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SAMPLING ALGORITHMS AND CORESETS FOR �p REGRESSION∗
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Abstract. The �p regression problem takes as input a matrix A ∈ R
n×d, a vector b ∈ R

n,
and a number p ∈ [1,∞), and it returns as output a number Z and a vector xopt ∈ R

d such that
Z = minx∈Rd ‖Ax− b‖p = ‖Axopt − b‖p. In this paper, we construct coresets and obtain an efficient
two-stage sampling-based approximation algorithm for the very overconstrained (n � d) version of
this classical problem, for all p ∈ [1,∞). The first stage of our algorithm nonuniformly samples
r̂1 = O(36pdmax{p/2+1,p}+1) rows of A and the corresponding elements of b, and then it solves the
�p regression problem on the sample; we prove this is an 8-approximation. The second stage of our
algorithm uses the output of the first stage to resample r̂1/ε2 constraints, and then it solves the
�p regression problem on the new sample; we prove this is a (1 + ε)-approximation. Our algorithm
unifies, improves upon, and extends the existing algorithms for special cases of �p regression, namely,
p = 1, 2 [K. L. Clarkson, in Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2005, pp. 257–266; P. Drineas, M. W. Mahoney,
and S. Muthukrishnan, in Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2006, pp. 1127–1136]. In the course of proving
our result, we develop two concepts—well-conditioned bases and subspace-preserving sampling—that
are of independent interest.
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1. Introduction. An important question in algorithmic theory is whether there
exists a small subset of the input such that if computations are performed only on
this subset, then the solution to the given problem can be approximated well. Such
a subset is often known as a coreset for the problem. The concept of coresets has
been extensively used in solving many problems in optimization and computational
geometry; e.g., see the excellent survey by Agarwal, Har-Peled, and Varadarajan [2].

In this paper, we construct coresets and obtain efficient sampling algorithms for
the classical �p regression problem, for all p ∈ [1,∞). Recall the �p regression problem.

Problem 1 (�p regression problem). Let ‖·‖p denote the p-norm of a vector.
Given as input a matrix A ∈ R

n×m, a target vector b ∈ R
n, and a real number

p ∈ [1,∞), find a vector xopt and a number Z such that

(1) Z = min
x∈Rm

‖Ax − b‖p = ‖Axopt − b‖p .

In this paper, we will use the following �p regression coreset concept.
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Definition 2 (�p regression coreset). Let 0 < ε < 1. A coreset for Problem 1
is a set of indices I such that the solution x̂opt to minx∈Rm ||Âx − b̂||p, where Â is
composed of those rows of A whose indices are in I and b̂ consists of the corresponding
elements of b, satisfies ‖Ax̂opt − b‖p ≤ (1 + ε)minx ‖Ax − b‖p.

If n � m, i.e., if there are many more constraints than variables, then (1) is
an overconstrained �p regression problem. In this case, there does not in general
exist a vector x such that Ax = b, and thus Z > 0. Overconstrained regression
problems are fundamental in statistical data analysis and have numerous applications
in applied mathematics, data mining, and machine learning [17, 10]. Even though
convex programming methods can be used to solve the overconstrained regression
problem in time O((mn)c) for c > 1, this is prohibitive if n is large.1 This raises
the natural question of developing more efficient algorithms that run in time O(mcn)
for c > 1, while possibly relaxing the solution to (1). In particular, can we get a κ-
approximation to the �p regression problem, i.e., a vector x̂ such that ‖Ax̂ − b‖p ≤ κZ,
where κ > 1? Note that a coreset of small size would strongly satisfy our requirements
and result in an efficiently computed solution that is almost as good as the optimal.
Thus, the question becomes: Do coresets exist for the �p regression problem, and if
so, can we compute them efficiently?

Our main result is an efficient two-stage sampling-based approximation algorithm
that constructs a coreset and thus achieves a (1+ε)-approximation for the �p regression
problem. The first stage of the algorithm is sufficient to obtain a (fixed) constant factor
approximation. The second stage of the algorithm carefully uses the output of the
first stage to construct a coreset and achieve arbitrary constant factor approximation.

1.1. Our contributions. Summary of results. For simplicity of presen-
tation, we summarize the results for the case of m = d = rank(A). Let k =
max{p/2+1, p}, and let φ(r, d) be the time required to solve an �p regression problem
with r constraints and d variables. In the first stage of the algorithm, we compute a
set of sampling probabilities p1, . . . , pn in time O(nd5 log n), sample r̂1 = O(36pdk+1)
rows of A and the corresponding elements of b according to the pi’s, and solve an �p

regression problem on the (much smaller) sample; we prove this is an 8-approximation
algorithm with a running time of O

(
nd5 log n + φ(r̂1, d)

)
. In the second stage of the

algorithm, we use the residual from the first stage to compute a new set of sampling
probabilities q1, . . . , qn, sample an additional r̂2 = O(r̂1/ε2) rows of A and the cor-
responding elements of b according to the qi’s, and solve an �p regression problem
on the (much smaller) sample; we prove this is a (1 + ε)-approximation algorithm
with a total running time of O

(
nd5 log n + φ(r̂2, d)

)
(section 4). We also show how

to extend our basic algorithm to commonly encountered and more general settings of
constrained, generalized, and weighted �p regression problems (section 5).

We note that the lp regression problem for p = 1, 2 has been studied before. For
p = 1, Clarkson [11] uses a subgradient-based algorithm to preprocess A and b and
then samples the rows of the modified problem; these elegant techniques, however,
depend crucially on the linear structure of the l1 regression problem.2 Furthermore,
this algorithm does not yield coresets. For p = 2, Drineas, Mahoney, and Muthukrish-
nan [13] construct coresets by exploiting the singular value decomposition, a property

1For the special case of p = 2, vector space methods can solve the regression problem in time
O(m2n), and if p = 1 or ∞, linear programming methods can be used.

2Two ingredients of [11] use the linear structure: the subgradient-based preprocessing itself and
the counting argument for the concentration bound.
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peculiar to the l2 space. Thus, in order to efficiently compute coresets for the �p

regression problem for all p ∈ [1,∞), we need tools that capture the geometry of lp-
norms. In this paper we develop the following two tools that may be of independent
interest (section 3).

(1) Well-conditioned bases. Informally speaking, if the the columns of matrix U
form a well-conditioned basis for a d-dimensional subspace of R

n, then for all z ∈ R
d,

‖z‖p should be close to ‖Uz‖p. We will formalize this by requiring3 that for all z ∈ R
d,

‖z‖q multiplicatively approximates ‖Uz‖p by a factor that can depend on d but is in-
dependent of n (where p and q are dual; i.e., 1

q + 1
p = 1). We show that these bases exist

and can be constructed in time O(nd5 log n). In fact, our notion of a well-conditioned
basis can be interpreted as a computational analogue of the Auerbach and Lewis bases
studied in functional analysis [28]. They are also related to the barycentric spanners
recently introduced by Awerbuch and R. Kleinberg [5] (section 3.1). J. Kleinberg and
Sandler [18] defined the notion of an �1-independent basis, and our well-conditioned
basis can be used to obtain an exponentially better “condition number” than their
construction. Further, Clarkson [11] defined the notion of an “�1-conditioned matrix,”
and he preprocessed the input matrix to an �1 regression problem so that it satisfies
conditions similar to those satisfied by our bases.

(2) Subspace-preserving sampling. We show that sampling rows of A according
to information in the rows of a well-conditioned basis of A minimizes the sampling
variance, and, consequently, the rank of A is not lost by sampling. This is critical
for our relative-error approximation guarantees. The notion of subspace-preserving
sampling was used in [13] for p = 2, but we abstract and generalize this concept for
all p ∈ [1,∞).

We note that for p = 2, our sampling complexity matches that of [13], which is
O(d2/ε2); and for p = 1, it improves that of [11] from O(d3.5(log d)/ε2) to O(d2.5/ε2).

Overview of our methods. Given an input matrix A, we first construct a
well-conditioned basis for A and use that to obtain bounds on a slightly nonstandard
notion of a p-norm condition number of a matrix. The use of this particular condition
number is crucial since the variance in the subspace-preserving sampling can be upper-
bounded in terms of it. An ε-net argument then shows that the first stage sampling
gives us an 8-approximation. The next twist is to use the output of the first stage as a
feedback to fine-tune the sampling probabilities. This is done so that the “positional
information” of b with respect to A is also preserved in addition to the subspace. A
more careful use of a different ε-net shows that the second stage sampling achieves a
(1 + ε)-approximation.

1.2. Related work. As mentioned earlier, in the course of providing a sampling-
based approximation algorithm for �1 regression, Clarkson [11] shows that coresets
exist and can be computed efficiently for a controlled �1 regression problem. Clarkson
first preprocesses the input matrix A to make it well conditioned with respect to the
�1-norm and then applies a subgradient-descent–based approximation algorithm to
guarantee that the �1-norm of the target vector is conveniently bounded. Coresets of
size O(d3.5 log d/ε2) are thereupon exhibited for this modified regression problem. For
the �2 case, Drineas, Mahoney, and Muthukrishnan [13] designed sampling strategies
to preserve the subspace information of A and proved the existence of a coreset of

3The requirement could equivalently be in terms of ‖z‖p, but the above form yields the tightest
dependence on d, since we plan to use Hölder’s inequality.
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rows of size O(d2/ε2), for the original �2 regression problem; this leads to a (1 + ε)-
approximation algorithm. Their algorithm used O(nd2) time to construct the coreset
and solve the �2 regression problem, which is sufficient time to solve the regression
problem without resorting to sampling. In a subsequent work, Sarlós [22] improved
the running time for the (1 + ε)-approximation to Õ(nd) by using random sketches
based on the fast Johnson–Lindenstrauss transform of Ailon and Chazelle [3].

More generally, embedding d-dimensional subspaces of Lp into �
f(d)
p using co-

ordinate restrictions has been extensively studied [21, 23, 8, 25, 26, 24]. Using well-
conditioned bases, one can provide a constructive analogue of Schechtman’s existential
L1 embedding result [23] (see also [8]) that any d-dimensional subspace of L1[0, 1] can
be embedded in �r

1 with distortion (1 + ε) with r = O(d2/ε2), albeit with an extra
factor of

√
d in the sampling complexity. Coresets have been analyzed by the com-

putational geometry community as a tool for efficiently approximating various extent
measures [1, 2]; see also [16, 6, 14] for applications of coresets in combinatorial opti-
mization. An important difference is that most of the coreset constructions are expo-
nential in dimension and thus applicable only to low-dimensional problems, whereas
our coresets are polynomial in dimension and thus applicable to high-dimensional
problems.

2. Preliminaries. Given a vector x ∈ R
m, its p-norm is ‖x‖p =

∑m
i=1(|xi|p)1/p,

and the dual norm of ‖·‖p is denoted ‖·‖q, where 1/p + 1/q = 1. Given a ma-
trix A ∈ R

n×m, its generalized p-norm is |||A|||p = (
∑n

i=1

∑m
j=1|Aij |p)1/p. This is a

submultiplicative matrix norm that generalizes the Frobenius norm from p = 2 to all
p ∈ [1,∞), but it is not a vector-induced matrix norm. The jth column of A is denoted
A�j , and the ith row is denoted Ai�. In this notation, |||A|||p = (

∑
j ‖A�j‖p

p)
1/p =

(
∑

i ‖Ai�‖p
p)

1/p. For x, x′, x′′ ∈ R
m, it can be shown using Hölder’s inequality that

‖x − x′‖p
p ≤ 2p−1(‖x − x′′‖p

p + ‖x′′ − x′‖p
p).

Two crucial ingredients in our proofs are ε-nets and tail inequalities. A subset
N (D) of a set D equipped with a metric ‖·‖ is called an ε-net in D for some ε > 0 if
for every x ∈ D there is a y ∈ N (D) with ‖x − y‖ ≤ ε. In order to construct an ε-net
for D it is enough to choose N (D) to be the maximal set of points that are pairwise
ε apart. It is well known that the unit ball of a d-dimensional space has an ε-net of
size at most (3/ε)d [8]. We will use the following version of the Bernstein’s inequality.

Theorem 3 (see [20, 7]). Let {Xi}n
i=1 be independent random variables with

E[X2
i ] < ∞ and Xi ≥ 0. Set Y =

∑
i Xi, and let γ > 0. Then

Pr [Y ≤ E[Y ] − γ] ≤ exp
( −γ2

2
∑

i E[X2
i ]

)
.(2)

If Xi − E[Xi] ≤ Δ for all i, then with σ2
i = E[X2

i ] − E[Xi]2 we have

Pr [Y ≥ E[Y ] + γ] ≤ exp
( −γ2

2
∑

i σ2
i + 2γΔ/3

)
.(3)

Finally, throughout this paper, we will use the following sampling matrix formal-
ism to represent our sampling operations. Given a set of n probabilities, pi ∈ (0, 1] for
i = 1, . . . , n, let S be an n×n diagonal sampling matrix such that Sii is set to 1/p

1/p
i

with probability pi and to zero otherwise. Clearly, premultiplying A or b by S deter-
mines whether the ith row of A and the corresponding element of b will be included
in the sample, and the expected number of rows/elements selected is r′ =

∑n
i=1 pi.
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(In what follows, we will abuse notation slightly by ignoring zeroed-out rows and
regarding S as an r′ × n matrix and thus SA as an r′ × m matrix.) Thus, e.g., sam-
pling constraints from (1) and solving the induced subproblem may be represented as
solving

(4) Ẑ = min
x̂∈Rm

‖SAx̂ − Sb‖p .

A vector x̂ is said to be a κ-approximation to the �p regression problem of (1) for
κ ≥ 1 if ‖Ax̂ − b‖p ≤ κZ.

3. Main technical ingredients.

3.1. Well-conditioned bases. We introduce the following notion of a “well-
conditioned” basis.

Definition 4 (well-conditioned basis). Let A be an n × m matrix of rank d,
let p ∈ [1,∞), and let q be its dual norm. Then an n × d matrix U is an (α, β, p)–
well-conditioned basis for the column space of A if the columns of U span the column
space of A and (1) |||U |||p ≤ α, and (2) for all z ∈ R

d, ‖z‖q ≤ β ‖Uz‖p. We will say
that U is a p–well-conditioned basis for the column space of A if α and β are dO(1),
independent of m and n.

Recall that any orthonormal basis U for span(A) satisfies both |||U |||2 = ‖U‖F =√
d and also ‖z‖2 = ‖Uz‖2 for all z ∈ R

d and thus is a (
√

d, 1, 2)–well-conditioned
basis. Thus, Definition 4 generalizes to an arbitrary p-norm for p ∈ [1,∞), the notion
that an orthogonal matrix is well conditioned with respect to the 2-norm. Observe
that the conditions are slightly different from those of the standard definition of a low-
distortion embedding for the following reason. If U is a low distortion embedding,
that is, if ‖z‖p /C ≤ ‖Uz‖p ≤ ‖z‖p for some C, then we can easily see that U is a
well-conditioned basis according to the above definition with α and β being CdO(1).
The reverse, however, does not hold. The well-conditioned basis definition above
is intended to capture the essence of what is required of a basis for our subspace-
sampling strategy to hold. Note also that duality is incorporated into Definition 4
since it relates the q-norm of the vector z ∈ R

d to the p-norm of the vector Uz ∈ R
n,

where p and q are dual4 (i.e., 1
q + 1

p = 1).
The existence and efficient construction of these bases are given by the following.
Theorem 5. Let A be an n × m matrix of rank d, let p ∈ [1,∞), and let q be

its dual norm. Then there exists an (α, β, p)–well-conditioned basis U for the column
space of A such that if p < 2, then α = d

1
p + 1

2 and β = 1; if p = 2, then α = d
1
2 and

β = 1; and if p > 2, then α = d
1
p + 1

2 and β = d
1
q− 1

2 . Moreover, U can be computed in
O(nmd + nd5 log n) time (or in just O(nmd) time if p = 2).

Proof. Let A = QR, where Q is any n × d matrix that is an orthonormal basis
for span(A) and R is a d × m matrix. If p = 2, then Q is the desired basis U ; from
the discussion following Definition 4, α =

√
d and β = 1, and computing the matrix

U requires O(nmd) time [15]. Otherwise, fix Q and p, and define the norm

‖z‖Q,p � ‖Qz‖p .

4For p = 2, Drineas, Mahoney, and Muthukrishnan used this basis, i.e., an orthonormal matrix,
to construct probabilities to sample the original matrix. For p = 1, Clarkson used a procedure similar
to the one we describe in the proof of Theorem 5 to preprocess A such that the 1-norm of z is a d

√
d

factor away from the 1-norm of Az.
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A quick check shows that ‖·‖Q,p is indeed a norm. (‖z‖Q,p = 0 if and only if z = 0
since Q has full column rank; ‖γz‖Q,p = ‖γQz‖p = |γ| ‖Qz‖p = |γ| ‖z‖Q,p; and
‖z + z′‖Q,p = ‖Q(z + z′)‖p ≤ ‖Qz‖p + ‖Qz′‖p = ‖z‖Q,p + ‖z′‖Q,p.)

Consider the set C = {z ∈ R
d : ‖z‖Q,p ≤ 1}, which is the unit ball of the norm

‖·‖Q,p. In addition, define the d× d matrix F such that Elj = {z ∈ R
d : zT Fz ≤ 1} is

the Löwner–John ellipsoid of C. Since C is symmetric about the origin, (1/
√

d)Elj ⊆
C ⊆ Elj; thus, for all z ∈ R

d,

(5) ‖z‖
lj
≤ ‖z‖Q,p ≤

√
d ‖z‖

lj
,

where ‖z‖2
lj

= zT Fz (see, e.g., [9, pp. 413–414]). Since the matrix F is symmetric
positive definite, we can express it as F = GT G, where G is full rank and upper
triangular. Since Q is an orthogonal basis for span(A) and G is a d× d matrix of full
rank, it follows that U = QG−1 is an n× d matrix that spans the column space of A.
Note that

A = QR = QG−1GR = Uτ,

where τ = GR. We claim that U = QG−1 is the desired p–well-conditioned basis.
To establish this claim, let z′ = Gz. Thus, ‖z‖2

lj
= zT Fz = zT GT Gz =

(Gz)T Gz = z′T z′ = ‖z′‖2
2. Furthermore, since G is invertible, z = G−1z′, and thus

‖z‖Q,p = ‖Qz‖p =
∥∥QG−1z′

∥∥
p

= ‖Uz′‖p. By combining these expressions with (5),
it follows that for all z′ ∈ R

d,

(6) ‖z′‖2 ≤ ‖Uz′‖p ≤
√

d ‖z′‖2 .

Since |||U |||pp =
∑

j ‖U�j‖p
p =

∑
j ‖Uej‖p

p ≤∑j d
p
2 ‖ej‖p

2 = d
p
2 +1, where the inequality

follows from the upper bound in (6), it follows that α = d
1
p + 1

2 . If p < 2, then q > 2
and ‖z‖q ≤ ‖z‖2 for all z ∈ R

d; by combining this with (6), it follows that β = 1. On

the other hand, if p > 2, then q < 2 and ‖z‖q ≤ d
1
q− 1

2 ‖z‖2; by combining this with

(6), it follows that β = d
1
q− 1

2 .
In order to construct U , we need to compute Q and G and then invert G. Our ma-

trix A can be decomposed into QR using the compact QR decomposition in O(nmd)
time [15]. The matrix F describing the Löwner–John ellipsoid of the unit ball of
‖·‖Q,p can be computed in O(nd5 log n) time [19]. Finally, computing G from F takes
O(d3) time, and inverting G takes O(d3) time.

It is an open question whether the discontinuity at p = 2 in Theorem 5 is inherent
in the structure of dual norms, or whether it is due to our inability to compute a better
set of well-conditioned bases.

Connection to barycentric spanners. A point set K = {K1, . . . , Kd} ⊆
D ⊆ R

d is a barycentric spanner for the set D if every z ∈ D may be expressed
as a linear combination of elements of K using coefficients in [−C, C] for C = 1.
When C > 1, K is called a C-approximate barycentric spanner. Barycentric spanners
were introduced by Awerbuch and R. Kleinberg in [5]. They showed that if a set is
compact, then it has a barycentric spanner. Our proof shows that if A is an n × d
matrix, then B = τ−1/

√
d = R−1G−1/

√
d ∈ R

d×d is a
√

d-approximate barycentric
spanner for D = {z ∈ R

d : ‖Az‖p ≤ 1}. To see this, first note that each B�j belongs
to D since ‖AB�j‖p = 1√

d
‖Uej‖p ≤ ‖ej‖2 = 1, where the inequality is obtained
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from (6). Moreover, since B spans R
d, we can write any z ∈ D as z = Bν. Thus,

ν = B−1z =
√

dτz. Hence,

‖ν‖∞ ≤ ‖ν‖2 ≤ ‖Uν‖p =
∥∥∥√dUτz

∥∥∥
p

=
√

d ‖Az‖p ≤
√

d,

where the second inequality is also obtained from (6). This shows that our basis has
the added property that every element z ∈ D can be expressed as a linear combination
of elements (or columns) of B using coefficients whose �2-norm is bounded by

√
d.

Connection to Auerbach bases. An Auerbach basis U = {U�j}d
j=1 for a

d-dimensional normed space A is a basis such that ‖U�j‖p = 1 for all j and such that
whenever y =

∑
j νjU�j is in the unit ball of A, then |νj | ≤ 1. The existence of such

a basis for every finite dimensional normed space was first proved by Auerbach [4]
(see also [12, 27]). It can easily be shown that an Auerbach basis is an (α, β, p)–well-
conditioned basis, with α = d and β = 1 for all p. Further, suppose U is an Auerbach
basis for span(A), where A is an n × d matrix of rank d. Writing A = Uτ , it follows
that τ−1 is an exact barycentric spanner for D = {z ∈ R

d : ‖Az‖p ≤ 1}. Specifically,
each τ−1

�j ∈ D since ‖Aτ−1
�j ‖p = ‖U�j‖p = 1. Now write z ∈ D as z = τ−1ν. Since

the vector y = Az = Uν is in the unit ball of span(A), we have |νj | ≤ 1 for all
1 ≤ j ≤ d. Therefore, computing a barycentric spanner for the compact set D—
which is the preimage of the unit ball of span(A)—is equivalent (up to polynomial
factors) to computing an Auerbach basis for span(A).

3.2. Subspace-preserving sampling. In the previous subsection (and in the
notation of the proof of Theorem 5), we saw that given p ∈ [1,∞), any n×m matrix
A of rank d can be decomposed as

A = QR = QG−1GR = Uτ,

where U = QG−1 is a p–well-conditioned basis for span(A) and τ = GR. The
significance of a p–well-conditioned basis is that we are able to minimize the variance
in our sampling process by randomly sampling rows of the matrix A and elements of
the vector b according to a probability distribution that depends on norms of the rows
of the matrix U . This will allow us to preserve the subspace structure of span(A) and
thus to achieve relative-error approximation guarantees.

More precisely, given p ∈ [1,∞) and any n × m matrix A of rank d decomposed
as A = Uτ , where U is an (α, β, p)–well-conditioned basis for span(A), consider any
set of sampling probabilities pi for i = 1, . . . , n that satisfy

pi ≥ min

{
1,

‖Ui�‖p
p

|||U |||pp r

}
,(7)

where r = r(α, β, p, d, ε) to be determined below. Let us randomly sample the ith row
of A with probability pi for all i = 1, . . . , n. Recall that we can construct a diagonal
sampling matrix S, where each Sii = 1/p

1/p
i with probability pi and 0 otherwise, in

which case we can represent the sampling operation as SA.
The following theorem is our main result regarding this subspace-preserving sam-

pling procedure.
Theorem 6. Let A be an n×m matrix of rank d, ε ≤ 1/7, and let p ∈ [1,∞). Let

U be an (α, β, p)–well-conditioned basis for span(A), and let us randomly sample rows
of A according to the procedure described above using the probability distribution given
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by (7), where r ≥ 16(2p + 2)(αβ)p(d ln(12
ε ) + ln(2

δ ))/(p2ε2). Then, with probability
1 − δ, the following holds for all x ∈ R

m:

| ‖SAx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p .

Proof. For simplicity of presentation, in this proof we will generally drop the
subscript from our matrix and vector p-norms; i.e., unsubscripted norms will be p-
norms. Note that it suffices to prove that, for all x ∈ R

m,

(8) (1 − ε)p ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)p ‖Ax‖p

with probability 1 − δ. To this end, fix a vector x ∈ R
m, define the random variable

Xi = (Sii|Ai�x|)p, and recall that Ai� = Ui�τ since A = Uτ . Clearly,
∑n

i=1 Xi =
‖SAx‖p. In addition, since E[Xi] = |Ai�x|p, it follows that

∑n
i=1 E[Xi] = ‖Ax‖p. To

bound (8), first note that

(9)
n∑

i=1

(Xi − E[Xi]) =
∑

i:pi<1

(Xi − E[Xi]) .

Equation (9) follows since, according to the definition of pi in (7), pi may equal
1 for some rows, and since these rows are always included in the random sample,
Xi = E[Xi] for these rows. To bound the right-hand side of (9), note that for all i
such that pi < 1,

|Ai�x|p /pi ≤ ‖Ui�‖p
p ‖τx‖p

q /pi (by Hölder’s inequality)

≤ |||U |||pp ‖τx‖p
q /r (by (7))

≤ (αβ)p ‖Ax‖p /r (by Definition 4 and Theorem 5).(10)

From (10) it follows that for each i such that pi < 1,

Xi − E[Xi] ≤ Xi ≤ |Ai�x|p/pi ≤ (αβ)p ‖Ax‖p
/r.

Thus, we may define Δ = (αβ)p ‖Ax‖p
/r. In addition, it also follows from (10) that∑

i:pi<1

E
[
X2

i

]
=
∑

i:pi<1

|Ai�x|p |Ai�x|p
pi

≤ (αβ)p ‖Ax‖p

r

∑
i:pi<1

|Ai�x|p (by (10))

≤ (αβ)p ‖Ax‖2p
/r,

from which it follows that
∑

i:pi<1 σ2
i =

∑
i:pi<1 E

[
X2

i

]−(E[Xi])2 ≤∑i:pi<1 E
[
X2

i

] ≤
(αβ)p ‖Ax‖2p

/r.
To apply the upper tail bound in Theorem 3, define γ = ((1 + ε/4)p − 1) ‖Ax‖p.

It follows that γ2 ≥ (pε/4)2 ‖Ax‖2p and also that

2
∑

i:pi<1

σ2
i + 2γΔ/3 ≤ 2(αβ)p ‖Ax‖2p

/r + 2((1 + ε/4)p − 1)(αβ)p ‖Ax‖2p
/3r

≤
(

2
3

(
5
4

)p

+
4
3

)
(αβ)p ‖Ax‖2p

/r

≤ (2p + 2)(αβ)p ‖Ax‖2p
/r,
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where the second inequality follows by standard manipulations since ε ≤ 1 and since
p ≥ 1. Thus, by (3) of Theorem 3, it follows that

Pr [‖SAx‖p
> ‖Ax‖p + γ] = Pr

⎡⎣ ∑
i:pi<1

Xi > E

⎡⎣ ∑
i:pi<1

Xi

⎤⎦+ γ

⎤⎦
≤ exp

(
−γ2

2
∑

i:pi<1 σ2
i + 2γΔ/3

)

≤ exp
( −ε2p2r

16(2p + 2)(αβ)p

)
.

Similarly, to apply the lower tail bound of (2) of Theorem 3, define γ = (1 − (1 −
ε/4)p) ‖Ax‖p. Since γ ≥ ε ‖Ax‖p

/4, we can follow a similar line of reasoning to show
that

Pr [‖SAx‖p
< ‖Ax‖p − γ] ≤ exp

(
−γ2

2
∑

i:pi<1 σ2
i

)

≤ exp
( −ε2r

32(αβ)p

)
.

Choosing r ≥ 16(2p + 2)(αβ)p(d ln(12
ε ) + ln(2

δ ))/(p2ε2), we get that for every fixed x,

the following is true with probability at least 1 − ( ε
12

)d
δ:

(1 − ε/4)p ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε/4)p ‖Ax‖p
.

Now, consider the ball B = {y ∈ R
n : y = Ax, ‖y‖ ≤ 1}, and consider an ε-net

for B, with ε = ε/4. The number of points in the ε-net is
(

12
ε

)d. Thus, by the union
bound, with probability 1− δ, (8) holds for all points in the ε-net. Now, to show that
with the same probability (8) holds for all points y ∈ B, let y∗ ∈ B be such that
|‖Sy‖ − ‖y‖| is maximized, and let η = sup{|‖Sy‖ − ‖y‖| : y ∈ B}. Also, let y∗

ε ∈ B
be the point in the ε-net that is closest to y∗. By the triangle inequality,

η = |‖Sy∗‖ − ‖y∗‖| = |‖Sy∗
ε + S(y∗ − y∗

ε)‖ − ‖y∗
ε + (y∗ − y∗

ε)‖|
≤ |‖Sy∗

ε‖ + ‖S(y∗ − y∗
ε)‖ − ‖y∗

ε‖ + 2 ‖y∗ − y∗
ε‖ − ‖y∗ − y∗

ε‖|
≤ |‖Sy∗

ε‖ − ‖y∗
ε‖| + |‖S(y∗ − y∗

ε)‖ − ‖y∗ − y∗
ε‖| + 2 ‖y∗ − y∗

ε‖
≤ ε/4 ‖y∗

ε‖ + εη/4 + ε/2,

where the last inequality follows since ‖y∗ − y∗
ε‖ ≤ ε, (y∗ − y∗

ε)/ε ∈ B, and

|‖S(y∗ − y∗
ε)/ε‖ − ‖(y∗ − y∗

ε)/ε‖| ≤ η.

Therefore, η ≤ ε since ‖y∗
ε‖ ≤ 1 and since we assume ε ≤ 1/7. Thus, (8) holds for

all points y ∈ B, with probability at least 1 − δ. Similarly, it holds for any y ∈ R
n

such that y = Ax, since y/ ‖y‖ ∈ B and since ‖S(y/ ‖y‖) − y/ ‖y‖‖ ≤ ε implies that
‖Sy − y‖ ≤ ε ‖y‖, which completes the proof of the theorem.

Several things should be noted about this result. First, it implies that rank(SA) =
rank(A), since otherwise we could choose a vector x ∈ null(SA) and violate the
theorem. In this sense, this theorem generalizes the subspace-preservation result of
Lemma 4.1 of [13] to all p ∈ [1,∞). Second, regarding sampling complexity: if
p < 2 the sampling complexity is O(d

p
2 +2), if p = 2 it is O(d2), and if p > 2 it is

O(d(d
1
p + 1

2 d
1
q − 1

2 )p) = O(dp+1). Finally, note that this theorem is analogous to the
main result of Schechtman [23], which uses the notion of Auerbach bases.
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4. The sampling algorithm.

4.1. Statement of our main algorithm and theorem. Our main sampling
algorithm for approximating the solution to the �p regression problem is presented
in Figure 1. The algorithm takes as input an n × m matrix A of rank d, a vector
b ∈ R

n, and a number p ∈ [1,∞). It is a two-stage algorithm that returns as output
a vector x̂opt ∈ R

m (or a vector x̂c ∈ R
m if only the first stage is run). In either case,

the output is the solution to the induced �p regression subproblem constructed on the
randomly sampled constraints. Note that the set of constraints r2 extracted by the
second stage of the algorithm is a coreset for the �p regression problem.

Input: An n × m matrix A of rank d, a vector b ∈ R
n, and p ∈ [1,∞).

Let 0 < ε < 1/7, and define k = max{p/2 + 1, p}.
- Find a p–well-conditioned basis U ∈ R

n×d for span(A) (as in the proof of Theorem 5).

- Stage 1: Define pi = min{1,
‖Ui�‖p

p

|||U|||pp r1}, where r1 = 16(2p + 2)dk (d ln(8 · 12) + ln(200)) .

- Generate (implicitly) S where Sii = 1/p
1/p
i with probability pi and 0 otherwise.

- Let x̂c be the solution to minx∈Rm ‖S(Ax − b)‖p.

- Stage 2: Let ρ̂ = Ax̂c − b, and unless ρ̂ = 0, define qi = min{1, max{pi,
|ρ̂i|p
‖ρ̂‖p

p
r2}} with

r2 = 150·24pdk

ε2

(
d ln( 280

ε
) + ln(200)

)
.

- Generate (implicitly, a new) T where Tii = 1/q
1/p
i with probability qi and 0 other-

wise.
- Let x̂opt be the solution to minx∈Rm ‖T (Ax − b)‖p.

Output: x̂opt (or x̂c if only the first stage is run).

Fig. 1. Sampling algorithm for �p regression.

The algorithm first computes a p–well-conditioned basis U for span(A), as de-
scribed in the proof of Theorem 5. Then, in the first stage, the algorithm uses in-
formation from the norms of the rows of U to sample constraints from the input �p

regression problem. In particular, roughly O(dp+1) rows of A, and the corresponding
elements of b, are randomly sampled according to the probability distribution given
by

pi = min

{
1,

‖Ui�‖p
p

|||U |||pp r1

}
, where r1 = 16(2p + 2)dk (d ln(8 · 12) + ln(200)) ,(11)

implicitly represented by a diagonal sampling matrix S, where each Sii = 1/p
1/p
i .

For the remainder of the paper, we will use S to denote the sampling matrix for the
first-stage sampling probabilities. The algorithm then solves, using any �p solver of
one’s choice, the smaller subproblem. If the solution to the induced subproblem is
denoted x̂c, then, as we will see in Theorem 7, this is an 8-approximation to the
original problem.5

In the second stage, the algorithm uses information from the residual of the 8-
approximation computed in the first stage to refine the sampling probabilities. Define

5For p = 2, Drineas, Mahoney, and Muthukrishnan show that this first stage actually leads to a
(1+ε)-approximation. For p = 1, Clarkson develops a subgradient-based algorithm and runs it, after
preprocessing the input, on all the input constraints to obtain a constant factor approximation in a
stage analogous to our first stage. Here, however, we solve an �p regression problem on a small subset
of the constraints to obtain the constant factor approximation. Moreover, our procedure works for
all p ∈ [1,∞).
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the residual ρ̂ = Ax̂c − b (and note that ‖ρ̂‖p ≤ 8Z). Then, roughly O(dp+1/ε2) rows
of A, and the corresponding elements of b, are randomly sampled according to the
probability distribution

qi = min
{

1, max
{

pi,
|ρ̂i|p
‖ρ̂‖p

p
r2

}}
, where r2 =

150 · 24pdk

ε2

(
d ln

(
280
ε

)
+ ln(200)

)
.

(12)

As before, this can be represented as a diagonal sampling matrix T , where each Tii =
1/q

1/p
i with probability qi and 0 otherwise. For the remainder of the paper, we will use

T to denote the sampling matrix for the second-stage sampling probabilities. Again,
the algorithm solves, using any �p solver of one’s choice, the smaller subproblem. If
the solution to the induced subproblem at the second stage is denoted x̂opt, then, as
we will see in Theorem 7, this is a (1 + ε)-approximation to the original problem.6

The following is our main theorem for the �p regression algorithm presented in
Figure 1 showing that coresets exist for the �p regression problem and can be efficiently
constructed.

Theorem 7. Let A be an n×m matrix of rank d, let b ∈ R
n, let p ∈ [1,∞), and

let k = max{p/2+1, p}. Recall that ε ≤ 1/7, r1 = 16(2p +2)dk (d ln(8 · 12) + ln(200)),
and r2 = 150·24pdk

ε2

(
d ln(280

ε ) + ln(200)
)
. Then the following hold.

• Constant factor approximation. If only the first stage of the algorithm in
Figure 1 is run, then with probability at least 0.6 the solution x̂c to the sampled
problem based on the pi’s of (7) is an 8-approximation to the �p regression
problem.

• Relative-error approximation. If both stages of the algorithm are run, then
with probability at least 0.5 the solution x̂opt to the sampled problem based on
the qi’s of (12) is a (1 + ε)-approximation to the �p regression problem.

• Running time. The ith stage of the algorithm runs in time O(nmd+nd5 log n+
φ(20iri, m)), where φ(s, t) is the time taken to solve the regression problem
minx∈Rt ‖A′x − b′‖p, where A′ ∈ R

s×t is of rank d and b′ ∈ R
s.

Note that since the algorithm of Figure 1 constructs the (α, β, p)–well-conditioned
basis U using the procedure in the proof of Theorem 5, our sampling complexity
depends on α and β. In particular, it will be O(d(αβ)p). Thus, if p < 2, our sampling
complexity is O(d · d

p
2 +1) = O(d

p
2 +2); if p > 2, it is O(d(d

1
p + 1

2 d
1
q − 1

2 )p) = O(dp+1);
and (although not explicitly stated, our proof will make it clear that) if p = 2, it
is O(d2). Note also that we have stated the claims of the theorem as holding with
constant probability, but they can be shown to hold with probability at least 1− δ by
using standard amplification techniques.

4.2. Proof for first-stage sampling: Constant factor approximation. To
prove the claims of Theorem 7 having to do with the output of the algorithm after
the first stage of sampling, we begin with two lemmas. First note that, because of
our choice of r1, we can use the subspace-preserving Theorem 6 with only a constant
distortion ε = 1

8 and δ = 1
100 ; i.e., for all x, we have

7
8
‖Ax‖p ≤ ‖SAx‖p ≤ 9

8
‖Ax‖p(13)

6The subspace-based sampling probabilities (11) are similar to those used by Drineas, Mahoney,
and Muthukrishnan [13], while the residual-based sampling probabilities (12) are similar to those
used by Clarkson [11].
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with probability at least 0.99. The first lemma below now states that the optimal
solution to the original problem provides a small (constant factor) residual when
evaluated in the sampled problem.

For simplicity of notation, we again drop the p-subscript from the norm notation,
except where it might become confusing.

Lemma 8. ‖S(Axopt − b)‖ ≤ 3Z, with probability at least 1 − 1/3p.
Proof. Define Xi = (Sii|Ai�xopt−bi|)p. Thus,

∑
i Xi = ‖S(Axopt − b)‖p, and the

first moment is E[
∑

i Xi] = ‖Axopt − b‖p = Z. The lemma follows since, by Markov’s
inequality,

Pr

[∑
i

Xi > 3pE

[∑
i

Xi

]]
≤ 1

3p
;

i.e., ‖S(Axopt − b)‖p
> 3p ‖Axopt − b‖p with probability no more than 1/3p.

The next lemma states that if the solution to the sampled problem provides a
constant factor approximation (when evaluated in the sampled problem), then when
this solution is evaluated in the original regression problem we get a (slightly weaker)
constant factor approximation.

Lemma 9. If ‖S(Ax̂c − b)‖ ≤ 3Z, then with probability 0.99, ‖Ax̂c − b‖ ≤ 8Z.
Proof. We will prove the contrapositive: If ‖Ax̂c − b‖ > 8Z, then ‖S(Ax̂c − b)‖ >

3Z. To do so, note that, by Theorem 6 and the choice of r1, we have that, with
probability 0.99,

7
8
‖Ax‖p ≤ ‖SAx‖p ≤ 9

8
‖Ax‖p .

Using this,

‖S(Ax̂c − b)‖ ≥ ‖SA(x̂c − xopt)‖ − ‖S(Axopt − b)‖ (by the triangle inequality)

≥ 7
8
‖Ax̂c − Axopt‖ − 3Z (by Theorem 6 and Lemma 8)

≥ 7
8

(‖Ax̂c − b‖ − ‖Axopt − b‖) − 3Z (by the triangle inequality)

>
7
8

(8Z − Z) − 3Z (by the premise ‖Ax̂c − b‖ > 8Z)

> 3Z,

which establishes the lemma.
Clearly, ‖S(Ax̂c − b)‖ ≤ ‖S(Axopt − b)‖ (since x̂c is an optimum for the sampled

�p regression problem). Combining this with Lemmas 8 and 9, it follows that the
solution x̂c to the sampled problem based on the pi’s of (7) satisfies ‖Ax̂c − b‖ ≤ 8Z;
i.e., x̂c is an 8-approximation to the original Z.

To conclude the proof of the claims for the first stage of sampling, note that by
our choice of r1, Theorem 6 fails to hold for our first-stage sampling with probability
no greater than 1/100. In addition, the inequality in Lemma 8 fails to hold with
probability no greater than 1/3p, which is no greater than 1/3 for all p ∈ [1,∞).
Finally, let r̂1 be a random variable representing the number of rows chosen by our
sampling scheme, and note that E[r̂1] ≤ r1. By Markov’s inequality, it follows that
r̂1 > 20r1 with probability less than 1/20. Thus, the first stage of our algorithm fails
to give an 8-approximation in the specified running time with a probability bounded
by 1/3 + 1/20 + 1/100 < 2/5.
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4.3. Proof for second-stage sampling: Relative-error approximation.
The proof of the claims of Theorem 7 having to do with the output of the algorithm
after the second stage of sampling will parallel that for the first stage, but it will have
several technical complexities that arise since the first triangle inequality approxima-
tion in the proof of Lemma 9 is too coarse for relative-error approximation. By our
construction, since qi ≥ pi, we have a finer result for subspace preservation. Thus,
applying Theorem 6 with δ = 1

100 , and a constant ε < 1
8 , with probability 0.99, the

following holds for all x:

(1 − ε) ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε) ‖Ax‖p .(14)

As before, we start with a lemma that states that the optimal solution to the original
problem provides a small (now a relative-error) residual when evaluated in the sampled
problem. This is the analogue of Lemma 8. An important difference is that the
second-stage sampling probabilities significantly enhance the probability of success.

Lemma 10. ‖T (Axopt − b)‖ ≤ (1 + ε)Z with probability at least 0.99.
Proof. Define the random variable Xi = (Tii|Ai�xopt−bi|)p, and recall that Ai� =

Ui�τ since A = Uτ . Clearly,
∑n

i=1 Xi = ‖T (Axopt − b)‖p. In addition, since E[Xi] =
|Ai�xopt − bi|p, it follows that

∑n
i=1 E[Xi] = ‖Axopt − b‖p. We will use (3) of Theo-

rem 3 to provide a bound for
∑

i (Xi − E[Xi]) = ‖T (Axopt − b)‖p − ‖Axopt − b‖p.
From the definition of qi in (12), it follows that for some of the rows, qi may

equal 1 (just as in the proof of Theorem 6). Since Xi = E[Xi] for these rows,∑
i (Xi − E[Xi]) =

∑
i:qi<1 (Xi − E[Xi]), and thus we will bound this latter quantity

with (3). To do so, we must first provide a bound for Xi − E[Xi] ≤ Xi and for∑
i:qi<1 σ2

i ≤∑i E
[
X2

i

]
. To that end, note that

|Ai�(xopt − x̂c)| ≤ ‖Ui�‖p ‖τ(xopt − x̂c)‖q (by Hölders inequality)
≤ ‖Ui�‖p β ‖Uτ(xopt − x̂c)‖p (by Definition 4 and Theorem 5)
≤ ‖Ui�‖p β (‖Axopt − b‖ + ‖Ax̂c − b‖) (by the triangle inequality)
≤ ‖Ui�‖p β9Z,(15)

where the final inequality follows from the definition of Z and the results from the
first stage of sampling. Next, note that from the conditions on the probabilities qi in
(12), as well as by Definition 4 and the output of the first stage of sampling, it follows
that

(16)
|ρ̂i|p
qi

≤ ‖ρ̂‖p

r2
≤ 8pZp

r2
and

‖Ui�‖p

qi
≤ |||U |||p

r2
≤ αp

r2

for all i such that qi < 1.
Thus, since Xi − E[Xi] ≤ Xi ≤ |Ai�xopt − bi|p/qi, it follows that for all i such

that qi < 1,

Xi − E[Xi] ≤ 2p−1

qi
(|Ai�(xopt − x̂c)|p + |ρ̂i|p) (since ρ̂ = Ax̂c − b )(17)

≤ 2p−1

(
‖Ui�‖p

p βp9pZp

qi
+

|ρ̂i|p
qi

)
(by (15))

≤ 2p−1 (αpβp9pZp + 8pZp) /r2 (by (16))
≤ cp(αβ)pZp/r2,(18)
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where we set cp = 2p−1(9p + 8p) ≤ 18p. Thus, we may define Δ = cp(αβ)pZp/r2. In
addition, it follows that∑

i:qi<1

E
[
X2

i

]
=

∑
i:qi<1

|Ai�xopt − bi|p |Ai�xopt − bi|p
qi

≤ Δ
∑

i

|Ai�xopt − bi|p (by (18))

≤ cp(αβ)pZ2p/r2.(19)

To apply the upper tail bound of (3) of Theorem 3, define γ = ((1 + ε)p − 1)Zp. We
have γ ≥ pεZp, and since ε ≤ 1/7, we also have γ ≤ (( 8

7

)p − 1
)Zp. Hence, by (3) of

Theorem 3, it follows that

ln Pr [‖T (Axopt − b)‖p
> ‖Axopt − b‖p + γ] ≤ −γ2

2
∑

i:qi<1 σ2
i + 2γΔ/3

≤ −p2ε2r2(
2cp + 2cp

3

((
8
7

)p − 1
))

(αβ)p

≤ −p2ε2r2

3 · 18p(αβ)p
.

Thus, Pr [‖T (Axopt − b)‖ > (1 + ε)Z] ≤ exp( −p2ε2r2
3·18p(αβ)p ), from which the lemma fol-

lows by our choice of r2.
Next we show that if the solution to the sampled problem provides a relative-error

approximation (when evaluated in the sampled problem), then when this solution is
evaluated in the original regression problem we get a (slightly weaker) relative-error
approximation. We first establish two technical lemmas.

The following lemma says that for all optimal solutions x̂opt to the second-stage
sampled problem, Ax̂opt is not too far from Ax̂c, where x̂c is the optimal solution
from the first stage, in a p-norm sense. Hence, the lemma will allow us to restrict our
calculations in Lemmas 12 and 13 to the ball of radius 12Z centered at Ax̂c.

Lemma 11. ‖Ax̂opt − Ax̂c‖ ≤ 12Z with probability 0.98.
Proof. With probability 0.98, both the inequalities in Lemma 9 and condition (14)

hold true. By two applications of the triangle inequality, it follows that

‖Ax̂opt − Ax̂c‖ ≤ ‖Ax̂opt − Axopt‖ + ‖Axopt − b‖ + ‖Ax̂c − b‖
≤ ‖Ax̂opt − Axopt‖ + 9Z,

where the second inequality follows since ‖Ax̂c − b‖ ≤ 8Z from the first stage of
sampling and since Z = ‖Axopt − b‖. In addition, we have that

‖Axopt − Ax̂opt‖ ≤ 1
(1 − ε)

‖T (Ax̂opt − Axopt)‖ (by Theorem 6)

≤ (1 + 2ε) (‖T (Ax̂opt − b)‖ + ‖T (Axopt − b)‖)
(by the triangle inequality)

≤ 2(1 + 2ε) ‖T (Axopt − b)‖
≤ 2(1 + 2ε)(1 + ε) ‖Axopt − b‖ (by Lemma 10) ,

where the third inequality follows since x̂opt is optimal for the sampled problem. The
lemma follows since ε ≤ 1/8.
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Thus, if we define the affine ball of radius 12Z that is centered at Ax̂c and that
lies in span(A),

(20) B = {y ∈ R
n : y = Ax, x ∈ R

m, ‖Ax̂c − y‖ ≤ 12Z},

then Lemma 11 states that Ax̂opt ∈ B for all optimal solutions x̂opt to the sampled
problem. Let us consider an ε-net, and call it Bε with ε = εZ for this ball B. Using
arguments from [8], since B is a ball in a d-dimensional subspace, the size of the
ε-net is

(
3·12Z

εZ
)d

=
(

36
ε

)d. The next lemma states that for all points in the ε-net,
if that point provides a relative-error approximation (when evaluated in the sampled
problem), then when this point is evaluated in the original regression problem we get
a (slightly weaker) relative-error approximation.

Lemma 12. For all points Axε in the ε-net, Bε, if ‖T (Axε − b)‖ ≤ (1 + 3ε)Z,
then ‖Axε − b‖ ≤ (1 + 6ε)Z with probability 0.99.

Proof. Fix a given point y∗
ε = Ax∗

ε ∈ Bε. We will prove the contrapositive for this
point; i.e., we will prove that if ‖Ax∗

ε − b‖ > (1+6ε)Z, then ‖T (Ax∗
ε − b)‖ > (1+3ε)Z

with probability at least 1 − 1
100

(
ε
36

)d. The lemma will then follow from the union
bound.

To this end, define the random variable Xi = (Tii|Ai�x
∗
ε − bi|)p, and recall

that Ai� = Ui�τ since A = Uτ . Clearly,
∑n

i=1 Xi = ‖T (Ax∗
ε − b)‖p. In addition,

since E[Xi] = |Ai�x
∗
ε − bi|p, it follows that

∑n
i=1 E[Xi] = ‖Ax∗

ε − b‖p. We will use
(2) of Theorem 3 to provide an upper bound for the probability of the event that
‖T (Ax∗

ε − b)‖p ≤ ‖Ax∗
ε − b‖p − γ, where γ = ‖Ax∗

ε − b‖p − (1 + 3ε)pZp, under the
assumption that ‖Ax∗

ε − b‖ > (1 + 6ε)Z.

From the definition of qi in (12), it follows that for some of the rows, qi may
equal 1 (just as in the proof of Theorem 6). Since Xi = E[Xi] for these rows,∑

i (Xi − E[Xi]) =
∑

i:pi<1 (Xi − E[Xi]), and thus we will bound this latter quantity
with (2). To do so, we must first provide a bound for

∑
i:qi<1 E

[
X2

i

]
. To that end,

note that

|Ai�(x∗
ε − x̂c)| = |Ui�τ(x∗

ε − x̂c)|
≤ ‖Ui�‖p ‖τ(x∗

ε − x̂c)‖q (by Hölders inequality)(21)

≤ ‖Ui�‖p β ‖Uτ(x∗
ε − x̂c)‖p (by Definition 4 and Theorem 5)

≤ ‖Ui�‖β12Z,(22)

where the final inequality follows from the radius of the high-dimensional ball in which
the ε-net resides. From this, we can show that

|Ai�x
∗
ε − bi|
qi

≤ 2p−1

qi
(|Ai�x

∗
ε − Ai�x̂c|p + |ρ̂i|p) (since ρ̂ = Ax̂c − b )

≤ 2p−1

(‖Ui�‖p 12pβpZp

qi
+

|ρ̂i|p
qi

)
(by (22))

≤ 2p−1 (αp12pβpZp + 8pZp) /r2 (by (16))
≤ 24p(αβ)pZp/r2.(23)



SAMPLING ALGORITHMS AND CORESETS FOR �p REGRESSION 2075

Therefore, we have that

∑
i:qi<1

E
[
X2

i

]
=

∑
i:qi<1

|Ai�x
∗
ε − bi|p |Ai�x

∗
ε − bi|p
qi

≤ 24p(αβ)pZp

r2

∑
i

|Ai�x
∗
ε − bi|p (by (23))

≤ 24p(αβ)p ‖Ax∗
ε − b‖2p /r2.(24)

To apply the lower tail bound of (2) of Theorem 3, define γ = ‖Ax∗
ε − b‖p−(1+3ε)pZp.

Thus, by (24) and by (2) of Theorem 3 it follows that

ln[‖T (Ax∗
ε − b)‖p ≤ (1 + 3ε)pZp]

≤ −r2(‖Ax∗
ε − b‖p − (1 + 3ε)pZp)2

24p(αβ)p ‖Ax∗
ε − b‖2p

≤ −r2

24p(αβ)p

(
1 − (1 + 3ε)pZp

‖Ax∗
ε − b‖p

)2

<
−r2

24p(αβ)p

(
1 − (1 + 3ε)pZp

(1 + 6ε)pZp

)2

(by the premise)

≤ −r2ε
2

24p(αβ)p
.

The last line can be justified by the fact that (1 + 3ε)/(1 + 6ε) ≤ 1 − ε since ε ≤ 1/3,
and that (1 − ε)p is maximized at p = 1. Since r2 ≥ 24p(αβ)p(d ln(36

ε ) + ln(200))/ε2,

it follows that ‖T (Ax∗
ε − b)‖ ≤ (1 + 3ε)Z with probability no greater than 1

200

(
ε
36

)d.
Since there are no more than

(
36
ε

)d such points in the ε-net, the lemma follows by
the union bound.

Finally, the next lemma states that if the solution to the sampled problem (in the
second stage of sampling) provides a relative-error approximation (when evaluated in
the sampled problem), then when this solution is evaluated in the original regression
problem we get a (slightly weaker) relative-error approximation. This is the analogue
of Lemma 9, and its proof will use Lemma 12.

Lemma 13. If ‖T (Ax̂opt − b)‖ ≤ (1 + ε)Z, then ‖Ax̂opt − b‖ ≤ (1 + 7ε)Z.
Proof. We will prove the contrapositive: If ‖Ax̂opt − b‖ > (1 + 7ε)Z, then

‖T (Ax̂opt − b)‖ > (1 + ε)Z. Since Ax̂opt lies in the ball B defined by (20) and
since the ε-net is constructed in this ball, there exists a point yε = Axε (call it Ax∗

ε),
such that ‖Ax̂opt − Ax∗

ε‖ ≤ εZ. Thus,

‖Ax∗
ε − b‖ ≥ ‖Ax̂opt − b‖ − ‖Ax∗

ε − Ax̂opt‖ (by the triangle inequality)
≥ (1 + 7ε)Z − εZ (by assumption and the definition of Ax∗

ε )
= (1 + 6ε)Z.

Next, since Lemma 12 holds for all points Axε in the ε-net, it follows that

(25) ‖T (Ax∗
ε − b)‖ > (1 + 3ε)Z.
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Finally, note that

‖T (Ax̂opt − b)‖ ≥ ‖T (Ax∗
ε − b)‖ − ‖TA(x∗

ε − x̂opt)‖ (by the triangle inequality)
> (1 + 3ε)Z − (1 + ε) ‖A(x∗

ε − x̂opt)‖ (by (25) and Theorem 6)
> (1 + 3ε)Z − (1 + ε)εZ (by the definition of Ax̂ε)
> (1 + ε)Z,

which establishes the lemma.
Clearly, ‖T (Ax̂opt − b)‖ ≤ ‖T (Axopt − b)‖, since x̂opt is an optimum for the

sampled �p regression problem. Combining this with Lemmas 10 and 13, it follows
that the solution x̂opt to the sampled problem based on the qi’s of (12) satisfies
‖Ax̂opt − b‖ ≤ (1 + 7ε)Z; i.e., x̂opt is a (1 + 7ε)-approximation to the original Z.

To conclude the proof of the claims for the second stage of sampling, note that
we can actually replace ε by ε/7, thus getting the (1 + ε)-approximation with the
corresponding bound on r2 as in Theorem 7. To bound the failure probability, recall
that the first stage failed with probability no greater than 2/5. Note also that by our
choice of r2, Theorem 6 fails to hold for our second-stage sampling with probability
no greater than 1/100. In addition, Lemma 10 and Lemma 12 each fails to hold with
probability no greater than 2/100 and 1/100, respectively. Finally, let r̂2 be a random
variable representing the number of rows actually chosen by our sampling scheme in
the second stage, and note that E[r̂2] ≤ 2r2. By Markov’s inequality, it follows that
r̂2 > 40r2 with probability less than 1/20. Thus, the second stage of our algorithm
fails with probability less than 1/20 + 1/100 + 2/100 + 1/100 < 1/10. By combining
both stages, our algorithm fails to give a (1+ε)-approximation in the specified running
time with a probability bounded from above by 2/5 + 1/10 = 1/2.

Remark. It has been brought to our attention by an anonymous reviewer that
one of the main results of this section can be obtained with a simpler analysis. Via an
analysis similar to that of section 4.2, one can show that a relative factor (as opposed
to a constant factor) approximation can be obtained in one stage by constructing
the sampling probabilities using subspace information from both the data matrix A
and the target vector b. In particular, we compute the sampling probabilities from a
p–well-conditioned basis for the augmented matrix [A b] as opposed to only from A.
Although it simplifies the analysis, this scheme has the disadvantage that a p–well-
conditioned basis needs to be constructed for each target vector b. Using our two-
stage algorithm, one need only construct one such basis for A which can subsequently
be used to compute probabilities for any target vector b (see, e.g., the extension to
generalized �p regression in the next section).

5. Extensions. In this section we outline several immediate extensions of our
main algorithmic result.

Constrained �p regression. Our sampling strategies are transparent to con-
straints placed on x. In particular, suppose we constrain the output of our algorithm
to lie within a convex set C ⊆ R

m. If there is an algorithm to solve the constrained
�p regression problem minz∈C ‖A′x − b′‖, where A′ ∈ R

s×m is of rank d and b′ ∈ R
s,

in time φ(s, m), then by modifying our main algorithm in a straightforward manner,
we can obtain an algorithm that gives a (1 + ε)-approximation to the constrained �p

regression problem in time O(nmd + nd5 log n + φ(40r2, m)).
Generalized �p regression. Our sampling strategies extend to the case of

generalized �p regression: given as input a matrix A ∈ R
n×m of rank d, a target
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matrix B ∈ R
n×p, and a real number p ∈ [1,∞), find a matrix X ∈ R

m×p such
that |||AX − B|||p is minimized. To do so, we generalize our sampling strategies in
a straightforward manner. The probabilities pi for the first stage of sampling are
the same as before. Then, if X̂c is the solution to the first-stage sampled problem,
we can define the n × p matrix ρ̂ = AX̂c − B and define the second-stage sampling
probabilities to be qi = min

(
1, max{pi, r2‖ρ̂i�‖p

p/|||ρ̂|||pp}
)
. Then, we can show that the

X̂opt computed from the second-stage sampled problem satisfies |||AX̂opt − B|||p ≤
(1 + ε)minX∈Rm×p |||AX − B|||p with probability at least 1/2.

Weighted �p regression. Our sampling strategies also generalize to the case
of �p regression involving weighted p-norms: if w1, . . . , wm are a set of nonnegative
weights, then the weighted p-norm of a vector x ∈ R

m may be defined as ‖x‖p,w =

(
∑m

i=1 wi|xi|p)1/p, and the weighted analogue of the matrix p-norm |||·|||p may be
defined as |||U |||p,w = (

∑d
j=1 ‖U�j‖p,w)1/p. Our sampling scheme proceeds as before.

First, we compute a well-conditioned basis U for span(A) with respect to this weighted
p-norm. The sampling probabilities pi for the first stage of the algorithm are then
pi = min(1, r1wi ‖Ui�‖p

p /|||U |||pp,w), and the sampling probabilities qi for the second
stage are qi = min

(
1, max{pi, r2wi|ρ̂i|p/‖ρ̂‖p

p,w}
)
, where ρ̂ is the residual from the

first stage.

General sampling probabilities. More generally, consider any sampling prob-
abilities of the form pi ≥ min{1, max{ ‖Ui�‖p

p

|||U|||pp ,
|(ρopt)i|p

Zp }r}, where ρopt = Axopt− b and

r ≥ 36pdk

ε2

(
d ln(36

ε ) + ln(200)
)

and where we adopt the convention that 0
0 = 0. Then,

by an analysis similar to that presented for our two-stage algorithm, we can show
that, by picking O(36pdp+1/ε2) rows of A and the corresponding elements of b (in
a single stage of sampling) according to these probabilities, the solution x̂opt to the
sampled �p regression problem is a (1+ ε)-approximation to the original problem with
probability at least 1/2. (Note that these sampling probabilities, if an equality is
used in this expression, depend on the entries of the vector ρopt = Axopt − b; in par-
ticular, they require the solution of the original problem. This is reminiscent of the
results of [13]. Our main two-stage algorithm shows that by solving a problem in the
first stage based on coarse probabilities, we can refine our probabilities to approxi-
mate these probabilities and thus obtain an (1+ ε)-approximation to the �p regression
problem more efficiently.)

Acknowledgment. We would like to thank Robert Kleinberg for pointing out
several useful references.
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[6] M. Bädoiu and K. L. Clarkson, Smaller core-sets for balls, in Proceedings of the 14th Annual
ACM–SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia,
2003, pp. 801–802.

[7] S. Bernstein, Theory of Probability, Moscow, 1927 (in Russian).
[8] J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes,

Acta Math., 162 (1989), pp. 73–141.
[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-

bridge, UK, 2004.
[10] S. Chatterjee, A. S. Hadi, and B. Price, Regression Analysis by Example, Wiley Series in

Probability and Statistics, Wiley, New York, 2000.
[11] K. L. Clarkson, Subgradient and sampling algorithms for �1 regression, in Proceedings of the

16th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM,
Philadelphia, 2005, pp. 257–266.

[12] M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc., 62
(1947), pp. 315–319.

[13] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Sampling algorithms for �2 regression
and applications, in Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2006, pp. 1127–1136.

[14] D. Feldman, A. Fiat, and M. Sharir, Coresets for weighted facilities and their applications,
in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Washington, D.C., 2006, pp. 315–324.

[15] G. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in Mathematical
Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

[16] S. Har-Peled and S. Mazumdar, On coresets for k-means and k-median clustering, in Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York,
2004, pp. 291–300.

[17] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-
Verlag, New York, 2003.

[18] J. Kleinberg and M. Sandler, Using mixture models for collaborative filtering, in Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004,
pp. 569–578.

[19] L. Lovasz, An Algorithmic Theory of Numbers, Graphs, and Convexity, CBMS-NSF Regoinal
Conf. Ser. in Appl. Math. 50, SIAM, Philadelphia, 1986.

[20] A. Maurer, A bound on the deviation probability for sums of non-negative random variables,
JIPAM. J. Inequal. Pure Appl. Math., 4 (2003).

[21] J. Matousek, Lectures on Discrete Geometry, Grad. Texts in Math., Springer-Verlag, New
York, 2002.

[22] T. Sarlós, Improved approximation algorithms for large matrices via random projections, in
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Washington, D.C., 2006, pp. 143–152.

[23] G. Schechtman, More on embedding subspaces of Lp in �n
r , Compositio Math., 61 (1987), pp.

159–169.
[24] G. Schechtman and A. Zvavitch, Embedding subspaces of Lp into �N

p , 0 < p < 1, Math.
Nachr., 227 (2001), pp. 133–142.

[25] M. Talagrand, Embedding subspaces of L1 into �N
1 , Proc. Amer. Math. Soc., 108 (1990), pp.

363–369.
[26] M. Talagrand, Embedding subspaces of Lp into �N

p , Oper. Theory Adv. Appl., 77 (1995), pp.
311–325.

[27] A. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer.
Math. Soc., 53 (1947), pp. 614–616.

[28] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge
University Press, Cambridge, UK, 1991.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


