
The Fast Cauchy Transform and Faster Robust Linear Regression

Kenneth L. Clarkson ∗ Petros Drineas † Malik Magdon-Ismail ‡

Michael W. Mahoney § Xiangrui Meng ¶ David P. Woodruff ‖

Abstract

We provide fast algorithms for overconstrained `p re-
gression and related problems: for an n × d input ma-
trix A and vector b ∈ Rn, in O(nd log n) time we reduce
the problem minx∈Rd ‖Ax− b‖p to the same problem

with input matrix Ã of dimension s×d and correspond-
ing b̃ of dimension s×1. Here, Ã and b̃ are a coreset for
the problem, consisting of sampled and rescaled rows
of A and b; and s is independent of n and polynomial
in d. Our results improve on the best previous algo-
rithms when n � d, for all p ∈ [1,∞) except p = 2; in
particular, they improve the O(nd1.376+) running time
of Sohler and Woodruff (STOC, 2011) for p = 1, that
uses asymptotically fast matrix multiplication, and the
O(nd5 log n) time of Dasgupta et al. (SICOMP, 2009)
for general p, that uses ellipsoidal rounding. We also
provide a suite of improved results for finding well-
conditioned bases via ellipsoidal rounding, illustrating
tradeoffs between running time and conditioning qual-
ity, including a one-pass conditioning algorithm for gen-
eral `p problems.

To complement this theory, we provide a detailed
empirical evaluation of implementations of our algo-
rithms for p = 1, comparing them with several related
algorithms. Among other things, our empirical results
clearly show that, in the asymptotic regime, the the-
ory is a very good guide to the practical performance
of these algorithms. Our algorithms use our faster con-
structions of well-conditioned bases for `p spaces and,
for p = 1, a fast subspace embedding of independent
interest that we call the Fast Cauchy Transform: a ma-
trix Π : Rn 7→ RO(d log d), found obliviously to A, that

∗IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120. Email: klclarks@us.ibm.com
†Dept. of Computer Science, Rensselaer Polytechnic Institute,

Troy, NY 12180. Email: drinep@cs.rpi.edu
‡Dept. of Computer Science, Rensselaer Polytechnic Institute,

Troy, NY 12180. Email: magdon@cs.rpi.edu
§Dept. of Mathematics, Stanford University, Stanford, CA

94305. Email: mmahoney@cs.stanford.edu
¶ICME, Stanford University, Stanford, CA 94305. Email:

mengxr@stanford.edu
‖IBM Almaden Research Center, 650 Harry Road, San Jose,

CA 95120. Email: dpwoodru@us.ibm.com

approximately preserves the `1 norms: that is, ‖Ax‖1 ≈
‖ΠAx‖1, for all x, with distortion O(d2+η log d), for an
arbitrarily small constant η > 0; and, moreover, ΠA can
be computed in O(nd log d) time. The techniques under-
lying our Fast Cauchy Transform include fast Johnson-
Lindenstrauss transforms, low-coherence matrices, and
rescaling by Cauchy random variables.

1 Introduction

Random sampling, random projection, and other em-
bedding methods have proven to be very useful in recent
years in the development of improved worst-case algo-
rithms for a range of linear algebra problems. For exam-
ple, Gaussian random projections provide low-distortion
subspace embeddings in the `2 norm, mapping an arbi-
trary d-dimensional subspace in Rn into a d-dimensional
subspace in Rr, with r = O(d), and distorting the `2
norm of each vector in the subspace by at most a con-
stant factor. Importantly for many applications, the
embedding is oblivious in the sense that it is imple-
mented by a linear mapping chosen from a distribution
on mappings that is independent of the input subspace.
Such low-distortion embeddings can be used to speed up
various geometric algorithms, if they can be computed
sufficiently quickly. As an example, the Fast Johnson
Lindenstrauss transform (FJLT) is one such embedding;
the FJLT is computable in O(n log d) time, using a vari-
ant of the fast Hadamard transform [1]. Among other
things, use of the FJLT leads to faster algorithms for
constructing orthonormal bases, `2 regression, and `2
subspace approximation, which in turn lead to faster
algorithms for a range of related problems including low-
rank matrix approximation [7, 10, 6].

In this paper, we use `1 and `p extensions of these
methods to provide faster algorithms for the classical `p
regression problem and several other related problems.
Recall the overconstrained `p regression problem.

Definition 1. Given a matrix A ∈ Rn×d, with n > d,
a vector b ∈ Rn, and a norm ‖ · ‖p, the `p regression
problem is to find the optimal solution to:

(1.1) Z = min
x∈Rd

‖Ax− b‖p.

In this paper, we are most interested in the case p = 1,
although many of our results hold more generally, and
so we state several of our results for general p. The `1
regression problem, also known as the Least Absolute
Deviations or Least Absolute Errors problem, is espe-
cially of interest as a more robust alternative to the `2
regression or Least Squares Approximation problem.

It is well-known that for p ≥ 1, the `p regression
problem is a convex optimization problem; and for p = 1
and p = ∞, it is an instance of linear programming.
Recent work has focused on using sampling, projection,
and other embedding methods to solve these problems
more quickly than with general convex programming
or linear programming methods. Most relevant for our
work is the work of Clarkson [3] on solving the `1 regres-
sion problem with subgradient and sampling methods;
the work of Dasgupta et al. [5] on using well-conditioned
bases and subspace-preserving sampling algorithms to
solve general `p regression problems; and the work of
Sohler and Woodruff [13] on using the Cauchy Trans-
form to obtain improved `1 embeddings, thereby leading
to improved algorithms for the `1 regression problem.
The Cauchy Transform of [13] provides low-distortion
embeddings for the `1 norm, and thus it is an `1 ana-
log of the Gaussian projection for `2. It consists of a
dense matrix of Cauchy random variables, and so it is
“slow” to apply to an arbitrary matrix A; but since it
provides the first analog of the Johnson-Lindenstrauss
embedding for the `1 norm, it can be used to speed up
randomized algorithms for problems such as `1 regres-
sion and `1 subspace approximation [13].

In this paper, we provide fast algorithms for over-
constrained `p regression and several related problems.
Our algorithms use our faster constructions of well-
conditioned bases for `p spaces; and, for p = 1, our
algorithms use a fast subspace embedding of indepen-
dent interest that we call the Fast Cauchy Transform
(FCT). We also provide a detailed empirical evaluation
of the FCT and its use at computing `1 well-conditioned
bases and solving `1 regression problems.

The FCT is our main technical result, and it is es-
sentially an `1 analog of the FJLT. The FCT can be rep-
resented by a matrix Π : Rn 7→ RO(d log d), found obliv-
iously to A (in the sense that its construction does not
depend on any information in A), that approximately
preserves the `1 norms of all vectors in {Ax | x ∈ Rd}.
That is, ‖Ax‖1 ≈ ‖ΠAx‖1, for all x, with distortion
O(d2+η log d), for an arbitrarily small constant η > 0
(see Theorem 3.2); and, moreover, ΠA can be computed
in O(nd log d) time. We actually provide two related
constructions of the FCT (see Theorems 3.1 and 3.2).
The techniques underlying our FCTs include FJLTs,
low-coherence matrices, and rescaling by Cauchy ran-

dom variables.
Our main application of the FCT embedding is to

constructing the current fastest algorithm for comput-
ing a well-conditioned basis for `1 (see Theorem 4.1).
Such a basis is an analog for the `1 norm of what an
orthonormal basis is for the `2 norm, and our result
improves the result in [13]. We also provide a general-
ization of this result to constructing `p well-conditioned
bases (see Theorem 5.3). The main application for well-
conditioned bases is to regression: if the rows of A
are sampled according to probabilities derived from the
norms of the rows of such a basis, the resulting sam-
ple of rows (and corresponding entries of b) are with
high probability a coreset for the regression problem;
see, e.g., [5]. That is, for an n × d input matrix A and
vector b ∈ Rn, we can reduce an `p regression problem

to another `p regression problem with input matrix Ã of

dimension s×d and corresponding b̃ of dimension s×1.
Here, Ã and b̃ consist of sampled and rescaled rows of
A and b; and s is independent of n and polynomial in d.
We point out that our construction uses as a black box
an FJLT, which means that any improvement in the
running time of the FJLT (for example exploiting the
sparsity of A) results in a corresponding improvement
to the running times of our `p regression.

Based on our constructions of well-conditioned
bases, we give the fastest known construction of coresets
for `p regression, for all p ∈ [1,∞), except p = 2. In par-
ticular, for `1 regression, we construct a coreset of size
1
ε2 poly(d, log 1

ε) that achieves a (1 + ε)-approximation
guarantee (see Theorem 4.2). Our construction runs in
O(nd log n) time, improving the previous best algorithm
of Sohler and Woodruff [13], which has an O(nd1.376+)
running time. Our extension to finding an `p well-
conditioned basis also leads to an O(nd log n) time al-
gorithm for a (1+ε)-approximation to the `p regression
problem (see Theorem 5.4), improving the O(nd5 log n)
algorithm of Dasgupta et al. [5]. For p = 1, extensions of
our basic methods yield improved algorithms for several
related problems. For example, we can further optimize
the running time for p = 1 to O(nd log(ε−1d log n)); we
can generalize our `1 result to solving the multiple re-
gression problem; and we can use this to give the current
fastest algorithm for computing a (1+ε)-approximation
for the `1 subspace approximation problem.

In addition to our construction of `p well-
conditioned bases (see Theorem 5.3) and their use in
providing a (1 + ε)-approximation to the `p regression
problem (see Theorem 5.4), we also provide a suite of
improved results for finding well-conditioned bases via
ellipsoidal rounding for general `p problems, illustrating
tradeoffs between running time and conditioning qual-
ity. These methods complement the FCT-based meth-

ods in the sense that the FCT may be viewed as a tool
to compute a good basis in an oblivious manner, and
the ellipsoid-based methods provide an alternate way
to compute a good basis in a data-dependent manner.
In particular, we prove that we can obtain an ellipsoidal
rounding matrix in at most O(nd3 log n) time that pro-
vides a 2d-rounding (see Theorem 5.2). This is much
faster than the algorithm of Lovász [9] that computes
a (d(d + 1))1/2-rounding in O(nd5 log n) time. We also
present an optimized algorithm that uses an FJLT to
compute a well-conditioned basis of A in O(nd log n)
time (see Theorem 5.3). When p = 1, these `p rounding
algorithms are competitive with or better than previous
algorithms that were developed for `1.

Finally, we also provide the first empirical evalua-
tion for this class of randomized algorithms. In particu-
lar, we provide a detailed evaluation of a numerical im-
plementation of both FCT constructions, and we com-
pare the results with an implementation of the (slow)
Cauchy Transform, as well as a Gaussian Transform
and an FJLT. These latter two are `2-based projections.
We evaluate the quality of the `1 well-conditioned ba-
sis, the core component in all our geometric algorithms,
on a suite of matrices designed to test the limits of
these randomized algorithms, and we also evaluate how
the method performs in the context of `1 regression.
This latter evaluation includes an implementation on a
nearly terabyte-scale problem, where we achieve a 10−3

relative-error approximation to the optimal solution, a
task that was infeasible prior to our work. Among other
things, our empirical results clearly show that, in the
asymptotic regime, the theory is a very good guide to
the practical performance of these algorithms.

We provide here a brief outline of this paper. We
start in Section 2 with some preliminaries, including
several technical results that we will use in our analysis
and that are of independent interest. Then, in Section 3,
we will present our main technical results for the Fast
Cauchy Transform; and in Section 4, we will describe
applications of it to `1 well-conditioned basis construc-
tion and `1 leverage score approximation, to solving the
`1 regression problem, and to solving the `1 norm sub-
space approximation problem. Then, in Section 5, we
describe extensions of these ideas to general `p prob-
lems. Section 6 will contain a detailed empirical evalua-
tion of our algorithms for `1-based problems, including
the construction of `1 well-conditioned bases and both
small-scale and large-scale `1 regression problems. Sec-
tion 7 will then contain a brief conclusion. Proofs of
all of our results, as well as many additional results,
including a more detailed empirical evaluation, can be
found in the technical report version of this conference
paper [4].

2 Preliminaries

LetA ∈ Rn×d be an n×d input matrix, where we assume
n � d and A has full column rank. The task of linear
regression is to find the vector x∗ ∈ Rd that minimizes
‖Ax− b‖ with respect to x, for a given b ∈ Rn and norm
‖ · ‖. In this paper, our focus is mostly on the `1 norm,
although we also discuss extensions to `p, for any p ≥ 1.
Recall that, for p ∈ [1,∞], the `p norm of a vector x is

‖x‖p = (
∑
i |xi|p)

1/p
, defined to be maxi |xi| for p =∞.

Let [n] denote the set {1, 2, . . . , n}; and let A(i) and

A(j) be the ith row vector and jth column vector of A,
respectively. For matrices, we use the Frobenius norm
‖A‖2F =

∑n
i=1

∑d
j=1A

2
ij , the `2-operator (or spectral)

norm ‖A‖2 = sup ‖x‖2=1 ‖Ax‖2, and the entrywise `p

norm ‖X‖p = (
∑
i,j |Xij |p)1/p. (The exception to this

is p = 2, where this notation is used for the spectral
norm and the entrywise 2-norm is the Frobenius norm.)
Finally, the standard inner product between vectors x, y
is 〈x, y〉 = xT y; ei are standard basis vectors of the
relevant dimension; In denotes the n×n identity matrix;
and c refers to a generic constant whose specific value
may vary throughout the paper.

Two Useful Tail Inequalities. The following two
Bernstein-type tail inequalities are useful because they
give tail bounds without reference to the number of i.i.d.
trials. The first bound is due to Maurer [12], and the
second is an immediate application of the first.

Lemma 2.1. ([12]) Let Xi ≥ 0 be independent random
variables with

∑
iE[X2

i] < ∞, and define X =
∑
iXi.

Then, for any t > 0,

Pr[X ≤ E[X]− t] ≤ exp

(
−t2

2
∑
iE[X2

i]

)
.

Lemma 2.2. Let xi be i.i.d. Bernoulli random variables
with probability p, and let X =

∑
i∈[n] ξixi, where

ξi ≥ 0, with
∑
i∈[n] ξi = ξ and

∑
i∈[n] ξ

2
i ≤ ξ2/β2. Then,

for any t > 0,

Pr[X ≥ ξ(p+ t)] ≤ exp

(
− β2t2

2(1− p)

)
.

Sums of Cauchy Random Variables. The
Cauchy distribution, having density p(x) = 1

π
1

1+x2 , is
the unique 1-stable distribution. If C1, . . . , CM are in-
dependent Cauchys, then

∑
i∈[M] γiCi is distributed as

a Cauchy scaled by γ =
∑
i∈[M] |γi|. The Cauchy

distribution will factor heavily in our discussion, and
bounds for sums of Cauchy random variables will be
used throughout.

Lemma 2.3. For i ∈ [m], let Ci be m (not necessarily
independent) Cauchy random variables, and γi > 0 with

γ =
∑
i∈[m] γi. Let X =

∑
i∈[m] γi|Ci|. Then, for

any t ≥ γ,

Pr [X > γt] ≤ 2

πt

(
log(1 + (mt)2)

1− 2/πt
+ 1

)
=

4 log(mt)

πt
(1 + o(1)) .

Remark. The bound has only logarithmic dependence
on the number of Cauchy random variables and does
not rely on any independence assumption among the
random variables. Even if the Cauchys are independent,
one cannot substantially improve on this bound due to
the nature of the Cauchy distribution. This is because,
for independent Cauchys,

∑
i γi|Ci| ≥ |

∑
i γiCi|, and

the latter sum is itself distributed as a Cauchy scaled
by γ. Hence for independent Cauchys, Pr[X ≥ γt] ≥
2
π tan−1 t = Ω(1

t).

Lemma 2.4. For i ∈ [r], let Ci be independent Cauchy
random variables, and γi ≥ 0 with γ =

∑
i∈[r] γi and∑

i∈[r] γ
2
i ≤ γ2/β2. Let X =

∑
i∈[r] γi|Ci|. Then, for

any t ≥ 0,

Pr [X ≤ γ(1− t)] ≤ exp

(
−β

2t2

3

)
.

An `1 Sampling Lemma. We will also need
an “`1-sampling lemma,” which is an application of
Bernstein’s inequality. This lemma bounds how `1
norms get distorted under sampling according to `1
probabilities.

Lemma 2.5. Let Z ∈ Rn×k and suppose that for i ∈
[n], a‖Z(i)‖1 ≤ λi ≤ b‖Z(i)‖1. For s > 0, define

p̂i = min{1, s · λi/
∑
i∈[n] λi}, and let D ∈ Rn×n be a

random diagonal matrix with Dii = 1/p̂i with probability
p̂i, and 0 otherwise. Then, for any (fixed) x ∈ Rk, with
probability at least 1− δ,

(1− ε)‖Zx‖1 ≤ ‖DZx‖1 ≤ (1 + ε)‖Zx‖1,

where δ ≤ 2 exp

(−ab sε
2‖Zx‖1

(2 + 2
3ε)‖Z‖1‖x‖∞

)
.

3 Main Technical Result: the Fast Cauchy
Transform

In this section, we present the Fast Cauchy Trans-
form (FCT), which is an `1-based analog of the fast
Johnson-Lindenstrauss transform (FJLT). We will ac-
tually present two related constructions, one based on
using a quickly-constructable low-coherence matrix, and
one based on using a version of the FJLT. In both
cases, these matrices will be rescaled by Cauchy ran-
dom variables (hence the name Fast Cauchy Trans-
form). We will also state our main results, Theorems 3.1

and 3.2, which provides running time and quality-of-
approximation guarantees for these two FCT embed-
dings.

3.1 FCT1 Construction: via a Low-coherence
Matrix This FCT construction first preprocesses by
a deterministic low-coherence “spreading matrix,” then
rescales by Cauchy random variables, and finally sam-
ples linear combinations of the rows. Let δ ∈ (0, 1] be a
parameter governing the failure probability of our algo-
rithm. Then, we construct Π1 as

Π1 ≡ 4BCH̃,

where:

B ∈ Rr1×2n has each column chosen independently
and uniformly from the r1 standard basis vectors
for Rr1 ; for α sufficiently large, we will set the
parameter r1 = αd log d

δ , where δ controls the
probability that our algorithms fail and α is a
suitably large constant;

C ∈ R2n×2n is a diagonal matrix with diagonal entries
chosen independently from a Cauchy distribution;
and

H̃ ∈ R2n×n is a block-diagonal matrix comprised
of n/s blocks along the diagonal. Each block is
the 2s × s matrix Gs ≡

[
Hs
Is

]
, where Is is the

s × s identity matrix, and Hs is the normalized
Hadamard matrix. We will set s = r61. (Here, for
simplicity, we assume s is a power of two and n/s
is an integer.)

H̃ ≡


Gs

Gs
. . .

Gs


(For completeness, we remind the reader that the (non-
normalized) n × n matrix of the Hadamard transform
Hn may be defined recursively as follows:

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
, with H2 =

[
+1 +1
+1 −1

]
.

The n×n normalized matrix of the Hadamard transform
is then equal to 1√

n
Hn; hereafter, we will denote this

normalized matrix by Hn.) Heuristically, the effect of
H̃ in the above FCT construction is to spread the weight
of a vector, so that H̃y has many entries that are not
too small. This means that the vector CH̃y comprises
Cauchy random variables with scale factors that are not
too small; and finally these variables are summed up by

B, yielding a vector BCH̃y, whose `1 norm won’t be
too small relative to ‖y‖1. For this version of the FCT,
we have the following theorem.

Theorem 3.1. (Fast Cauchy Transform (FCT1))
There is a distribution (given by the above construction)
over matrices Π1 ∈ Rr1×n, with r1 = O(d log d+d log 1

δ),
such that for an arbitrary (but fixed) A ∈ Rn×d, and
for all x ∈ Rd, the inequalities

(3.2) ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1

hold with probability 1− δ, where

κ = O

(
d
√
s

δ
log(r1d)

)
.

Further, for any y ∈ Rn, the product Π1y can be
computed in O(n log r1) time.

Setting δ to a small constant, since
√
s = r31 and

r1 = O(d log d), it follows that κ = O(d4 log4 d) in the
above theorem.
Remark. The existence of such a Π1 satisfying
bounds of the form (3.2) was established by Sohler and
Woodruff [13]. Here, our contribution is to show that
Π1 can be factored into structured matrices so that the
product Π1A can be computed in O(nd log d) time. We
also remark that, in additional theoretical bounds pro-
vided by the FJLT, high-quality numerical implemen-
tations of variants of the Hadamard transform exist,
which is an additional plus for our empirical evaluations
of Theorem 3.1 and Theorem 3.2.
Remark. Our proof of the upper bound uses
Lemma 2.3; and our proof of the lower bound uses a
tail bound for ‖Bg‖22 in terms of ‖g‖2 and ‖g‖1, where
g is any positive vector in Rn, and B is the matrix
used in our FCT construction. ‖Bg‖22 =

∑
j γ

2
j where

γj =
∑
iBjigi are anti-correlated random variables. To

get concentration, we independently bounded γ2j using
Lemma 2.2. Finally we use Lemma 2.4, which leads to
s = r6 to obtain the high probability result; this resulted
in the bound κ = O(d4 log4 d).

3.2 FCT2 Construction: via a Fast Johnson-
Lindenstrauss Transform This FCT construction
first preprocesses by a FJLT and then rescales by
Cauchy random variables. Recall that δ ∈ (0, 1] is
a parameter governing the failure probability of our
algorithm; and let η > 0 be a generic arbitrarily small
positive constant (whose value may change from one
formula to another). Let r1 = c · d log d

δ , s = c′ · (d +
log n

δ), and t = s2+η, where the parameters c, c′ > 0
are appropriately large constants. Then, we construct

Π1 ∈ Rr1×n as

Π1 ≡
8

r1

√
πt

2s
· CH̃,

where:

C ∈ Rr1×ns/t is a matrix of independent Cauchy
random variables; and

H̃ ∈ Rns/t×n is a block-diagonal matrix comprising
n/t blocks along the diagonal. Each block is the
s × t Fast Johnson-Lindenstrauss matrix G. Here,
for simplicity, we assume that n/t is an integer.

H̃ ≡


G

G
. . .

G

 .

Informally, the matrix H̃ reduces the dimensionality
of the input space by a very small amount such that
the “slow” Cauchy Transform C of [13] can be applied
in the allotted time. Then, since we are ultimately
multiplying by C, the results of [13] still hold; but since
the dimensionality is slightly reduced, the running time
is improved. For this version of the FCT, we have the
following theorem.

Theorem 3.2. (Fast Cauchy Transform (FCT2))
There is a distribution (given by the above construction)
over matrices Π1 ∈ Rr1×n, with r1 = O(d log d

δ), such
that for arbitrary (but fixed) A ∈ Rn×d, and for all
x ∈ Rd, the inequalities

‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1

hold with probability 1 − δ, where κ = O(dδ (d +
log n

δ)1+η log d). Further, for any y ∈ Rn, the product

Π1y can be computed in O(n log d
δ) time.

Setting δ to be a small constant and for log n < d, r1 =
O(d log d), κ = O(d2+η log d) and Π1A can be computed
inO(nd log d) time. Thus, we have a fast linear oblivious

mapping from from `n1 7→ `
O(d log d)
1 that has distortion

O(d2+η log d) on any (fixed) d-dimensional subspace
of Rn.
Remark. For log n < d, FCT2 gives a better depen-
dence of the distortion on d, but more generally FCT2
has a dependence on log n. This dependence arises be-
cause the random FJLT matrix does not give a deter-
ministic guarantee for spreading out a vector whereas
the low coherence matrix used in FCT1 does give a de-
terministic guarantee. This means that in using the
union bound, we need to overcome a factor of n.

Remark. The requirement t ≥ s2+η is set by a restric-
tion in a technical lemma in the proof of Theorem 3.2.
If a stronger version of this lemma can be proved that
relaxes the restriction t ≥ s2+η, then correspondingly
the bound of Theorem 3.2 will improve.
Remark. This second construction has the benefit of
being easily extended to constructing well-conditioned
bases of `p, for p > 1; see Section 5.

4 Algorithmic Applications in `1 of the FCT

In this section, we describe three related applications
of the FCT to `1-based problems. The first is to the
fast construction of an `1 well-conditioned basis and the
fast approximation of `1 leverage scores; the second is
a fast algorithm for the least absolute deviations or `1
regression problem; and the third is to a fast algorithm
for the `1 norm subspace approximation problem.

4.1 Fast Construction of an `1 Well-conditioned
Basis and `1 Leverage Scores We start with the
following definition, adapted from [5], of a basis that
is “good” for the `1 norm in a manner that is analogous
to how an orthogonal matrix is “good” for the `2 norm.

Definition 2. A basis U for the range of A is (α, β)-
conditioned if ‖U‖1 ≤ α and for all x ∈ Rd, ‖x‖∞ ≤
β‖Ux‖1. We will say that U is well-conditioned if α and
β are low-degree polynomials in d, independent of n.

Remark. An Auerbach basis for A is (d, 1)-
conditioned, and thus we know that there exist well-
conditioned bases for `1. More generally, well-
conditioned bases can be defined in any `p norm, using
the notion of a dual norm `∗p, and these have proven
important for solving `p regression problems [5]. Our
focus in this section is the `1 norm, for which the dual
norm is the `∞ norm, but in Section 5 we will return to
a discussion of extensions to the `p norm.

Our main algorithm for constructing an `1 well-
conditioned basis, FastL1Basis, is summarized in Fig-
ure 1. This algorithm was originally presented in [13],
and our main contribution here is to improve its run-
ning time. Given an n× d matrix A, let Π1 ∈ Rr1×n be
any projection matrix such that for any x ∈ Rd,

(4.3) ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1.

For example, it could be constructed with either of the
FCT constructions described in Section 3, or with the
“slow” Cauchy Transform of [13], or via some other
means. After computing the matrix Π1, the FastL1Basis
algorithm of Figure 1 consists of the following steps:
construct Π1A and an R such that Π1A = QR, where
Q has orthonormal columns (for example using a QR-

FastL1Basis(A):

1: Let Π1 be an r1 × n matrix satisfying (4.3),
e.g., as constructed with one of the FCTs of
Section 3.

2: Compute Π1A ∈ Rr1×d and its QR-
factorization: Π1A = QR, where Q is an or-
thogonal matrix, i.e., QTQ = I.

3: Return U = AR−1 = A(QTΠ1A)−1

Figure 1: Our main algorithm for the fast construction
of an `1 well-conditioned basis of an n × d matrix A.
Note the structural similarities with the algorithm of [6]
for computing quickly approximations to the `2 leverage
scores and an `2 well-conditioned basis.

factorization of Π1A); and then return U = AR−1 =
A(QTΠ1A)−1.

The next theorem and its corollary are our main
results for the FastL1Basis algorithm; and this theorem
follows by combining our Theorem 3.2 with Theorems
9 and 10 of [13].

Theorem 4.1. For any A ∈ Rn×d, the basis U =
AR−1 constructed by FastL1Basis(A) of Figure 1 using
any Π1 satisfying (4.3) is a (d

√
r1, κ)-conditioned basis

for the range of A.

Corollary 4.1. If Π1 is obtained from the FCT2
construction of Theorem 3.2, then the resulting U is an
(α, β)-conditioned basis for A, with α = O(d3/2 log1/2 d)
and β = O(d2+η log d), with probability 1 − δ. The
time to compute the change of basis matrix R−1 is
O(nd log d+ d3 log d).

Remark. Our constructions that result in Π1 satisfying
(4.3) do not require that A ∈ Rn×d; they only require
that A have rank d, and so can be applied to any A ∈
Rn×m having rank d. In this case, a small modification
is needed in the construction of U , because R ∈ Rd×m,
and so we need to use R† instead of R−1. The running
time will involve terms withm. This can be improved by
processing A quickly into a smaller matrix by sampling
columns so that the range is preserved (as in [13]), which
we do not discuss further.

The notion of a well-conditioned basis plays an im-
portant role in our subsequent algorithms. Basically,
the reason is that these algorithms compute approxi-
mate answers to the problems of interest (either the `1
regression problem or the `1 subspace approximation
problem) by using information in that basis to con-
struct a nonuniform importance sampling distribution
with which to randomly sample. This motivates the
following definition.

Definition 3. Given a well-conditioned basis U for
the range of A, let the n-dimensional vector λ̃, with
elements defined as λ̃i = ||U(i)||1, be the `1 leverage
scores of A.

Remark. The name `1 leverage score is by analogy
with the `2 leverage scores, which are important in ran-
dom sampling algorithms for `2 regression and low-rank
matrix approximation [11, 10, 6]. As with `2 regres-
sion and low-rank matrix approximation, our result for
`1 regression and `1 subspace approximation will ul-
timately follow from the ability to approximate these
scores quickly. Note, though, that these `1-based scores
are not well-defined for a given matrix A, in the sense
that the `1 norm is not rotationally invariant, and thus
depending on the basis that is chosen, these scores can
differ by factors that depend on low-degree polynomials
in d. This contrasts with `2, since for `2 any orthogonal
matrix spanning a given subspace leads to the same `2
leverage scores. We will tolerate this ambiguity since
these `1 leverage scores will be used to construct an
importance sampling distribution, and thus up to low-
degree polynomial factors in d, which our analysis will
take into account, it will not matter.

4.2 Main Algorithm for Fast `1 Regression
Here, we consider the `1 regression problem, also known
as the least absolute deviations problem, the goal of
which is to minimize the `1 norm of the residual vec-
tor Ax − b. That is, given as input a design matrix
A ∈ Rn×d, with n > d, and a response or target vector
b ∈ Rn, compute

(4.4) Z = min
x∈Rd

||b−Ax||1,

and an x∗ achieving this minimum.
Prior work has shown that there is a diagonal

sampling matrix D with a small number of nonzero
entries so that x̂ = argminx∈Rd‖D(Ax− b)‖1 satisfies

‖Ax̂− b‖1 ≤ (1 + ε)‖Ax∗ − b‖1,

where x∗ is the optimal solution for the minimization
in (4.4); see [5, 13]. The matrix D can be found by
sampling its diagonal entries independently according
to a set of probabilities pi that are proportional to
the `1 leverage scores. Here, we give a fast algorithm
to compute estimates p̂i of these probabilities. This
permits us to develop an improved algorithm for `1
regression and to construct efficiently a small coreset
for an arbitrary `1 regression problem.

In more detail, Figure 2 presents the FastCauchyRe-
gression algorithm, which we summarize here. Let
X =

[
A −b

]
. First, a matrix Π1 satisfying (4.3) is

used to reduce the dimensionality of X to Π1X and

to obtain the orthogonalizer R−1. Let U = XR−1 be
the resulting well-conditioned basis for the range of X.
The probabilities we use to sample rows are essentially
the row-norms of U . However, to compute XR−1 ex-
plicitly takes O(nd2) time, which is already too costly,
and so we need to estimate ‖U(i)‖1 without explicitly
computing U . To construct these probabilities quickly,
we use a second random projection Π2—on the right.
This second projection allows us to estimate the norms
of the rows of XR−1 efficiently to within relative error
(which is all we need) using the median of r2 indepen-
dent Cauchy’s, each scaled by ||U(i)||1. (Note that this
is similar to what was done in [6] to approximate the
`2 leverage scores of an input matrix.) These probabili-
ties are then used to construct a carefully down-sampled
(and rescaled) problem, the solution to which will give
us our (1 + ε) approximation to the original problem.

The next theorem summarizes our main quality-
of-approximation results for the FastCauchyRegression
algorithm of Figure 2. It improves the O(nd2 +
poly(dε−1 log n)) algorithm of [13], which in turn im-
proved the result in [5]. (Technically, the running time

of [13] is O(ndω
+−1 + poly(dε−1 log n)), where ω+ is

any constant larger than the exponent for matrix mul-
tiplication; for practical purposes, we can set ω+ = 3.)
Our improved running time comes from using the FCT
and a simple row-norm estimator for the row-norms of
a well-conditioned basis.

Theorem 4.2. Given are ε ∈ (0, 1), ρ > 0, A ∈ Rn×d
and b ∈ Rn. FastCauchyRegression(A, b) constructs a
coreset specified by the diagonal sampling matrix D and
a solution vector x̂ ∈ Rd that minimizes the weighted
regression objective ‖D(Ax− b)‖1. The solution x̂ sat-
isfies, with probability at least 1− 1

dρ ,

‖Ax̂− b‖1 ≤
(

1 + ε

1− ε

)
‖Ax− b‖1, ∀x ∈ Rd.

Further, with probability 1 − o(1), the entire algorithm
to construct x̂ runs in time

O (nd log n+ φ(s, d)) = O
(
nd log n+ 1

ε2 poly(d, log d
ε)
)
,

where φ(s, d) is the time to solve an `1-regression prob-
lem on s vectors in d dimensions, and if FCT2 is used

to construct Π1 then s = O
(

1
ε2 d

ρ+ 9
2+η log

3
2 (dε)

)
.

Remarks. Several remarks about our results for the `1
regression problem are in order.

• Our proof analyzes a more general problem
minx∈C ||Xx||1. In order to get the result, we need
to preserve norms under sampling, which is what

FastCauchyRegression(A, b):

1: Let X =
[
A −b

]
∈ Rn×(d+k) and construct Π1, an r1 × n matrix satisfying (4.3) with A replaced

by X. (If b is a vector then k = 1.)
2: Compute X ′ = Π1X ∈ Rr1×(d+k) and its QR factorization, Π1X = QR. (Note that Π1XR

−1 has
orthonormal columns.)

3: Let Π2 ∈ R(d+k)×r2 be a matrix of independent Cauchys, with r2 = 15 log 2n
δ .

4: Let U = XR−1 and construct Λ = UΠ2 ∈ Rn×r2 .
5: For i ∈ [n], compute λi = medianj∈r2 |Λij |.
6: For i ∈ [n] and s =

63κ(d+k)
√
r1

ε2

(
(d+ k) log

4d
√
r1 max((d+k)

√
r1,κ)

ε + log 2
δ

)
, compute probabilities

p̂i = min
{

1, s · λi∑
i∈[n] λi

}
.

7: Let D ∈ Rn×n be diagonal with independent entries: Dii =

{
1
p̂i

prob. p̂i;

0 prob. 1− p̂i.
8: Return x̂ ∈ Rd that minimizes ‖DAx−Db‖1 w.r.t. x (using linear programming).

Figure 2: Algorithm for solving `1 regression.

Lemma 2.5 allows us to do. We mention that our
methods extend with minor changes to `p regres-
sion, for p > 1. This is discussed in Section 5.

• A natural extension of our algorithm to matrix-
valued right hand sides b gives a (1 + ε) approxi-
mation in a similar running time for the `1-norm
subspace approximation problem. See Section 4.3
for details.

• We can further improve the efficiency of solving this
simple `1 regression problem, thereby replacing the
nd log n running time term in Theorem 4.2 with
nd log(dε−1 log n), but at the expense of a slightly
larger sample size s. The improved algorithm is es-
sentially the same as the FastCauchyRegression al-
gorithm, except with two differences: Π2 is chosen
to be a matrices of i.i.d. Gaussians, for a value
r2 = O(log(dε−1 log n)); and, to accommodate this,
the size of s needs to be increased. Details can be
found in the technical report version of this confer-
ence paper [4].

4.3 `1 norm Subspace Approximation Finally,
we consider the `1 norm subspace approximation prob-
lem: Given the n points in the n × d matrix A and a
parameter k ∈ [d − 1], embed these points into a sub-
space of dimension k to obtain the embedded points Â
such that ‖A− Â‖1 is minimized. (Note that this is the
`1 analog of the `2 problem that is solved by the Singular
Value Decomposition.) When k = d − 1, the subspace
is a hyperplane, and the task is to find the hyperplane
passing through the origin so as to minimize the sum of
`1 distances of the points to the hyperplane. In order to

solve this problem with the methods from Section 4.2,
we take advantage of the observation made in [2] (see
also Lemma 18 of [13]) that this problem can be reduced
to d related `1 regressions of A onto each of its columns,
a problem sometimes called multiple regression. We can
extend our `1 “simple” regression algorithm to an `1
“multiple” regression algorithm; and this can be used
to solve the `1 norm subspace approximation problem.
Details can be found in the technical report version of
this conference paper [4].

5 Extensions to `p, for p > 1

In this section, we describe extensions of our methods
to `p, for p > 1. We will first (in Section 5.1) dis-
cuss `p norm conditioning and connect it to ellipsoidal
rounding, followed by a fast rounding algorithm for gen-
eral centrally symmetric convex sets (in Section 5.2);
and we will then (in Section 5.3) show how to obtain
quickly a well-conditioned basis for the `p norm, for any
p ∈ [1,∞) and (in Section 5.4) show how this basis can
be used for improved `p regression. These results will
generalize our results for `1 from Sections 4.1 and 4.2,
respectively, to general `p.

5.1 `p norm Conditioning and Ellipsoidal
Rounding As with `2 regression, `p regression prob-
lems are easier to solve when they are well-conditioned.
Thus, we start with the definition of the `p norm con-
dition number κp of a matrix A.

Definition 4. Given an n× d matrix A, let

σmax
p (A) = max

‖x‖2≤1
‖Ax‖p and σmin

p (A) = min
‖x‖2≥1

‖Ax‖p.

Then, we denote by κp(A) the `p norm condition num-
ber of A, defined to be:

κp(A) = σmax
p (A)/σmin

p (A).

For simplicity, we will use κp, σmin
p , and σmax

p when the
underlying matrix is clear.

There is a strong connection between the `p norm condi-
tion number and the concept of an (α, β, p)-conditioning
developed by Dasgupta et al. [5].

Definition 5. ([5])) Given an n × d matrix A and
p ∈ [1,∞], let q be the dual norm of p. Then A is
(α, β, p)-conditioned if (1) ‖A‖p ≤ α, and (2) for all
z ∈ Rd, ‖z‖q ≤ β‖Az‖p. Define κ̄p(A) as the minimum
value of αβ such that A is (α, β, p)-conditioned. We
say that A is p-well-conditioned if κ̄p(A) = O(poly(d)),
independent of n.

The following lemma characterizes the relationship be-
tween these two quantities.

Lemma 5.1. Given an n × d matrix A and p ∈ [1,∞],
we always have

d−|1/2−1/p|κp(A) ≤ κ̄p(A) ≤ dmax{1/2,1/p}κp(A).

Although it is easier to describe sampling algorithms in
terms of κ̄p, after we show the equivalence between κp
and κ̄p, it will be easier for us to discuss conditioning
algorithms in terms of κp, which naturally connects to
ellipsoidal rounding algorithms.

Definition 6. Let C ⊆ Rd be a convex set that is full-
dimensional, closed, bounded, and centrally symmetric
with respect to the origin. An ellipsoid E = {x ∈
Rd | ‖Rx‖2 ≤ 1} is a κ-rounding of C if it satisfies
E/κ ⊆ C ⊆ E, for some κ ≥ 1, where E/κ means
shrinking E by a factor of 1/κ.

To see the connection between rounding and condition-
ing, let C = {x ∈ Rd | ‖Ax‖p ≤ 1} and assume that we
have a κ-rounding of C: E = {x | ‖Rx‖2 ≤ 1}. This
implies

‖Rx‖2 ≤ ‖Ax‖p ≤ κ‖Rx‖2, ∀x ∈ Rd.

If we let y = Rx, then we get

‖y‖2 ≤ ‖AR−1y‖p ≤ κ‖y‖2, ∀y ∈ Rd.

Therefore, we have κp(AR
−1) ≤ κ. So a κ-rounding of

C leads to a κ-conditioning of A.

5.2 Fast Ellipsoidal Rounding Here, we provide a
deterministic algorithm to compute a 2d-rounding of a
centrally symmetric convex set in Rd that is described
by a separation oracle. Recall the well-known result due
to John [8] that for a centrally symmetric convex set
C there exists a d1/2-rounding and that such rounding
is given by the Löwner-John (LJ) ellipsoid of C, i.e.,
the minimal-volume ellipsoid containing C. However,
finding this d1/2-rounding is a hard problem. To state
algorithmic results, suppose that C is described by a
separation oracle and that we are provided an ellipsoid
E0 that gives an L-rounding for some L ≥ 1. In this
case, the best known algorithmic result of which we are
aware is that we can find a (d(d + 1))1/2-rounding in
polynomial time, in particular, in O(d4 logL) calls to
the oracle; see Lovász [9, Theorem 2.4.1]. This result
was used by Clarkson [3] and by Dasgupta et al. [5].
Here, we follow the same construction, but we show that
it is much faster to find a (slightly worse) 2d-rounding.

Theorem 5.1. Given a centrally symmetric convex set
C ⊆ Rd centered at the origin and described by a
separation oracle, and an ellipsoid E0 centered at the
origin such that E0/L ⊆ C ⊆ E0 for some L ≥ 1, it takes
at most 3.15d2 logL calls to the oracle and additional
O(d4 logL) time to find a 2d-rounding of C.

Applying Theorem 5.1 to the convex set C =
{x | ‖Ax‖p ≤ 1}, with the separation oracle described
via a subgradient of ‖Ax‖p and the initial rounding
provided by the “R” matrix from the QR decomposi-
tion of A, we improve the running time of the algo-
rithm used by Clarkson [3] and by Dasgupta et al. [5]
from O(nd5 log n) to O(nd3 log n) while maintaining an
O(d)-conditioning.

Theorem 5.2. Given an n × d matrix A with full
column rank, it takes at most O(nd3 log n) time to find
a matrix R ∈ Rd×d such that κp(AR

−1) ≤ 2d.

5.3 Fast Construction of an `p Well-conditioned
Basis Here, we consider the construction of a basis that
is well-conditioned for `p. To obtain results for general
`p that are analogous to those we obtained for `1, we
will extend the FCT2 construction from Section 3.2,
combined with Theorem 5.1.

Our main algorithm for constructing a p-well-
conditioned basis, the FastLpBasis algorithm, is summa-
rized in Figure 3. The algorithm first applies block-wise
embeddings in the `2 norm, similar to the construction
of FCT2; it then uses the algorithm of Theorem 5.1 to
compute a (2d)-rounding of a special convex set C̃ and
obtain the matrix R. It is thus a generalization of our
FastL1Basis algorithm of Section 4.1, and it follows the

FastLpBasis(A):

1: Let s = Θ(d + log n), t = Θ(sd2), and G be
an s× t Fast Johnson-Lindenstrauss matrix, the
same as the matrix G in the FCT2 construction.

2: Partition A along its rows into sub-matrices
of size t × d, denoted by A1, . . . , AN , compute
Ãi = GAi for i = 1, . . . , N , and define

C̃=

x
∣∣∣∣∣∣
(

N∑
i=1

‖Ãix‖p2

)1/p

≤ 1

 , and Ã=

(
Ã1

.

.

.

ÃN

)
.

3: Apply the algorithm of Theorem 5.1 to obtain
a (2d)-rounding of C̃: E = {x | ‖Rx‖2 ≤ 1}.

4: Output AR−1.

Figure 3: Our main algorithm for the fast construction
of an `p well-conditioned basis of an n × d matrix A.
Note the structural similarities with our FastL1Basis
algorithm of Figure 1 for computing quickly an `1 well-
conditioned basis.

same high-level structure laid out by the algorithm of [6]
for computing approximations to the `2 leverage scores
and an `2 well-conditioned basis.

The next theorem is our main result for the FastLp-
Basis algorithm. It improves the running time of the
algorithm of Theorem 5.2, at the cost of slightly worse
conditioning quality. However, these worse factors will
only contribute to a low-order additive poly(d) term in
the running time of our `p regression application in Sec-
tion 5.4.

Theorem 5.3. For any A ∈ Rn×d with full column
rank, the basis AR−1 constructed by FastLpBasis(A)
(Figure 3), with probability at least 1− 1/n, is `p well-
conditioned with κp(AR

−1) = O(dt|1/p−1/2|). The time
to compute R is O(nd log n).

When d > log n, κp(AR
−1) = O(d1+3·|1/p−1/2|) and

hence κ̄p(AR
−1) = O(d1+3·|1/p−1/2|+max{1/p,1/2}) by

Lemma 5.1. Note that, even for the case when p = 1,
we have κ̄p(AR

−1) = O(d7/2), which is slightly better
than FCT2 (see Corollary 4.1). However, we have to
solve a rounding problem of size ns/t×d in the step 2 of
FastLpBasis, which requires storage and work depending
on n.

5.4 Fast `p Regression Here, we show that the
overconstrained `p regression problem can be solved
with a generalization of the algorithms of Section 4.2
for solving `1 regression; we will call this generalization
the FastLpRegression algorithm. In particular, as with

the algorithm for `1 regression, this FastLpRegression
algorithm for the `p regression problem uses an `p
well-conditioned basis and samples rows of A with
probabilities proportional to the `p norms of the rows
of the corresponding well-conditioned basis (which are
the `p analogs of the `2 leverage scores). As with the
FastCauchyRegression, this entails using—for speed—
a second random projection Π2 applied to AR−1—on
the right—to estimate the row norms. This allows
fast estimation of the `2 norms of the rows of AR−1,
which provides an estimate of the `p norms of those
rows, up to a factor of d|1/2−1/p|. We uses these norm
estimates, e.g., as in the above algorithms or in the
sampling algorithm of [5]. As discussed for the running
time bound of [5], Theorem 7, this algorithm samples
a number of rows proportional to κ̄pp(AR

−1)d. This
factor, together with a sample complexity increase of
(d|1/2−1/p|)p = d|p/2−1| needed to compensate for error
due to using Π2, gives a sample complexity increase for
the FastLpRegression algorithm while the leading term in
the complexity (for n� d) is reduced from O(nd5 log n)
to O(nd log n). We modify Theorem 7 of [5] to obtain
the following theorem.

Theorem 5.4. Given ε ∈ (0, 1), A ∈ Rn×d, and b ∈
Rn, there is a random sampling algorithm (the FastL-
pRegression algorithm described above) for `p regression
that constructs a coreset specified by a diagonal sam-
pling matrix D, and a solution vector x̂ ∈ Rd that min-
imizes the weighted regression objective ‖D(Ax− b)‖p.
The solution x̂ satisfies, with probability at least 1/2, the
relative error bound that ‖Ax̂− b‖p ≤ (1 + ε)‖Ax− b‖p
for all x ∈ Rd. Further, with probability 1 − o(1), the
entire algorithm to construct x̂ runs in time

O (nd log n+ φp(s, d))=O
(
nd log n+ 1

ε2 poly(d, log d
ε)
)
,

where s = O(ε−2dk log(1/ε)) with k = p + 1 + 4|p/2 −
1|+ max{p/2, 1}, and φp(s, d) is the time to solve an `p
regression problem on s vectors in d dimensions.

6 Numerical Implementation and Empirical
Evaluation

In this section, we describe the results of our empirical
evaluation. We have implemented and evaluated the
Fast Cauchy Transforms (both FCT1 and FCT2) as well
as the Cauchy transform (CT) of [13]. For completeness,
we have also compared our method against two `2-based
transforms: the Gaussian Transform (GT) and a version
of the FJLT. Ideally, the evaluation would be based
on the evaluating the distortion of the embedding, i.e.,
evaluating the smallest κ such that

‖Ax‖1 ≤ ‖ΠAx‖1 ≤ κ‖Ax‖1, ∀x ∈ Rd,

where Π ∈ Rr×n is one of the Cauchy transforms.
Due to the non-convexity, there seems not to be a
way to compute, tractably and accurately, the value
of this κ. Instead, we evaluated both `1-based trans-
forms (CT, FCT1, and FCT2) and `2-based transforms
(GT and FJLT) based on how they perform in comput-
ing well-conditioned bases and approximating `1 regres-
sion problems.

In more detail, we have evaluated the quality of
`1 conditioning using both `1-based transforms (CT,
FCT1, and FCT2) and `2-based transforms (GT and
FJLT) on a suite of matrices designed to illustrate the
strengths and weaknesses of the respective methods;
and we have evaluated the performance of these em-
bedding methods on both small-scale and large-scale `1
regression problems. A full discussion of our empirical
evaluation may be found in the technical report version
of this paper [4]; here we describe only the evaluation
on a large-scale `1 regression problem.

The `1 regression problem we consider is one with
imbalanced and corrupted measurements. It is of size
5.24e9× 15, and it is generated in the following way.

1. The true signal x∗ is a standard Gaussian vector.

2. Each row of the design matrix A is a canonical
vector, which means that we only estimate a single
entry of x∗ in each measurement. The number of
measurements on the i-th entry of x∗ is twice as
large as that on the (i + 1)-th entry, i = 1, . . . , 14.
We have 2.62 billion measurements on the first
entry while only 0.16 million measurements on the
last. Imbalanced measurements apparently create
difficulties for sampling-based algorithms.

3. The response vector is given by

bi=

{
1000εi with probability 0.001

aTi x
∗ + εi otherwise

, i = 1, . . . ,

where ai is the i-th row of A and {εi} are i.i.d.
samples drawn from the Laplace distribution. 0.1%
measurements are corrupted to simulate noisy real-
world data. Due to these corrupted measurements,
`2 regression won’t give us accurate estimate, and
`1 regression is certainly a more robust alternative.

Since the problem is separable, we know that an optimal
solution is simply given by the median of responses
corresponding to each entry.

Our empirical evaluation was performed on a
Hadoop cluster with 40 cores. We implemented
and compared Cauchy-conditioned sampling (CT),
Gaussian-conditioned sampling (GT), un-conditioned
sampling (NOCD), and uniform sampling (UNIF). Since

‖x−x∗‖1
‖x∗‖1

‖x−x∗‖2
‖x∗‖2

‖x−x∗‖∞
‖x∗‖∞

CT [0.008, 0.0115] [0.00895, 0.0146] [0.0113, 0.0211]

GT [0.0126, 0.0168] [0.0152, 0.0232] [0.0184, 0.0366]

NOCD [0.0823, 22.1] [0.126, 70.8] [0.193, 134]

UNIF [0.0572, 0.0951] [0.089, 0.166] [0.129, 0.254]

Table 1: First and the third quartiles of relative errors
in 1-, 2-, and ∞-norms. CT clearly performs the best.
GT follows closely. NOCD generates large errors, while
UNIF works but it is about a magnitude worse than CT.

A only has 2n non-zeros, CT takes O(nd log d) time
instead of O(nd2 log d), which makes it the fastest
among CT, FCT1, and FCT2 on this particular prob-
lem. Moreover, even if A is dense, data at this scale
are usually stored on secondary storage, and thus time
spent on scanning the data typically dominates the over-
all running time. Therefore, we only implemented CT
for this test. Note that the purpose of this test is not
to compare CT, FCT1, and FCT2 (which we did in
other parts of our empirical evaluation), but to reveal
some inherent differences among `1 conditioned sam-
pling (CT, FCT1, and FCT2), `2 conditioned sampling
(GT and FJLT), and other sampling algorithms (NOCD
and UNIF). For each algorithm, we sample approxi-
mately 100000 (0.019%) rows and repeat the sampling
100 times, resulting 100 approximate solutions. Note
that those 100 approximate solutions can be computed
simultaneously in a single pass.

We first check the overall performance of these sam-
pling algorithms, measured by relative errors in 1-, 2-,
and ∞-norms. The results are shown in Table 1. Since
the algorithms are all randomized, we show the first and
the third quartiles of the relative errors in 100 indepen-
dent runs. We see that CT clearly performs the best,
followed by GT. UNIF works but it is about a magni-
tude worse than CT. NOCD is close to UNIF at the
first quartile, but makes very large errors at the third.
Without conditioning, NOCD is more likely to sample
outliers because the response from a corrupted measure-
ment is much larger than that from a normal measure-
ment. However, those corrupted measurements contain
no information about x∗, which leads to NOCD’s poor
performance. UNIF treats all the measurements the
same, but the measurements are imbalanced. Although
we sample 100000 measurements, the expected number
of measurements on the last entry is only 3.05, which
downgrades UNIF’s overall performance.

We continue to analyze entry-wise errors. Figure 4
draws the first and the third quartiles of entry-wise ab-
solute errors, which clearly reveals the differences among
`1 conditioned sampling, `2 conditioned sampling, and
other sampling algorithms. While UNIF samples uni-

2 4 6 8 10 12 14

10
−3

10
−2

10
−1

10
0

index

|x
j −

 x
* j|

cauchy
gaussian
nocd
unif

Figure 4: The first (solid) and the third (dashed)
quartiles of entry-wise absolute errors for our large-
scale `1 regression empirical evaluation. See the text
for details.

formly row-wise, CT tends to sample uniformly entry-
wise. Although not as good as other algorithms on the
first entry, CT maintains the same error level across all
the entries, delivering the best overall performance. The
`2-based GT sits between CT and UNIF. `2 conditioning
can help detect imbalanced measurements to a certain
extent and adjust the sampling weights accordingly, but
it is still biased towards the measurements on the first
several entries.

To summarize, we have shown that `1 conditioned
sampling indeed works on large-scale `1 regression prob-
lems and its performance looks promising. We obtained
about two accurate digits (0.01 relative error) on a prob-
lem of size 5.24e9 × 15 by passing over the data twice
and sampling only 100000 (0.019%) rows in a judicious
manner.

7 Conclusion

We have introduced the Fast Cauchy Transform, an `1-
based analog of fast Hadamard-based random projec-
tions. We have also demonstrated that this fast `1-
based random projection can be used to develop algo-
rithms with improved running times for a range of `1-
based problems; we have provided extensions of these
results to `p; and we have provided the first implemen-
tation and empirical evaluation of an `1-based random
projection. Our empirical evaluation clearly demon-
strates that for large and very rectangular problems,
for which low-precision solutions are acceptable, our im-
plementation follows our theory quite well; and it also
points to interesting connections between `1-based pro-

jections and `2-based projections in practical settings.
Understanding these connections theoretically, exploit-
ing other properties such as sparsity, and using these
ideas to develop improved algorithms for high-precision
solutions to large-scale `1-based problems, are impor-
tant future directions raised by our work.

References

[1] N. Ailon and B. Chazelle. The fast Johnson-
Lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39(1):302–
322, 2009.

[2] J. P. Brooks and J. H. Dulá. The L1-norm best-
fit hyperplane problem. Applied Mathematics Letters,
26(1):51–55, 2013.

[3] K. Clarkson. Subgradient and sampling algorithms for
`1 regression. In Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 257–
266, 2005.

[4] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W.
Mahoney, X. Meng, and D. P. Woodruff. The Fast
Cauchy Transform and faster robust linear regression.
Technical report. Preprint: arXiv:1207.4684 (2012).

[5] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and
M.W. Mahoney. Sampling algorithms and coresets for
`p regression. SIAM Journal on Computing, (38):2060–
2078, 2009.

[6] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and
D. P. Woodruff. Fast approximation of matrix coher-
ence and statistical leverage. In Proceedings of the 29th
International Conference on Machine Learning, 2012.

[7] P. Drineas, M.W. Mahoney, S. Muthukrishnan, and
T. Sarlós. Faster least squares approximation. Nu-
merische Mathematik, 117(2):219–249, 2010.

[8] F. John. Extremum problems with inequalities as
subsidiary conditions. In Studies and Essays presented
to R. Courant on his 60th Birthday, pages 187–204.
1948.

[9] L. Lovasz. Algorithmic Theory of Numbers, Graphs,
and Convexity. CBMS-NSF Regional Conference Se-
ries in Applied Mathematics 50. SIAM, Philadelphia,
1986.

[10] M. W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine Learn-
ing. NOW Publishers, Boston, 2011. Also available at:
arXiv:1104.5557.

[11] M. W. Mahoney and P. Drineas. CUR matrix decom-
positions for improved data analysis. Proc. Natl. Acad.
Sci. USA, 106:697–702, 2009.

[12] A. Maurer. A bound on the deviation probability for
sums of non-negative random variables. Journal of In-
equalities in Pure and Applied Mathematics, 4(1):Arti-
cle 15, 2003.

[13] C. Sohler and D. P. Woodruff. Subspace embeddings
for the `1-norm with applications. In Proceedings
of the 43rd Annual ACM Symposium on Theory of
Computing, pages 755–764, 2011.

	Introduction
	Preliminaries
	Main Technical Result: the Fast Cauchy Transform
	FCT1 Construction: via a Low-coherence Matrix
	FCT2 Construction: via a Fast Johnson-Lindenstrauss Transform

	Algorithmic Applications in 1 of the FCT
	Fast Construction of an 1 Well-conditioned Basis and 1 Leverage Scores
	Main Algorithm for Fast 1 Regression
	1 norm Subspace Approximation

	Extensions to p, for p>1
	p norm Conditioning and Ellipsoidal Rounding
	Fast Ellipsoidal Rounding
	Fast Construction of an p Well-conditioned Basis
	Fast p Regression

	Numerical Implementation and Empirical Evaluation
	Conclusion

