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1 Summary

In many applications, an m × n matrix A is stored on
disk and is too large to be read into RAM. Our main
result is a succinct, easily computed, approximation
A′ to A, which is also an m × n matrix; A′ has the
following properties (s is a positive integer under our
choice, usually constant):

(i) A′ = CUR, where C is an m× s matrix consisting
of s (randomly picked) columns of A; R is an s×n
matrix consisting of s (randomly picked) rows of A
and U is an s× s matrix computed from C,R.

(ii) C,U,R can be constructed after making two passes
through the whole matrix A from disk,

(iii) using RAM space and additional time (in addition
to the two full passes) O(m + n) and

(iv) satisfies

max
x:|x|=1

|(A−A′)x|2 = |A−A′|22 ≤ ε
∑

i,j

A2
ij = ε‖A‖2F

(v) satisfies an upper bound on ‖A − A′‖F (to be de-
scribed later). This upper bound is much smaller
than ‖A‖F when A has a good low-rank approxima-
tion, as is the case in many practical applications.

We will also present simple information theoretic
arguments to show that this is in essence the best we
can do. The above approximation can be used for “sim-
ilarity query” problems, widely used in Information Re-
trieval and other areas: after A has been preprocessed,
we get “query” vectors x and must find the similarity of
x to each row of A. Here, the similarity of two vectors
is defined to be their dot product or their normalized
dot product; our technique can handle both.

Using an alternative method (essentially the tech-
nique of Achlioptas and McSherry in [1]), we also show
another approximation A′′ which can be computed in
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just one pass, but has the disadvantage that it does not
satisfy (v); ‖A−A′′‖F might be as large as ‖A‖F .

Our algorithm uses adaptive sampling where we
take a small sample of the data, but with non-uniform
probabilities which reflect the relative sizes of the en-
tries; two passes through the data are needed. Uni-
form sampling (one pass through the data) has been
recently shown to be useful in approximately solving
several problems, like the maximum cut problem on
dense graphs using only O(1) space. We formulate
a model of “out-of-core” computation, which empha-
sizes the number of passes through the data from
disk. This model has some similarities to the “stream-
ing model” as well as older models studied in the con-
text of sorting. In this model, we show some extensions
of results approximating e.g. the maximum cut prob-
lem on dense graphs to certain non-dense graphs using
adaptive sampling and two passes.

2 Introduction

We consider the problem of deriving a succinct approx-
imation A′ to an m × n matrix A stored on disk. It is
easy to see (by information theory arguments) that if
we require ‖A−A′‖2F ≤ ε‖A‖2F , then we will in general
need Ω(number of non-zero entries in A) space. But,
in many applications, we only need to compute Ax for
“query vectors” x; a more natural measure of the ap-
proximation in these cases in the 2-norm (denoted | · |2)
of A−A′, namely maxx:|x|=1 |(A−A′)x|. We emphasize
that the measure |A−A′|2 is a worst case measure; this
is more useful in many contexts than an average case
measure, since the relevant query x often comes from a
small dimensional subspace and is not random.

As stated in the summary, we prove |A − A′|22 ≤
ε‖A‖2F ; obviously, such a bound is only useful for matri-
ces A for which ‖A‖22 À ε‖A‖2F . This is indeed the case
for matrices occurring in many contexts (e.g., matri-
ces for which so-called Principal Component Analysis
is used). But, we also prove a good upper bound on
‖A − A′‖F for the more restricted class of matrices A
for which there exists a good approximation of low rank.

Two quick examples are in order – one is the



“document-term” matrix, where we have a collection
of m documents and n terms (used in the documents)
and Aij represents the number of occurrences of term j
in document i or a function of this number. A second
example pertains to a collection of images: the rows
of the matrix represent images, the columns represent
pixels and Aij gives the intensity of pixel j in image i; in
general, our technique can be used in the broad area of
Principal Component Analysis where it may substitute
for Singular Value Decomposition.

Our approximation A′ is of the form CUR, where
R is an s × n matrix consisting of s = θ(1/ε2) rows of
A picked independently at random and C is an m × s
matrix consisting of s = θ(1/ε2) columns of A picked
independently at random. U is a s × s matrix which
can be computed from C, R; assuming ε = Ω(1), the
picture looks like


 A


 ≈


 C


 · ( U

) · ( R
)

Note that the length of our succinct approximation
is O((m+n)/ε2). In case the matrix A is sparse, with at
most m′ entries in any column and at most n′ entries in
any row, then we develop an approximation of length
(of representation) at most O((m′ + n′)/ε2); we will
sketch a simple information theoretic argument proving
a lower bound of Ω(m+n). The random sampling to get
C,R will be according to a carefully chosen probability
distribution, not necessarily the uniform. Also, as a by-
product of the CUR approximation, we can estimate
the singular values of A.

Our approximation may be viewed as a “dimension
reduction” technique. The two main known techniques
for dimension reduction which have been widely used
are Random Projections (see [30], [28], [34]) and Sin-
gular Value Decomposition (SVD) (see [24], [17], [29],
[11]). These methods do not share (i) and (ii) and thus
are not suited for very large problems. Our algorithm
achieves (i) and (ii) at the cost of some accuracy – the
ε‖A‖2F error. Another aspect of the approximation is
that it can be viewed as a way to reconstruct an ap-
proximation to the whole matrix A given a randomly
chosen subset of columns and a randomly chosen subset
of rows. But we caution that, as our theorem stands,
it needs to know the probabilities that each sampled
row and column was picked with (up to a scale factor);
we emphasize that these probabilities should be known
only for the randomly picked rows and columns, not for
all rows and columns. Our approximation has already
been used for recommendation systems applications to
reconstruct a large matrix (see [13]).

We also show that the approximation only requires

the input matrix to be presented in a particular general
form, which we call the unordered sparse representa-
tion; the non-zero entries of A are presented as triples
(i, j, Aij) in any order. This is suited to applications,
where multiple agents may write in parts of the matrix
to a central database and we cannot make assumptions
about the rules for write-conflict resolution; an exam-
ple of this may be the “load” matrix, where each of
many routers writes into a central database a log of the
messages it routed during a day in the form of triples
(source, destination, number of bytes).

Our algorithm draws a random sample of the entries
of A and analyzes the sample. However, the difference
between usual sampling algorithms and ours is that we
do not blindly draw a random sample; what we do
may be called adaptive sampling, where the sampling
probabilities depend on the entries. In the first pass,
we pick out a sample of rows and columns; the second
pass is used to pick up the required sub matrices
which form the whole sample. Then, we perform some
computations in RAM with the sample. We remark
that recently, there have been a number of results
demonstrating the power of just blind sampling (see
[5, 10, 16, 23, 3]); i.e., sampling where the probabilities
are not based on the data. The advantage of blind
sampling is that we may pick the sample before seeing
the data, and, in just one pass through the data, extract
the sample and analyze it. So, these results are one-pass
algorithms and fit the well-studied “streaming” model
(which we discuss later.) For example, one central
problem the above papers solve by blind sampling is
the following: given the adjacency matrix of a graph G,
find the value of the maximum cut in G within additive
error εn2; this is useful only for dense graphs.

We will show here (section 4 and 4.1) that in our
model, with two passes, we can tackle some interesting
classes of non-dense graphs. In a sense, the algorithm we
give can be viewed as exploiting the ability to sample a
random edge in the graph, rather than a random vertex.
What we show is that with two passes, and O(log n)
extra RAM space and time, we can find in any graph
G(V, E) the MAX-CUT up to additive error ε(|V |−`)2,
where the ` lowest vertex degrees add up to ε|E|/2.
Thus, if all but r = o(n) vertices in the graph have
“low” degrees, then the error is εr2, instead of εn2. We
will tackle – using the CUR approximation – a wider
class of problems of which MAX-CUT is an example.

3 The CUR approximation

The main technical result of this paper is stated and
proved in this section. For any m×n matrix A, suppose
C is an m × c matrix formed by a random subset of c
columns of A, picked in c independent identical trials;



in each trial one of the n columns of A is picked with the
probability of picking column j being qj . The {qj}n

j=1

are nonnegative reals adding to 1, to be specified later;
c is a positive integer. Our upper bounds on the
errors will depend on c and will decrease as c increases.
Similarly, suppose R is an r × n matrix formed by a
random subset of r rows of A, picked in r independent
identical trials; in each trial one of the m rows of A is
picked with the probability of picking row i being pi.
Again, {pi}m

i=1 are nonnegative reals adding up to 1. In
the following, A(i) will denote the i th row of matrix A

(as a row vector) and A(j) will denote the j th column
(as a column vector).

The main theorem will say that from C, R, we can
compute a c × r matrix U such that C · U · R is a
good approximation to A provided the {pi} and the
{qj} satisfy certain conditions; intuitively, heavier rows
and columns have higher probabilities of being picked.
To put our theorem in context, it will be useful to
contrast it with Singular Value Decomposition (SVD).
We remind the reader that the SVD of A expresses A
as (here ρ is the rank of A)

A =
ρ∑

t=1

σt(A)u(t)v(t)T

where {σt(A)}ρ
t=1 are the singular values of A and

u(t), v(t) the corresponding left/right singular vectors
of A respectively. It is well-known that the first k
terms of this expansion give us the “optimal” rank k
approximation to A with respect to both the 2-norm
and the Frobenius norm.

Note that we can write
∑k

t=1 σt(A)u(t)v(t)T

as
UkΣkV T

k , where Uk is an m × k matrix, Σk is a k × k
diagonal matrix and Vk is a k×n matrix. So, computing
the SVD gives us good succinct approximations, since it
only takes space O(k(m+n)) to write down Uk, Σk, Vk.
But the computational problem of finding the SVD is
difficult and cannot be carried out by any means in
O(1) passes. Instead our theorem will say that weaker
bounds (which are however similar in spirit) may be
achieved by CUR (which is similar to UΣV ). Indeed,
we will show that if the rows and columns are picked
with probabilities proportional to their length squared,
then the bounds given by the following corollary on the
errors hold.

Corollary 3.1. If pi = |A(i)|2/‖A‖2F and qj =
|A(j)|2/‖A‖2F for i = 1, . . . , m and j = 1, . . . , n, then

E
(|A− CUR|22

) ≤ |A−A√s+1|22 + ε1‖A‖2F
E

(‖A− CUR‖2F
) ≤ ‖A−A√s+1‖2F + ε2‖A‖2F

where ε1 = 3/
√

s and ε2 = 2/s1/4 + 1/
√

s.

An advantage of our method is that if A is sparse
and each row and column of A has a small number of
non-zero entries, then the CUR representation also has
a small number of entries; this should be obvious since
C, R are just small parts of A and U is a c× r matrix.
This advantage is not enjoyed by the SVD which in
general destroys sparsity.

For simplicity we only present results for the expec-
tation of the error (tight concentration can be shown
through martingale arguments). The corollary above
will follow from a more general theorem which we
presently describe; we relax the condition that the prob-
abilities be exactly proportional to the row (or column)
length squared. Instead, we require (α, β ≤ 1):

pi ≥ 0,
∑

i pi = 1, pi ≥ α|A(i)|2/‖A‖2F(3.1)

qj ≥ 0,
∑

j qj = 1, qj ≥ β|A(j)|2/‖A‖2F(3.2)

We also let C have c columns and R have r rows (we
need not have r = c). Finally, there will be another
parameter k under our control, which we will specify
later; we describe the computation of C, U,R in the
following algorithm:

The CUR algorithm
Input: m × n matrix A, positive integers r ≤ m,
c ≤ n and k ≤ min(r, c), {pi}m

i=1, {qj}n
j=1.

Output: C (m × c matrix), U (c × r matrix) and
R (r × n matrix).

1. for t = 1 to c independently pick jt ∈
{1 . . . n} in i.i.d. trials with Pr(jt = j) = qj .
Let C be the m× c matrix whose t-th column
is A(jt) for t = 1, . . . , c.

2. Let D1 be the c × c diagonal matrix with
1/
√

cqjt in the (t, t)-th position for t = 1, . . . , c.

Note: we need to know qj only for the sampled
columns j.

3. Let C ′ = CD1 (C ′ is C with columns suitably
scaled). Compute C ′T C ′, a c × c matrix and
its SVD; suppose it is

C ′T C ′ =
∑

t

σ2
t (C ′)y(t)y(t)T

Choose a k such that σk(C ′) > 0.

4. for t = 1 to r independently pick it ∈
{1 . . .m} with Pr(it = i) = pi.

Let R be the r × n matrix whose t-th row is
A(it) for t = 1, . . . , r.



5. Let D2 be the r × r diagonal matrix with
1/
√

rpit as the (t, t) th entry for t = 1, . . . , r.

Note: we need to know pi only for the sampled
rows i.

6. Let W be the r ×m matrix such that W1i1 =
1, W2i2 = 1, . . . , Wrir = 1 (the remaining
elements of W are zeros). Then WC ′ is the
r× c matrix whose rows are C ′(it)

, t = 1, . . . , r.
Define

U = D1

(
k∑

t=1

1
σ2

t (C ′)
y(t)y(t)T

)
C ′T WT D2

2

Theorem 3.1. If {pi}m
i=1 satisfy (3.1) and {qj}n

i=1 sat-
isfy (3.2),

E
(‖A− CUR‖2F

) ≤ ‖A−Ak‖2F + ε1‖A‖2F(3.3)

E
(|A− CUR|22

) ≤ |A−Ak|22 + ε2‖A‖2F(3.4)

≤
(

1
k + 1

+ ε2

)
‖A‖2F

where ε1 = 2
√

k/βc + k/αr and ε2 = 2/
√

βc + k/αr.

Remarks: Corollary 3.1 will follow from the theorem
by taking r = c = s and k =

√
s. If ε > 0 is an

error parameter, choosing k = 2/ε, c = 64/(βε2) and
r = 8/(αε2) makes |A − CUR|2 ≤ ε‖A‖2F . Thus in
essence the theorem says that sampling Ω(1/ε2) rows
and Ω(1/ε2) columns is sufficient for an approximation
within 2-norm error at most ε‖A‖2F .
Proof: We would like to give some intuition on why
CUR is close to A. Let, h(t) = C ′y(t)/σt(C ′); h(t)

are the left singular vectors of C ′. Also, let Hm×k =(
h(1) h(2) . . . h(k)

)
; the projection Ã of A to the sub-

space spanned by the top k h(t)’s

Ã =
k∑

t=1

h(t)h(t)T

A = HHT A(3.5)

can be shown to “capture” almost as much of the
Frobenius norm of A as A’s projection into the space
spanned by its own top k left singular vectors. Indeed
it was shown in [11] that ‖A − Ã‖2F is small (see
Theorem 3.2 below). Thus, Ã would have been a fine
approximation to A, but for the fact that it is hard
to compute – multiplying each h(t)T

by A requires one
pass through A for a total of k passes! We emphasize
here that although equation 3.6 of Theorem 3.2 was
known from [11], equation 3.7 of Theorem 3.2 which

proves a similar bound with respect to the 2-norm is
new. Note that the singular value decomposition of C ′

is C ′ =
∑

t σt(C ′)h(t)y(t)T

. Thus, we may write

CUR = C ′
(

k∑
t=1

1
σ2

t (C ′)
y(t)y(t)T

)
C ′T WT D2

2R

=

(∑
t1

σt1(C
′)h(t1)y(t1)

T

) (
k∑

t2=1

1
σ2

t2(C
′)

y(t2)y(t2)
T

)
·

·
(∑

t3

σt3(C
′)y(t3)h(t3)

T

)
WT D2

2R

=

(
k∑

t=1

h(t)h(t)T

)
WT D2

2R = HHT WT D2
2R

We remind that WT is an m × r matrix, denoting
which rows of A are included in R. Moving back to equa-
tion 3.5, instead of explicitly computing the product
HT A we will approximate it using a technique of [12];
this technique says that if we pick a random subset of
columns of HT and the corresponding set of rows of A,
scale them appropriately and multiply the resulting ma-
trices, we get an accurate approximation to the product
HT A, if the probabilities used for the random choices
satisfy certain inequalities (see lemma 3.1). Indeed, the
reader may verify that (HT WT D2)(D2R) is obtained
precisely by choosing columns i1, i2, . . . , ir of HT and
the corresponding rows of A, while the multiplication
by D2 scales the rows/columns appropriately! This will
lead us to the result that HT A ≈ (HT WT D2)(D2R) in
both the 2-norm and the Frobenius norm sense, giving
us the bounds of the theorem.

We start with the following lemma (very similar
to a lemma of [12]), whose proof may be found in the
Appendix.

Lemma 3.1. Suppose A, B are m×n and n×p matrices
respectively; let {pi}n

i=1 be nonnegative reals summing
to 1 such that, for all i, either pi ≥ α|A(i)|2/‖A‖2F or
pi ≥ α|B(i)|2/‖B‖2F for some α ≤ 1. Suppose {it}s

t=1

are picked by i.i.d. trials in each of which an element
from {1, 2, . . . , n} is picked according to the probabilities
pi. Let S be the m× s matrix with columns A(it)/

√
spit

and R be the s×p matrix with rows B(it)/
√

spit . Then,

E
(‖AB − SR‖2F

) ≤ 1
αs
‖A‖2F ‖B‖2F

Lemma 3.2. Using the above notation,

E
(‖H(HT A−HT WT D2

2R)‖2F
) ≤ 1

αr
‖HT ‖2F ‖A‖2F

=
k

αr
‖A‖2F



Proof: Since H is an orthogonal matrix, it follows that
‖H(HT A−HT WT D2

2R)‖2F = ‖HT A−HT WT D2
2R‖2F .

Then, the first inequality follows from lemma 3.1, by
observing that D2R consists of a few rows of A suitably
scaled and picked with probabilities proportional to
the square of their lengths; HT WT D2 consists of the
corresponding columns of A. Finally, we observe that
the columns of H are unit vectors and ‖HT ‖2F = k.

¦
The Frobenius norm bound in the following theorem

essentially comes from [11]. The 2-norm bound is new;
it nicely complements the Frobenius norm bound by
removing its dependency on k. Its proof may be found
in the Appendix.

Theorem 3.2. If H is defined as in equation 3.5, then,
for any c ≤ n,

E
(‖A−HHT A‖2F

) ≤ ‖A−Ak‖2F + 2

√
k

βc
‖A‖2F(3.6)

E
(|A−HHT A|22

) ≤ |A−Ak|22 +
2√
βc
‖A‖2F(3.7)

To prove equation 3.3 of Theorem 3.1, observe that
(from linearity of expectation)

E
(‖A− CUR‖2F

) ≤ E
(‖A−HHT A‖2F

)
+

+ E
(‖HHT A−HHT WT D2

2R‖2F
)

≤ ‖A−Ak‖2F + 2

√
k

βc
‖A‖2F

+ E
(‖HT A−HT WT D2

2R‖2F
)

≤ ‖A−Ak‖2F +

(√
4k
βc

+
k

αr

)
‖A‖2F

For the above derivation we used Theorem 3.2 and
lemma 3.2. Similarly, since | · |2 ≤ ‖ · ‖F ,

E
(|A− CUR|22

) ≤ E
(|A−HHT A|22

)

+ E
(‖HT A−HT WT D2

2R‖2F
)

≤ |A−Ak|22 +
(

2√
βc

+
k

αr

)
‖A‖2F

and equation 3.4 of Theorem 3.1 is proven as well (since
|A−Ak|22 = σ2

k+1(A) ≤ ‖A‖2F /(k + 1)).
¦

3.1 Sampling We prove that with the matrix pre-
sented in sparse unordered representation, all the sam-
pling necessary to compute C, R can be done in two
passes through the matrix. The following two lemmas
are simple technical claims.

Lemma 3.3. Suppose a1, a2, . . . an are n non-negative
reals which are read once in this order (streaming).
Then with O(s) additional storage, we can pick i.i.d.
samples i1, i2, . . . is ∈ {1, 2, . . . n} such that

Pr(it = i) =
ai∑n

j=1 aj
.

Proof: We argue that we can pick i1. The others can be
done by running s independent copies of this process.
To pick i1, suppose we have read a1, a2, . . . al so far and
have a sample i1 such that Pr(i1 = i) = ai/

∑l
j=1 aj

and also we keep the running sum
∑l

j=1 aj . On reading
al+1, we just replace the current i1 with l + 1 with
probability al+1/

∑l+1
j=1 aj . It is easy to see by induction

that this works.
¦

Lemma 3.4. In one pass, plus O(m + n) additional
storage, we can pick i.i.d. samples j1, j2, . . . jc drawn
according to probabilities for the columns {qj} satisfying
(3.2) and also pick i.i.d. samples i1, i2, . . . ir drawn
according to probabilities for the rows satisfying (3.1).

Proof: To pick i1 just pick (using the previous claim)
an entry (i, j) with probabilities proportional to their
squares and just take i1 = i. The other it and the jt are
also picked by running c + r independent experiments
simultaneously.

¦
In the second pass, we pick out the entries of the

matrices C and R; note that we know the scaling factors
since we know the probabilities with which we pick each
row and column. Since we have O(m+n) storage, these
can be explicitly computed as well as CT C. The running
time of the CUR algorithm, excluding the two passes
through A, is O(m).

3.2 Lower Bound The following lemma provides a
lower bound for matrix approximation:

Lemma 3.5. For any m,n positive integers, and 1 >
ε > 8√

n
+ 8√

m
, there exists a set of Ω(ε−n−m) m × n

matrices, such that

• Each matrix in the set has Frobenius norm ≤ 4.

• Each entry of each matrix in the set is an integer
multiple of ε/64

√
mn.

• For two distinct matrices A,A′ in the set, |A −
A′|2 ≥ ε/80.

The idea of the simple, but quite technical, proof
is to pick a “large” set of vectors u ∈ Rn such that
each u is of length almost exactly 1 and we have



|u − u′|, |u + u′| ≥ ε for each pair of distinct u, u′.
Similarly one picks a set of v ∈ Rm satisfying similar
conditions. Then we form all rank 1 matrices of the
form uvT and show that this class has the claimed
properties. The lemma supplies a lower bound, since
any algorithm which approximates these matrices must
output a different approximation to each one, requiring
it to output at least O((n + m) log(1/ε)) bits; this is
only a lower bound on the number of output bits.

Remark: random projections will not do; by the
lower bound, with o(m + n) description length, we can
only achieve an error bound of Ω(ε‖A‖F ). Assume
that we do a random projection of each row to an
s-dimensional space to get a matrix B; say that for
a particular unit length vector x its projection is x′.
Then, we only get that, with high probability, |A(i)x−
B(i)x

′| ≤ ε|A(i)|. Squaring and adding over all the rows,
|Ax−Bx′| ≤ ε‖A‖F holds with high probability for each
x. So, for most x ’ s the inequality holds. But this is
useless, since, for most x ’ s, we may have |Ax| ≤ ε‖A‖F .
The only x ’ s that are important are of small measure.

3.3 An alternative approach The results of this
section come from [1] (see also [6], [31]); our sole
contribution is the introduction of adaptive sampling
to improve their error bounds. Their idea is very
simple and appealing: given an m×n matrix A sample
elements of A; create an m × n matrix Ã by keeping
elements of A that are included in the sample (after
dividing them by the probability of being sampled).
The remaining elements of Ã are zeroed out; essentially,
Ã is a sparse version of A. Using an elegant result
of Furedi and Komlos (see [18]) one may prove that
A − Ã is small with respect to the 2-norm. Thus, one
could use a low rank approximation to Ã as a succinct
approximation to A. More specifically, if Ã = Ũ Σ̃Ṽ T ,
the succinct approximation to A is A′′ = ŨkΣ̃kṼ T

k for
some positive integer k; we can store A′′ in O(k(m+n))
space. We note that Ã is an m × n matrix, thus in
order to compute its SVD efficiently we employ the
Lanczos/Arnoldi techniques. The proof of the following
theorem is straight-forward using the results of [1] and a
bound on |A− Ã|2 if adaptive sampling is used (instead
of the uniform sampling of [1]).

Theorem 3.3. If Ãk is constructed as described above
(by including sm + sn elements of A in Ã), then, with
probability at least 1− (m + n)−1,

|A−A′′|22 ≤
(

1
k + 1

+
296
s

)
‖A‖2F

‖A−A′′‖2F ≤ ‖A−Ak‖2F + 8kσ2
k+1(A) +

392k

s
‖A‖2F

Remark: we assume that sm+sn elements of A are
included in Ã in order to easily compare A′ = CUR and
A′′. For the above theorem to hold certain assumptions
must be satisfied; for now we ignore them.

We now compare A′ and A′′ asymptotically, ignor-
ing the constants and the probabilities with which they
hold: the error bound of the element-wise sampling with
respect to the 2-norm is asymptotically better; more
specifically, for the CUR algorithm to achieve an er-
ror of ε‖A‖2F , one must set k = O(1/ε) and sample
O(1/ε2) rows and O(1/ε2) columns; element-wise sam-
pling achieves the same error by setting k = O(1/ε)
and picking O(1/ε) rows and columns. On the other
hand, the error bound of the CUR algorithm with re-
spect to the Frobenius norm is generally better, because
of the k · σ2

k+1(A) factor that appears in the element-
wise sampling error bound. Even worse, for matrices
such that σ2

k+1(A) ≈ ‖A‖2F /(k+1) (its maximum value)
we can easily see that the error of the element-wise ap-
proach is almost ‖A‖2F . Thus, the element-wise error
sampling lacks a general, useful error bound with re-
spect to the Frobenius norm; one must assume that the
singular values of A are dropping fast and, specifically,
that σ2

k+1(A) ¿ ‖A‖2F /(k + 1).
We also note that element-wise sampling (even

weighted) may be implemented in one pass using lemma
3.3, while CUR necessitates two passes through A.
On the other hand, to approximate the singular vec-
tors/values of Ã one needs to run Lanczos/Arnoldi al-
gorithms. In the analysis above, we assumed that these
algorithms returned exact results and converged fast;
still, their running time and accuracy depends on vari-
ous factors such as the choice of an initial random vector
and the spectral structure of the matrix.

4 The “pass-efficient” model

In this section we formulate a model of “out-of-core”
computation, which emphasizes the number of passes
through the data from disk (the data are not necessar-
ily a matrix); the algorithms of section 3 conform to
this model. The only access we assume to the data is
via a pass which is a sequential read of the entire input
from disk. The motivation behind our model is sim-
ple: in modern computers, the amount of disk storage
(sequential access memory) has increased enormously
while RAM and computing speeds have increased, but
at a substantially slower pace. Thus, we have the ability
to store very large amounts of data, but not in RAM.
Also, we do not have the ability to process this data
with algorithms which may take low polynomial time,
or even linear time with large constants. To model this
reality, we propose a model of computation in which
we allow a small number (for example 2) of passes (se-



quential reads) through the entire data plus sub-linear
computation time and Random Access Memory space;
algorithms that conform to the above model are called
pass-efficient.

This model assumes that the input data may only
be accessed by making passes through it; a pass consists
of one sequential read of the entire data plus additional
computation time of at most q units after each r bits
of data are read. The number r reflects the fact that
usually one reads whole blocks of data, not just one
bit. The quantity q is there for the following reason:
input/output operations (from out of core) take a lot
of cycles, so, if q is sufficiently small – compared to the
number of cycles needed to read in a block – then, with
a small increase to the running time, we can process the
block just read. We are not particularly interested in
the values of q and r, but the spirit is that a pass is just
one read of the data with a small amount of processing.
Note that since additional space is only sub-linear, we
really have to allow some processing during a pass, at
least to figure out which parts of the input to retain in
memory. Otherwise, since we cannot by far store all the
data read in a pass, the pass would just be wasted.

The algorithm is also allowed to use some com-
putation time and Random Access Memory space be-
sides the passes. These are required to be sub-linear –
sometimes substantially so; as an example, since a ma-
trix is an m = n2 stream, our CUR algorithm spends
O(
√

m) = O(n) time. We will measure three parame-
ters of the algorithm: the number of passes, additional
time and space. A model where the number of passes
was measured as a basic parameter was first used by
Munro and Paterson [32] in the special case of sort-
ing and selection algorithms; their definition of a pass
though allowed additional computation time of essen-
tially linear time, which, as argued here, is not practical
for our problems.

The “Streaming Model” (see [27], [4], [14]), on
which there is substantial work, allows only one pass
through the data and restricts the RAM usage to poly-
logarithmic amount of space. But the model formalized
in [14] allows poly-logarithmic time for processing after
reading each bit; so a pass for them is even more
generous than the model in [32]. The primary concern
of both these models is the additional space (RAM)
usage, rather than time. The restriction to one pass
in the streaming model allows processing vast amounts
of data supplied from other sources which we do not
have space to store at all, but which we can “leisurely”
look at from a read only 1-way tape taking super-linear
time (O(n) times poly-logarithmic) for the pass.

4.1 A 2-pass algorithm for approximating
MAX-CUT In this section, we sketch how in two
passes plus O(log n) additional time and RAM space,
we can find the value of the maximum cut in a graph
G(V, E) to additive error ε(|V | − `)2, where ` is chosen
so that the sum of the lowest ` degrees is ε|E|/2. This
algorithm will only use elementary ideas; essentially, we
pick vertices in the first pass with probabilities propor-
tional to the degrees (by picking a random edge); we will
then discard certain vertices of low degree and then do
some rejection sampling after which, we have a uniform
random sample from the high degree vertices. Here are
a few more details.

Let G({1, 2, . . . n}, E) be a graph. Let di be the
degree of the vertex i. We assume that each di ≤ ε|E|/4.
This is a mild assumption that no vertex has more
than an ε/4 fraction of all edges incident to it, which
is obviously true if for example, we have a super-linear
number of edges. For any f ∈ (0 , 1), define v(f) to be
the least positive integer such that

∑
i:di≤v(f) di ≥ f |E|

and let V (f) = {i : di ≤ v(f)}.
We pick i1, i2, . . . i3s all i.i.d. samples, where s will

be Ω(log n/poly(ε)) with Pr(it = i) = di/(2|E|) [by
picking a random edge] in the first pass; we also find
|E| exactly in the first pass. In the second pass, we
collect the induced graph on these 3s vertices and also
compute the degree of each of these 3s vertices in the
whole graph.

Define L, M to be the minimum positive integers
such that

|{t : 1 ≤ t ≤ s, dit ≤ L}| ≥ 2εs

|{t : 1 ≤ t ≤ s, dit ≤ M}| ≥ 5εs

We have that the probability of a single it falling in
V (ε) is equal to

∑
i∈V (ε) di/|E| which is between ε and

(5/4)ε. So using Hoeffding on Bernouli trials, we have
that with high probability:

|{i1, i2, . . . is} ∩ V (ε)| ≤ 1.5εs ⇒ L ≥ v(ε)
|{i1, i2, . . . is} ∩ V (3ε)| ≥ 2.5εs ⇒ L ≤ v(3ε).

Similarly, with high probability, v(4ε) ≤ M ≤ v(6ε).
Let W =

{
i : v(ε) ≤ di ≤ v(6ε) : di ≤ ε2|E|

2 log n|{j:dj≥di}|
}

.

∑

i∈W

di ≤ ε2|E| 1
2 log n

∑

i∈V (6ε)\V (ε)

(1/|{j : dj ≥ di}|)

≤ ε2

2 log n
|E|

(
n∑

i=1

1
i

)
≤ ε2|E|/2

Thus the probability that a particular it belongs to W is
at most ε2/2. Now, we use the second set of s samples.



Let P = {it : s + 1 ≤ t ≤ 2s, dit ∈ [L , M ]}. Pick
uniformly at random an element q of P . By the above,
with high probability, we have that q /∈ W .

Now, we use the third batch of s samples. For
each it, 2s + 1 ≤ t ≤ 3s, we independently do the
following: if dit < dq, then we set all entries in row
it and column it of our sampled sub-matrix to be zero.
Otherwise, we accept sample it with probability dq/dit .
Now we have that the acceptance probability of a sample
is

∑
i:di≥dq

(dqdi/di|E|) ≥ ε2/2 log n. Thus, with s =
Ω(log n/poly(ε)), we will have the required number of
poly(1/ε) samples surviving the rejection process for us
to appeal to the earlier results. Also a simple calculation
shows that these are samples drawn uniformly from
vertices of degree at least dq, so appealing to results
of say [23], we get the claimed algorithm.

5 Conclusions and Future Directions

We presented an algorithm that computes a succinct
approximation A′ to any m×n matrix A, s.t. A−A′ is
small with respect to both the 2-norm and the Frobenius
norm. The running time of the algorithm is O(m)
after two passes through A; essentially, each pass is a
sequential read of the elements of A. We should note
here that the O(m) time is spent in the computation of
U and, in particular, in the computation of C ′T C ′ (step
3 of the algorithm, see section 3); we can improve on
that by approximating C ′T C ′ by sampling a few columns
of C ′T (using the technique of [12], see lemma 3.1). One
can prove that the loss in accuracy is not significant,
thus we get a constant time algorithm; we defer its proof
to the full version.

In section 4.1 we presented an algorithm to approx-
imate the maximum cut using two passes through the
graph. Our algorithm returns meaningful error bounds
for a larger class of graphs than previous results; its
power stems from the adaptive sampling of vertices in
the second pass. We presented this algorithm in or-
der to illustrate the power of “pass-efficient” algorithms;
we are currently investigating how CUR approximation
(our main two pass algorithm) and its constant time
variant may be used to design efficient approximation
algorithms for all MAX-2-CSP problems. Our goal is
to efficiently approximate sparser instances of MAX-2-
CSP problems in constant time and space; we remind
the reader that there are efficient approximation algo-
rithms for dense instances for all MAX-2-CSP problems,
but almost nothing on sparse instances.

Finally, there are many interesting problems to in-
vestigate in the context of the model proposed in section
4; essentially problems investigated in the context of
the “streaming” model. We mention some that have re-
ceived significant attention in the recent years: approx-

imating frequency moments in data streams and lower
bounds (see [4, 14, 28]); estimating the symmetric differ-
ence of data streams with respect to p-norms, p ∈ (0, 2]
(see [14, 28, 33]); finding frequent or duplicate items
(see [4, 9, 8]); nearest and near-neighbor problems (see
[22, 26]); clustering data streams and histogram compu-
tation (see [25, 20, 7]); probabilistic counting in a data
stream – i.e. number of inversions, number of distinct
elements, etc. (see [2, 15, 19]; Fourier transforms (see
[21]). One might hope that with more than one passes
through the data more efficient and meaningful samples
of small size could be constructed and thus the poly-
logarithmic time spent in the “streaming” model could
be avoided.
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Appendix

Proof of lemma 3.1: Following the lines of [17] and
[12], we seek to bound E

(∑m,p
i,j=1 ((AB)ij − (SR)ij)

2
)
.

Fix attention on one particular i, j. For t = 1 . . . s

define the random variable wt =
(

A(it)B(it)

spit

)

ij

=

AiitBitj/spit . So, the wt’s are independent random
variables. Also, (SR)ij =

∑s
t=1 wt. Thus, its expec-

tation is equal to the sum of the expectations of the
wt’s. But, E (wt) =

∑n
k=1

AikBkj

spk
pk = 1

s (AB)ij . So,
E ((SR)ij) =

∑s
t=1 E (wt) = (AB)ij . Since (SR)ij is

the sum of s independent random variables, the vari-
ance of (SR)ij is the sum of the variances of these
variables. But, using Var(wt) = E

(
w2

t

) − E2(wt)

we see that Var(wt) =
∑n

k=1

A2
ikB2

kj

s2pk
− 1

s2 (AB)2ij ≤
∑n

k=1

A2
ikB2

kj

s2pk
. Thus, Var(SR)ij ≤ s

∑n
k=1

A2
ikB2

kj

s2pk
. Us-

ing E ((AB − SR)ij) = 0 and the lower bound for pk,

E
(‖AB − SR‖2F

)
=

m,p∑

i=1,j=1

E
(
(AB − SR)2ij

)

=
m,p∑

i=1,j=1

Var((SR)ij) =
1
s

n∑

k=1

1
pk

(
∑

i

A2
ik)(

∑

j

B2
kj)

=
1
s

n∑

k=1

1
pk
|A(k)|2|B(k)|2 ≤ ‖A‖2F

αs

n∑

k=1

(
|B(k)|

)2

=
1
αs
‖A‖2F ‖B‖2F



Proof of Theorem 3.2: We remind the reader
that h(t), t = 1, . . . , k denote the top k left singular
vectors of C and σt(C) the corresponding singular
values; since the h(t) are orthogonal, HT ·H = I, thus

‖A−HHT A‖2F = Tr
(
(AT −AT HHT )(A−HHT A)

)

= Tr(AT A)−Tr(AT HHT A)

= ‖A‖2F −
k∑

t=1

|AT h(t)|2(5.8)

Writing AAT and CCT both in a coordinate system
with h(1), . . . , h(k) as the top k coordinate vectors, we
see that h(t)T

(AAT − CCT )h(t) is the (t, t) entry of
AAT − CCT . So we have

k∑
t=1

(
h(t)T

(AAT − CCT )h(t)
)2

≤ ‖AAT − CCT ‖2F

or, equivalently (since CT h(t) = σt(C)h(t))

k∑
t=1

(
|AT h(t)|2 − σ2

t (C)
)2

≤ ‖AAT − CCT ‖2F

and, using the Cauchy-Schwartz inequality,

k∑
t=1

(
|AT h(t)|2 − σ2

t (C)
)
≥ −

√
k‖AAT − CCT ‖F(5.9)

Applying the Hoffman-Wielandt inequality (see [24]) on
the symmetric matrices AAT and CCT we see that

k∑
t=1

(σt(CCT )− σt(AAT ))2 =
k∑

t=1

(σ2
t (C)− σ2

t (A))2

≤ ‖AAT − CCT ‖2F
and, using the Cauchy-Schwartz inequality,

k∑
t=1

(
σ2

t (C)− σ2
t (A)

) ≥ −
√

k‖AAT − CCT ‖F(5.10)

Using lemma 3.2, we see that

E
(‖AAT − CCT ‖F

) ≤ (1/
√

βc)‖A‖2F(5.11)

Adding (5.9) and (5.10), we get

k∑
t=1

(
|AT h(t)|2 − σ2

t (A)
)
≥ −2

√
k‖AAT − CCT ‖F

Thus, using (5.11),

E

(
k∑

t=1

|AT h(t)|2
)
≥

k∑
t=1

σ2
t (A)− 2

√
k

βc
‖A‖2F

The Frobenius norm result of the first statement of the
theorem follows by substituting this result to (5.8), since
‖A−Ak‖2F = ‖A‖2F −

∑k
t=1 σ2

t (A).
In order to prove (3.7), let Hk = range(H) =

span
(
h(1), h(2), . . . , h(k)

)
. Let Hm−k be the orthogonal

complement of Hk in Rm:

‖A−HHT A‖2 = max
x∈Rm,|x|=1

|xT (A−HHT A)|

But, x can be expressed as a1 · y + a2 · z, such that
y ∈ Hk, z ∈ Hm−k, a1, a2 ∈ R and a2

1 + a2
2 = 1. Thus,

max
x∈Rm:|x|=1

(xT (A−HHT A) ≤

≤ max
y∈Hk:|y|=1

(|a1y
T (A−HHT A)|

+ max
z∈Hm−k:|z|=1

(|a2z
T (A−HHT A)|

≤ max
y∈Hk:|y|=1

(|yT (A−HHT A)|

+ max
z∈Hm−k:|z|=1

(|zT (A−HHT A)|

But, for any y ∈ Hk, yT HHT is equal to y. Thus, ∀y,
|yT (A−HHT A)| = |yT A−yT A| = 0. Similarly, for any
z ∈ Hm−k, zT HHT = 0. Thus, we are only seeking a
bound for maxz∈Hm−k

|zT A|. To that effect,

|zT A|2 = zT AAT z = zT (AAT − CCT )z + zT CCT z

≤ ‖AAT − CCT ‖F + σ2
k+1(C)

The maximum |zT C| over all z ∈ Hm−k appears when
z is equal to the k + 1 left singular vector of C. Thus,

|A−HHT A|22 ≤ σ2
k+1(C) + ‖AAT − CCT ‖2F

Now, AAT , CCT are symmetric matrices and a result of
perturbation theory (see [24]) states that |σk+1(AAT )−
σk+1(CCT )| ≤ |AAT − CCT |2. From lemma 3.1,
E

(‖AAT − CCT ‖F

) ≤ (1/
√

βc)‖A‖2F . Thus,

|σk+1(AAT )− σk+1(CCT )| = |σ2
k+1(A)− σ2

k+1(C)|
≤ 1√

βc
‖A‖2F

and the second statement of the theorem follows.


