The intuition is that if the first few clusters are of
large weight, then the residual matrix will have small norm (sum of squared entries). There
is a way of quantifying this from Linear Algebra: (note that Zle z®z®" 4 is a matrix of
rank k)

Fact 1 R*) has the least sum of squares of entries among all matrices of the form
A — D where rank(D) < k. Also, R®) has the least 2-norm (the 2-norm of a matrix M is
max,|y|—1 |Mu|) among all matrices of the form A — D where rank(D) < k.

So, the optimal clustering makes the “error” matrix R*) as small as possible in two
natural ways.

We defined the weights of clusters by looking at the out-degrees. Symmetrically, we
may look at the in-degrees. Luckily Linear Algebra tells us (and we elaborate further in
the final paper)

Fact 2 An optimal clustering with respect to in-degrees yields also an optimal clustering
with respect to out-degrees and vice versa.

We close this section with one more important property of optimal clusterings. Recap-
ping our discussion of “reinforcement of opinions”, we note that reinforcement comes from



large sets S, T of nodes (not necessarily disjoint) with many edges of the form (u,v),u €
S;veT.

This aspect of such clustering as well as the introduction of SVD technique to cluster
such graphs was pioneered by Kleinberg [13]. (See also Gibson, Kleinberg and Raghavan
[10]). Kleinberg [13] considered the ubiquitous problem of how to glean the most relevant
documents from the (usually large) set of documents returned by a standard Web Search
program for a key word. The intuition is to define a document to be an “authority” if a
lot of other documents (returned by the search) point to (have a hypertext link to) it. He
argues why it is not a good idea just to take documents which are pointed to by a lot of
others. He defines a dual notion - a document is a “hub” if it points to a lot of other
documents. More generally, suppose n documents are returned by the search engine. Then,
he defines an n X n matrix A where A;; is 1 or 0 depending upon whether the ith document
points to the jth. [He does not explicitly deal with this large matrix.]

He sets out to find two n-vectors - z,y where z; is the “hub weight” of document 14
(the weight is higher if the document is a good hub) and y; is the “authority weight” of
document j. With the normalization |z| = |y| = 1, he argues (and we do not reproduce the
argument here) that it is desirable to find max ;| —|y|=1 zT Ay, (since in the maximizing z,y
we expect the hub weights and authority weights to be mutually consistent.)

This is of course the problem of finding the singular vectors of A. Since A is large
(in his examples, in the hundreds or thousand) , he judiciously chooses a submatrix of A
and computes only the singular vectors of it. Our approach here would be to choose the
submatrix according to a probability distribution.

He also points out that especially in the case when the key word has multiple meanings,
not only the top, but some of the other singular vectors (with large singular values) are
interesting. For example, when the key word is “JAVA” the top few singular vectors
put high authority weights on documents about the programming language JAVA whereas
another set of singular vectors put high weights on documents about the Island, others on
documents about the coffee etc. So, it is of interest to find the largest k& singular vectors
for some small k; this is indeed the problem we consider here.

jFrom Linear Algebra, then, we know that after removing the top k& clusters, in the
residual matrix R*), the maximum weight of a cluster is at most o4 (A). We use this to
argue below that in R(¥), there are no submatrices with large sums. In the above context
(of the web application) this means that after removing the top k clusters, there is no
appreciable set of hubs and authorities.

Lemma 1 With the notation as above, for any subsets S,7 C V,

Z Rg-“) < ok11(A)VI[S]|T.

i€S,jeT

Corollary If |S| = |T| = [, then the average degree of of a node of S in the induced
subgraph (S, T) of R%) is at most oy1(A).

10



Thus if 0% (A) falls off rapidly with k then the residual graphs do not have large rein-
forcing subgraphs. In other words, in this case, all large reinforcing subgraphs are caused
by relatively few clusters.

4 Fast SVD Algorithm

Suppose FP;,¢ = 1,2,...n are nonnegative reals summing to 1 and satisfying
B > ol Ay /1| AllE, (5)

where c is a constant, such that we have the ability to sample the columns of A with prob-
abilities {P;}. Thus a sampler which samples the columns with probabilities proportional
to their length squared would do. [Then we may take ¢ = 1.] A sampler with this property
is available if one has an idea of the lengths of the columns, but in any case, it is easy to
set up such a sampler after one pass through the matrix A [8] :

Remark : For any matrix at all, we claim that after making one pass through the
entire matrix, we can set up data structures so that after that we can sample the entries
fast - O(1) time per sample with {P;} satisfying (5).

Suppose M is such that for all i, j
A <M

A7 =0 OR  |4;]*>1/M.

We create O(log M) bins; in the one-pass, we put into the /th bin all the entries (i, ) such
that (1/M)2-71 < |4;;]2 < L2, We also keep track of the number of entries in each bin.
After this, we pretend all entries in a bin are of equal absolute value and then it is easy to
set up a sampler - the details of the data structures are elementary and left to the reader.

The algorithm below will pick a certain number of columns of A according to {P;}
satisfying (5). Then it will scale the columns in a certain way (according to the {F;}).
The {P;} ensure that “heavier” columns are more likely to be picked; the scaling can be
looked on as “compensating” for the “over-weighting” of the heavier columns. Of course,
we supply a proof that our method works.

4.1 Algorithm.

Let 0 < ¢,d < 1 be given.

(1) Let s = 4k/(g%cd). Select independently s columns of A (according to the distribution
{P;}); if column 7 is selected, include

A/ V5P

11



as one of the columns of a matrix S.

So, S is a m x s matrix after the random selection.

(2) Find ST'S. (This takes time O(s?m) or time O(s%r) where r is the maximum number
of entries in a column of A.)

3) Find the top k eigenvectors p{¥, i = 1,2,... k of the s x s matrix STS and return
g
W = Sp/|Sp| i =1,2,... k as the clusters. The ¢(*) are m—vectors.

4.2 Analysis of the Algorithm.

Note that since the ¢ are orthonormal, we have from Linear Algebra,

k k
T
14 =" dd Al = ||AIF - Y 14T (6)

Also from Linear Algebra,

min ||A—D||%«:a%(A)—I—a%(A)—f—...a,%(A).
D:rank(D)<k

We prove

Lemma 1 For any positive real 0, we have

k 9 1
Pr (Z (14740 - 0u(4)?)" 2 202||A||%> <—

t=1

where ¢ is as in (5). From this, we get that with probability at least 1 — &, we have (with s
as in the algorithm)

k
T .
1A= qWgD Az < min ||A= D%+l A7
=1 D:rank(D)<k

Proof Now ¢, t = 1,2,...,k are singular vectors of S. Writing AAT and SST
both in a coordinate system with ¢(1), ... ¢*¥) as the first k coordinate vectors, we see that
gD (AAT — §5T)q® is the (t,t) entry of AAT — SST. So we have

k
3 (¢ (AAT — 88T)qW)? < || AAT — SST 3.

t=1

i From this we have

k
2
> (147qD 72 = o)1) < 1447 - 55T (7)

t=1

12



Applying the the Hoffman-Wielandt inequality (see Golub and Van Loan [9]), we see that

k k

D (0:(SST) — 0 (AAT))? = D (04(5)? — oe(A)%)?

t=1 t=1
< ||AAT — 8ST|2.

Adding the two and using the inequality (a + b)? < 2a% + 2b? for any real a, b, we get

M=

2
(147g = 03(4)?) " < 2/|4AT — 5572 (®)
t

Il
—

Re-phrasing Lemma 1 of [8]: For all § > 0,

1

T T 2
Pr(|[ 44T — 55T[p 2 6 A|[3) < o

This gives us the first assertion of the lemma.

Applying the last with § = £/(2k)'/2, we get that with probability at least 1 — 4,
1AAT — SST||i < el|Al[7/(2K) 2.

Putting this into (8), applying the Cauchy-Schwartz inequality and using (6), we get the
second assertion of the lemma. m|

4.3 Doing better than worst-case.

Note that even though we prove that s at the value we have does the job, it is possible
that in an actual problem, the situation may be far from worst-case. In fact in practice,
it suffices to pick s rows (where s is at first much smaller than the worst-case bound).
Then we may check for the resulting approximation Y F g®g" A to A whether it is
sufficiently close to A. We can do this in a randomized fashion, namely, sample the entries
of A — Zle q(t)q(t)TA to estimate the sum of squares of this matrix. If this error is not
satisfactory, then we may increase s. The details of variance estimates on this procedure
are routine and left to the final paper.

4.4 Preliminary experimental results.

While the algorithm has asymptotically a linear time upper bound, the bound still depends
polynomially on &, 1/e. There is some hope that in practice it is better than the theoretically
provable bound on k,1/e. We have performed some limited experiments to date on dense
matrices and plan to perform more experiments on larger sparse matrices.

Since the algorithm is only of interest in the case when the matrix has a good low rank
approximation, we tried the algorithm on certain “randomly” generated dense matrices with
known singular values. We generated 1000 x 1000 random matrices of the form A = USV7T,
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where U and V are random orthogonal matrices and ¥ is a diagonal matrix containing the
specified singular values of A. To generate U and V we generated some perfectly random
orthogonal matrices using a O(n?®) procedure described by Stewart ([16]) and subsequently
we performed a random walk in the set of orthogonal matrices by applying O(n) random
Givens rotations ([9]) in order to get new elements of the set.

In our experiments, we varied the percentage of the Frobenius norm of the matrix A
that was contained within the top & singular values of A. We had the following parameters
: k and ¢, where k was a number between 10 and 50 (and the top k singular values were
large) and

B 0%+0§+...—|—0i
IIA[[%

where o; are the singular values of A. In other words, ¢ is the fraction of the Frobenius
norm captured by the first k& singular values. We varied ¢ between 0.4 and 0.8.

For a given k,q, we set the singular values 01,09,...0% to be ¢- k,c- (k—1),...c-
1 respectively for some constant ¢ (i.e., 4 th one was proportional to k + 1 —4). The
other singular values were set to be equal. A little calculation shows that subject to these
conditions, given ||A||%, the singular values are completely determined. The reason for
choosing the top k in this way was that we did not want them to fall off too steeply (this
would make the computation of singular values using the power method or better Lancos
method easy), but at the same time, we wanted them to occupy a constant fraction (g) of
the Frobenius norm sgaured.

Our experiments were to find how many rows of A we would have to pick (at random)
so that our approximation would have an error of at most 3 %, i.e., we wanted to ensure
that if A is the input matrix and D* the rank K approximation we find, then we had

|A=D*[; < min ||A= DI+ (0.03)||4] |
D:rank(D)<k

Note that since we know all the singular values of A, we can compute min parank(D)<k [|A—
D||% and we can determine if the above requirement is met. We varied s, the number of

random rows picked until the requirement was met.

Following are our results (they were obtained from running our experiments over 15
random matrices for each entry of the table generated as described above):
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k  q Number of rows

10 0.8 66
10 0.6 124
10 04 179
20 0.8 127
20 0.6 210
20 04 238
30 0.8 188
30 0.6 249
30 04 391
40 0.8 226
40 0.6 373
40 0.4 436
50 0.8 248
50 0.6 432
50 0.4 448

Note that the theoretical bound only guarantees the requirement will be met if we use
s of the order k/(.03)? which is very large. The limited experiments here are much more
promising. We plan to do more experiments with much larger sparse matrices which are
also generated to have specific singular values.

Acknowledgment : We wish to thank Alan Edelman, Stan Eisenstat, Michael Littman,
Prabhakar Raghavan and R. Ravi for their comments.
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