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FAST MONTE CARLO ALGORITHMS FOR MATRICES III:
COMPUTING A COMPRESSED APPROXIMATE

MATRIX DECOMPOSITION∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. In many applications, the data consist of (or may be naturally formulated as) an
m× n matrix A which may be stored on disk but which is too large to be read into random access
memory (RAM) or to practically perform superlinear polynomial time computations on it. Two
algorithms are presented which, when given an m×n matrix A, compute approximations to A which
are the product of three smaller matrices, C, U , and R, each of which may be computed rapidly.
Let A′ = CUR be the computed approximate decomposition; both algorithms have provable bounds
for the error matrix A − A′. In the first algorithm, c columns of A and r rows of A are randomly
chosen. If the m× c matrix C consists of those c columns of A (after appropriate rescaling) and the
r×n matrix R consists of those r rows of A (also after appropriate rescaling), then the c× r matrix
U may be calculated from C and R. For any matrix X, let ‖X‖F and ‖X‖2 denote its Frobenius
norm and its spectral norm, respectively. It is proven that∥∥A−A′

∥∥
ξ
≤ min

D:rank(D)≤k
‖A−D‖ξ + poly(k, 1/c) ‖A‖F

holds in expectation and with high probability for both ξ = 2, F and for all k = 1, . . . , rank(A); thus
by appropriate choice of k ∥∥A−A′

∥∥
2
≤ ε ‖A‖F

also holds in expectation and with high probability. This algorithm may be implemented without
storing the matrix A in RAM, provided it can make two passes over the matrix stored in external
memory and use O(m + n) additional RAM (assuming that c and r are constants, independent of
the size of the input). The second algorithm is similar except that it approximates the matrix C
by randomly sampling a constant number of rows of C. Thus, it has additional error but it can be
implemented in three passes over the matrix using only constant additional RAM. To achieve an
additional error (beyond the best rank-k approximation) that is at most ε‖A‖F , both algorithms
take time which is a low-degree polynomial in k, 1/ε, and 1/δ, where δ > 0 is a failure probability;
the first takes time linear in max(m,n) and the second takes time independent of m and n. The
proofs for the error bounds make important use of matrix perturbation theory and previous work
on approximating matrix multiplication and computing low-rank approximations to a matrix. The
probability distribution over columns and rows and the rescaling are crucial features of the algorithms
and must be chosen judiciously.
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1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. In this paper
we consider a new method for computing a compressed approximate decomposition of
a large matrix; in two related papers we consider matrix multiplication and the sin-
gular value decomposition (SVD) [10, 11]. Since such computations generally require
time which is superlinear in the number of nonzero elements of the matrix, we expect
our algorithms to be useful in many applications where data sets are modeled by ma-
trices and are extremely large. In all of these cases, we assume that the input matrices
are prohibitively large to store in random access memory (RAM) and thus that only
external memory storage is possible. Thus, our algorithms will be allowed to read
the matrices a few, e.g., one, two, or three, times and keep a small randomly chosen
and rapidly computable “sketch” of the matrices in RAM; computations will then be
performed on this “sketch.” We will work within the framework of the pass-efficient
computational model, in which the scarce computational resources are the number
of passes over the data, the additional RAM space required, and the additional time
required [10, 9].

In many applications, an m× n matrix A is stored on disk and is too large to be
read into RAM or to practically perform superlinear polynomial time computations on
it; thus, one may be interested in a succinctly described, easily computed m×n matrix
A′ that is an approximation to A. Let c and r be positive, usually constant, integers
that we choose, and for any matrix X let ‖X‖F and ‖X‖2 denote its Frobenius and
spectral norms (as defined in section 2.1), respectively. We present two algorithms
that compute an approximation A′ to the matrix A that has the following properties:

(i) A′ = CUR, where C is an m×c matrix consisting of c randomly picked columns
of A, R is an r × n matrix consisting of r randomly picked rows of A, and U is
a c× r matrix computed from C,R.

(ii) C, U , and R can be defined after making a small constant number of passes (2
or 3 for the two algorithms presented in this paper) through the whole matrix
A from disk.

(iii) U can be constructed using additional RAM space and time that is O(m + n)
(for the LinearTimeCUR algorithm) or is O(1) (for the ConstantTimeCUR

algorithm), assuming that c and r are constant.
(iv) For every ε > 0 and every k such that 1 ≤ k ≤ rank(A) we can choose c and r

(to be specified below) such that, with high probability, A′ satisfies

‖A−A′‖2 ≤ min
D:rank(D)≤k

‖A−D‖2 + ε ‖A‖F ,

and thus we can choose c and r such that ‖A−A′‖2 ≤ ε ‖A‖F .
(v) For every ε > 0 and every k such that 1 ≤ k ≤ rank(A) we can choose c and r

(to be specified below) such that, with high probability, A′ satisfies

‖A−A′‖F ≤ min
D:rank(D)≤k

‖A−D‖F + ε ‖A‖F .

In the first algorithm, the LinearTimeCUR algorithm of section 3, c columns
of A and r rows of A are randomly sampled. If the m× c matrix C consists of those
c columns of A (after appropriate rescaling) and the r× n matrix R consists of those
R rows of A (also after appropriate rescaling), then from C and R the c × r matrix
U is computed. This algorithm may be implemented without storing the matrix A
in RAM, provided it can make two passes over the matrix stored in external memory



186 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Table 1

Summary of sampling complexity.

Additional error for: LinearTimeCUR ConstantTimeCUR

‖A−A′‖2 c, r = η2

ε4
, k
δ2ε2

c, w, r = η2

ε8
, η2

ε8
, k
δ2ε2

‖A−A′‖F c, r = kη2

ε4
, k
δ2ε2

c, w, r = k2η2

ε8
, k2η2

ε8
, k
δ2ε2

and use O(m+n) additional RAM. The second algorithm, the ConstantTimeCUR

algorithm of section 4, is similar except that it approximates the matrix C by randomly
sampling a constant number w of rows of C. Thus, our second algorithm requires only
constant additional RAM but uses a third pass over the data and has additional error.
To achieve an additional error (beyond the best rank-k approximation) that is at most
ε ‖A‖F , both algorithms take time which is a low-degree polynomial in k, 1/ε, and 1/δ,
where δ > 0 is a failure probability; the first algorithm takes time linear in max(m,n)
and the second takes time independent of m and n. See Table 1 for a summary of
the dependence of the sampling complexity on k and ε, δ, and η = 1 +

√
8 log(1/δ).

(Note that the two algorithms we present in this paper are most interesting when the
matrix A is well approximated by a rank-k matrix, where k is assumed to be constant
with respect to m and n. In this case, c, r, and w are also constant with respect to
m and n. This is assumed throughout the remainder of this paper.)

The proofs for the error bounds make important use of linear algebra and matrix
perturbation theory; see [19, 22, 28, 6] for an overview of these topics. In particular,
the proofs use the approximate matrix multiplication results of [10] and the approxi-
mate SVD results of [11]. As with those previous works, the probability distribution
over the columns, the probability distribution over the rows, and the respective rescal-
ing are crucial features of the algorithms which must be chosen judiciously. In addi-
tion, as a by-product of the CUR decomposition, we can estimate the top k singular
values of A.

Our CUR approximations may be viewed as a “dimension reduction” technique.
Two common techniques for dimension reduction are the SVD and multidimensional
scaling; see [19, 25]. Another method that has attracted renewed interest recently
is the traditional “random projection” method where one projects the problem into
a randomly chosen low-dimensional subspace [24, 29, 23]. These methods do not
share properties (i) and (ii) and thus are not suited for very large problems. Our
algorithms achieve (i) and (ii) at the cost of the ε ‖A‖F error. In addition, our CUR
approximations may be viewed as an approximate decomposition of a matrix A ≈
CUR; as with other decompositions, the CUR decomposition both reveals information
about the structure of the matrix and allows computations to be performed more
efficiently. For example, in applications of the LinearTimeCUR algorithm, A′ could
be stored in RAM since it can be stored in O(m+n) space (instead of O(mn) space);
in addition, A′ could then be operated upon by, e.g., applying A′ = CUR to a query
vector x ∈ R

n, which is an operation that can be performed in O(m+n) space (instead
of O(mn) space if A is used).

Our CUR approximations have been used in applications such as the reconstruc-
tion of a matrix given a sample of the matrix in a recommendation systems context
and for “similarity query” problems which are widely used in areas such as informa-
tion retrieval [14]. In this application, after A has been preprocessed, one gets “query”
vectors x and must find the similarity of x to each row of A. Here, the similarity of
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two vectors is defined to be their dot product or their normalized dot product; our
technique can handle both. See [7] for related discussion. Note that the measure
‖A‖2 is a worst-case measure and that this is more useful in many contexts than an
average-case measure like ‖A‖F , since the relevant query x often comes from a small-
dimensional subspace and is not random. See also [2, 1] for a nice discussion of these
issues. Our CUR approximations have also been used in theoretical applications such
as designing and analyzing approximation algorithms for the max-cut problem [13].
In these applications, the use of the constant additional space and time framework is
essential.

In other related work, Achlioptas and McSherry have also computed succinctly
described matrix approximations using somewhat different sampling techniques [2, 1].
Also included in [2, 1] is a comparison of their methods with those of [8, 9, 18] and
thus with the results we present here. When compared with our LinearTimeCUR

algorithm, they achieve the same results for the Frobenius norm bound and slightly
better results (with respect to 1/ε) for the spectral norm bound [1]; in their work,
however, there is no analogue of our ConstantTimeCUR algorithm.

After this introduction, we provide in section 2 reviews of linear algebra, the
pass-efficient model, and of several previous results from [10, 11] that are used in
this paper. In section 3 we describe and analyze the LinearTimeCUR algorithm
which computes an approximate CUR decomposition of a matrix A using linear (in
m and n) additional space and time, and in section 4 we describe and analyze the
ConstantTimeCUR algorithm which computes a description of an approximate
CUR decomposition of a matrix A using only constant additional space and time.
Finally, in section 5 we provide a discussion and conclusion.

Finally, note that c and r enter into the asymptotic analysis; for improved clarity,
however, we generally take them to be constants that do not vary.

2. Review of relevant background.

2.1. Review of linear algebra. This section contains a review of linear algebra
that will be useful throughout the paper; for more details, see [19, 22, 28, 6] and the
references therein.

For a vector x ∈ R
n we let |x| = (

∑n
i=1 |xi|2)1/2 denote its Euclidean length.

For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, denote the jth column of A as a

column vector and A(i), i = 1, . . . ,m, denote the ith row of A as a row vector. We
denote matrix norms by ‖A‖ξ, using subscripts to distinguish between various norms.

Of particular interest will be the Frobenius norm, the square of which is ‖A‖2
F =∑m

i=1

∑n
j=1 A

2
ij , and the spectral norm, which is defined by ‖A‖2 = supx∈Rn, x �=0

|Ax|
|x| .

These norms are related to each other as ‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2.

If A ∈ R
m×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ R

m×m

and V = [v1v2 . . . vn] ∈ R
n×n, where {ut}mt=1 ∈ R

m and {vt}nt=1 ∈ R
n are such that

UTAV = Σ = diag(σ1, . . . , σρ),

where Σ ∈ R
m×n, ρ = min{m,n}, and σ1 ≥ σ2 ≥ · · · ≥ σρ ≥ 0. Equivalently,

A = UΣV T . The three matrices U , V , and Σ constitute the SVD of A. The σi

are the singular values of A and the vectors ui, vi are the ith left and the ith right
singular vectors, respectively. If k ≤ r = rank(A) and we define Ak = UkΣkV

T
k =∑k

t=1 σtu
tvt

T
, then the distance (as measured by both ‖·‖2 and ‖·‖F ) between A and
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any rank-k approximation to A is minimized by Ak, i.e.,

min
D∈Rm×n:rank(D)≤k

‖A−D‖2 = ‖A−Ak‖2 = σk+1(A),(1)

min
D∈Rm×n:rank(D)≤k

‖A−D‖2
F = ‖A−Ak‖2

F =

r∑
t=k+1

σ2
t (A).(2)

2.2. Review of the pass-efficient model. The pass-efficient model of data-
streaming computation is a computational model that is motivated by the observation
that in modern computers the amount of disk storage, i.e., sequential access memory,
has increased very rapidly, while RAM and computing speeds have increased at a
substantially slower pace [10, 9]. In the pass-efficient model the three scarce compu-
tational resources are number of passes over the data and the additional RAM space
and additional time required by the algorithm. The data are assumed to be stored
on a disk, to consist of elements whose sizes are bounded by a constant, and to be
presented to an algorithm on a read-only tape. See [10] for more details.

2.3. Review of approximate matrix multiplication. The BasicMatrix-

Multiplication algorithm to approximate the product of two matrices is presented
and analyzed in [10]. When this algorithm is given as input two matrices, A ∈ R

m×n

and B ∈ R
n×p, a probability distribution {pi}ni=1, and a number c ≤ n, it returns as

output two matrices, C and R, such that CR ≈ AB; C ∈ R
m×c is a matrix whose

columns are c randomly chosen columns of A (suitably rescaled) and R ∈ R
c×p is a

matrix whose rows are the c corresponding rows of B (also suitably rescaled). An im-
portant aspect of this algorithm is the probability distribution {pi}ni=1 used to choose
column-row pairs. Although one could always use a uniform distribution, superior
results are obtained if the probabilities are chosen judiciously. In particular, a set of
sampling probabilities {pi}ni=1 are the optimal probabilities (with respect to approxi-
mating the product AB) if they are of the form (3); for an explanation and discussion,
see [10], where we prove the following.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n,

and {pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Construct C and R with the
BasicMatrixMultiplication algorithm of [10] and let CR be an approximation to
AB. If the probabilities {pi}ni=1 are such that

pk =

∣∣A(k)
∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ ,(3)

then

E [ ‖AB − CR‖F ] ≤ 1√
c
‖A‖F ‖B‖F .(4)

If, in addition, we let δ ∈ (0, 1) and η = 1+
√

8 log(1/δ), then with probability at least
1 − δ,

‖AB − CR‖F ≤ η√
c
‖A‖F ‖B‖F .(5)

Furthermore, if the probabilities {pi}ni=1 are such that

pk =

∣∣B(k)

∣∣2
‖B‖2

F

,(6)
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then

E [ ‖AB − CR‖F ] ≤ 1√
c
‖A‖F ‖B‖F .(7)

Note that with probabilities of the form (6), we do not get a bound of the form
‖AB − CR‖F ≤ 1√

c
‖A‖F ‖B‖F by sampling O(log(1/δ)) columns without making ad-

ditional, awkward assumptions on the input matrices; see [10]. Of course, by Markov’s
inequality we can (and will) obtain such a bound by sampling O(1/δ) columns.

2.4. Review of approximate SVD. The LinearTimeSVD algorithm is pre-
sented in [11]. It is an algorithm which, when given a matrix A ∈ R

m×n, uses O(m+n)
additional space and time to compute an approximation to the top k singular values
and the corresponding left singular vectors of A by randomly choosing c columns of A
and rescaling each appropriately to construct a matrix C ∈ R

m×c, computing the top
k singular values and corresponding right singular vectors of C, and using them to
construct a matrix Hk ∈ R

m×k consisting of approximations to the top k left singular
vectors of A. In [11] we prove the following.

Theorem 2. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm of [11]. Then∥∥A−HkH
T
k A

∥∥2

F
≤ ‖A−Ak‖2

F + 2
√
k
∥∥AAT − CCT

∥∥
F
,(8) ∥∥A−HkH

T
k A

∥∥2

2
≤ ‖A−Ak‖2

2 + 2
∥∥AAT − CCT

∥∥
2
.(9)

The ConstantTimeSVD algorithm is also presented in [11]. It is an algorithm
which, when given a matrix A ∈ R

m×n, uses constant additional space and time
to compute a description of an approximation to the top k singular values and the
corresponding left singular vectors of A. It does so in a manner similar to that of
the LinearTimeSVD algorithm except that it performs a second level of sampling
in order to estimate (rather than compute exactly) the top k singular values and
corresponding singular vectors of C. The γ in the following theorem is a parameter
of the ConstantTimeSVD algorithm of [11] that is related to the second level of
sampling; it also appears in our ConstantTimeCUR algorithm, and is thus discussed
in section 4. In [11] we prove the following.

Theorem 3. Suppose A ∈ R
m×n; let a description of H̃� be constructed from the

ConstantTimeSVD algorithm of [11] by sampling c columns of A with probabilities
{pi}ni=1 and w rows of C with probabilities {qj}mj=1 where pi = |A(i)|2/‖A‖2

F and

qj = |C(j)|2/‖C‖2
F . Let η = 1 +

√
8 log(2/δ) and ε > 0.

If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-
rithm is run with γ = ε/100k, then by choosing c = Ω(k2η2/ε4) columns of A and
w = Ω(k2η2/ε4) rows of C we have that with probability at least 1 − δ,∥∥A− H̃�H̃

T
� A

∥∥2

F
≤ ‖A−Ak‖2

F + ε ‖A‖2
F .(10)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm
is run with γ = ε/100, then by choosing c = Ω(η2/ε4) columns of A and w = Ω(η2/ε4)
rows of C we have that with probability at least 1 − δ,∥∥A− H̃�H̃

T
� A

∥∥2

2
≤ ‖A−Ak‖2

2 + ε ‖A‖2
F .(11)
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3. The linear time CUR decomposition. In this section we describe and
analyze the LinearTimeCUR algorithm, which computes an approximate CUR de-
composition of a matrix A ∈ R

m×n using linear (in m and n) additional space and
time. In section 4 we describe and analyze the ConstantTimeCUR algorithm which
computes a description of an approximate CUR decomposition of a matrix A using
only constant additional space and time. Both algorithms will make extensive use of
the corresponding results from [11] for approximating the SVD of a matrix as well as
results from [10] on approximating the product of two matrices. As with the SVD
algorithms, the ConstantTimeCUR algorithm has a similar flavor to the Linear-

TimeCUR algorithm, but is technically more complex due to the second level of
sampling required. Thus, in this section we provide an extensive description of the
LinearTimeCUR algorithm and the motivation and intuition behind it, and in sec-
tion 4 we highlight the differences between the linear additional time framework and
the constant additional time framework.

3.1. The algorithm. Given a matrix A ∈ R
m×n, we wish to compute a suc-

cinctly described, easily computed matrix A′ that is decomposable as A′ = CUR ∈
R

m×n and that satisfies properties (i)–(v) of section 1. The LinearTimeCUR al-
gorithm, which is presented in Figure 1, accomplishes this by first forming a matrix
C ∈ R

m×c by rescaling a randomly chosen subset of c columns of A; the columns are
chosen in c independent identical trials where in each trial the αth column of A is
chosen with probability qα, and if the αth column is chosen, it is rescaled by 1/

√
cqα

before inclusion in C. The algorithm then forms a matrix R ∈ R
r×n by rescaling a

randomly chosen subset of r rows of A; the rows are chosen in r independent identical
trials where in each trial the αth row of A is chosen with the probability pα, and if
the αth row is chosen, it is rescaled by 1/

√
rpα before inclusion in R. Using the same

randomly chosen rows to construct R from A the algorithm also constructs a matrix
Ψ from C in an identical manner. Thus, Ψ ∈ R

r×c and Ψij = Ait1 jt2
/
√
crpit1 qjt2 ,

where it1 is the element of {1, . . . ,m} selected in the t1th row sampling trial and jt2
is the element of {1, . . . , n} selected in the t2th column sampling trial.

The following sampling matrix formalism provides a convenient representation of
our ideas, and will be used extensively in this section and the next. (See [10] for
another use of this sampling matrix formalism.) Let us define the column sampling
matrix SC ∈ R

n×c to be the zero-one matrix where (SC)ij = 1 if the ith column of
A is chosen in the jth independent random trial, and Sij = 0 otherwise; let us also
define the associated rescaling matrix DC ∈ R

c×c to be the diagonal matrix with
(DC)tt = 1/

√
cpit , where it is the element of {1, . . . , n} chosen in the tth sampling

trial. Let us similarly define SR ∈ R
r×m and DR ∈ R

r×r to be the row sampling
matrix and associated diagonal rescaling matrix, respectively. In this notation,

C = ASCDC and R = DRSRA,(12)

where SCDC postmultiplies (and thus samples and rescales columns of) A to form C,
and where DRSR premultiplies (and thus samples and rescales rows of) A to form R.
Thus, in this notation,

Ψ = DRSRC = DRSRASCDC .(13)

Given C, the LinearTimeCUR algorithm computes the top k singular values,
σ2
t (C), t = 1, . . . , k, and the corresponding singular vectors, yt, t = 1, . . . , k, of CTC.

Note that these are also the squares of the singular values and the corresponding right
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LinearTimeCUR Algorithm.

Input: A ∈ R
m×n, r, c, k ∈ Z

+ such that 1 ≤ r ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(r, c), {pi}mi=1 such that pi ≥ 0 and

∑m
i=1 pi = 1, and {qj}nj=1 such that qj ≥ 0

and
∑n

j=1 qj = 1.

Output: C ∈ R
m×c, U ∈ R

c×r, and R ∈ R
r×n.

1. For t = 1 to c,
(a) Pick jt ∈ {1, . . . , n} with Pr [jt = α] = qα, α = 1, . . . , n.
(b) Set C(t) = A(jt)/

√
cqjt .

2. Compute CTC and its SVD; say CTC =
∑c

t=1 σ
2
t (C)ytyt

T
.

3. If σk(C) = 0, then let k = max{k′ : σk′(C) �= 0}.
4. For t = 1 to r,

(a) Pick it ∈ {1, . . . ,m} with Pr [it = α] = pα, α = 1, . . . ,m.
(b) Set R(t) = A(it)/

√
rpit .

(c) Set Ψ(t) = C(it)/
√
rpit .

5. Let Φ =
∑k

t=1
1

σ2
t (C)

ytyt
T

and let U = ΦΨT .

6. Return C, U , and R.

Fig. 1. The LinearTimeCUR algorithm.

R
n A ��

R

���
��

��
��

��
��

��
��

��
R

m

SR

��
R

c

SC

��

C

�������������������

DC

��
Φ

�� R
r

U,ΨT

		

DR

��

Fig. 2. Diagram for the LinearTimeCUR algorithm.

singular vectors of C. Using these quantities, a matrix Φ ∈ R
c×c may be defined as

Φ =
k∑

t=1

1

σ2
t (C)

ytyt
T

,(14)

from which U ∈ R
c×r is constructed as U = ΦΨT . We could, of course, have defined

a matrix Φ (and thus constructed a matrix U) from the singular vectors and singular
values of RRT in a manner analogous to that described above; in that case, the roles
of the row sampling and column sampling would be reversed relative to the discussion
below.

Figure 2 presents a diagram illustrating the action of the LinearTimeCUR al-
gorithm. The matrix A is shown as operating between the high-dimensional spaces
R

n and R
m. In addition, the matrix C is shown as operating between R

c and R
m and

the matrix R is shown as operating between R
n and R

r. Intuitively, one may think of
R

c and R
r as being the most significant parts of R

n and R
m, respectively, in terms of

the action of A. Indeed, this will be the case when the sampling probabilities {pi}mi=1
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and {qj}nj=1 satisfy certain conditions, as stated, e.g., in Theorem 4. The diagram
also illustrates that C = ASCDC , R = DRSRA, and the matrix U which can be seen
to be U = ΦΨT = ΦCT (DRSR)T .

The matrix A is thus approximated by a matrix A′ = CUR, where C is an m× c
matrix consisting of c randomly chosen columns of A, R is an r×n matrix consisting
of r randomly chosen rows of A, and U = ΦΨT is a c × r matrix computed from
C and R. As we shall see, if the column and row sampling probabilities are chosen
judiciously, then c and r can be chosen to be constants (independent of m and n but
depending on k and ε). Thus, (pictorially) we have that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎝ U

⎞⎠⎛⎝ R

⎞⎠ .(15)

The length of our succinct representation is O(m+ n). Note that if C and R are not
explicitly needed, the length of the representation is a constant O(1); this is because
U is of constant size and only a constant number of bits are needed to specify which
columns and rows of A are kept (along with their associated rescaling factors) in the
construction of C and R, respectively.

Before proving the theorem, we would like to give some intuition as to why, if
{pi}mi=1 and {qj}nj=1 satisfy certain conditions, the product CUR, as computed from
the LinearTimeCUR algorithm, then becomes a good approximation to A in the
sense of requirements (iv) and (v) of section 1. Let ht = Cyt/σt(C) be the left singular
vectors of C. Thus, if Hk = (h1 h2 . . . hk) ∈ R

m×k, then HkH
T
k A is the projection of

A onto the subspace spanned by the top k left singular vectors of C. If the column
sampling probabilities {qj}nj=1 satisfy certain conditions, then the top k of the ht’s
are approximations to the top k left singular vectors of A in the sense that their
projection can be shown to “capture” almost as much of A as the projection of A
onto the space spanned by its own top k left singular vectors. Indeed, the content of
the SVD results of [11] (which in turn depend on the matrix multiplication results of
[10]) is that if the column sampling probabilities {qj}nj=1 are chosen judiciously, then
the error in ‖A−HkH

T
k A‖ξ beyond the error for the best rank-k approximation can

be made arbitrarily small both in expectation and with high probability.
Although HkH

T
k A is an approximation to A, one might wonder whether the ap-

proximation HkH
T
k A can be approximated so as to satisfy properties (i)–(v). Indeed,

this is exactly what the CUR decomposition does! Using our sampling matrix for-
malism, let us define

H̃T
k = HT

k (DRSR)T and Ã = DRSRA(16)

to be the column-sampled and rescaled version of HT
k and row-sampled and rescaled

version of A, respectively. (We will see that H̃T
k Ã ≈ HT

k A by Theorem 1.) Lemma 1
states that

CUR = HkH
T
k (DRSR)TDRSRA

= HkH̃T
k Ã.(17)
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Fig. 3. Another diagram for the LinearTimeCUR algorithm.

Thus, in order to provide a bound for ‖A− CUR‖ξ for ξ = 2, F we can first note
that by the triangle inequality

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HkH
T
k A− CUR

∥∥
ξ
,(18)

and then we can bound the two terms separately. The first term in (18) can be
bounded using the SVD results of [11] if the column sampling probabilities satisfy
certain conditions; in particular we will require that they be the optimal probabilities.
Since HT

k Hk = Ik, Lemma 2 states that∥∥HkH
T
k A− CUR

∥∥
F

=
∥∥HT

k A−HT
k (DRSR)TDRSRA

∥∥
F

=
∥∥HT

k A− H̃T
k Ã

∥∥
F
.(19)

Thus, the second term in (18) can be bounded by the matrix multiplication results of
[10]; it will follow that if the sampling probabilities {pi}mi=1 satisfy certain conditions,

then H̃T
k Ã ≈ HT

k A in the sense that the error in ‖HT
k A − H̃T

k Ã‖F can be bounded.
Note that since the optimal probabilities depend on both HT and A, and since we do
not have access to HT , our probabilities will not be optimal; nevertheless, although
we will not obtain bounds with very high probability, as in [10] and [11], we will be
able to apply Markov’s inequality and thus achieve the bounds we desire.

A diagram illustrating the method (just described) that will be used to prove the
correctness of the CUR algorithm is presented in Figure 3. In this figure, the locations
of R

c and R
r and thus the directions of R, SR, C, SC , and U have been switched

relative to their location in Figure 2. This presentation has several advantages: first,
the SVD of C and the SVD of A can both be presented in the same figure as the
CUR decomposition of A; second, one can see that bounding ‖A−HkH

T
k A‖ξ well in

terms of ‖AAT − CCT ‖ξ depends on the probabilities used to sample the columns of

A; and third, one can also see that bounding ‖HT
k A − H̃T

k Ã‖F well depends on the
probabilities used to sample the (columns of HT

k and the corresponding) rows of A.
See the corresponding figures in [10] and [11] for a comparison.
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3.2. Analysis of the implementation and running time. In the Linear-

TimeCUR algorithm the sampling probabilities {pi}mi=1 and {qj}nj=1 (if they are cho-

sen to be of the form used in Theorems 4 and 5) can be computed in one pass and
O(c + r) additional space and time using the Select algorithm of [10]. Given the
elements to be sampled, the matrix C can then be constructed in one additional pass;
this requires additional space and time that is O(mc). Similarly, the matrix R can
then be constructed in the same pass using additional space and time that is O(nr).
Given C ∈ R

m×c, computing CTC requires O(mc) additional space and O(mc2) ad-
ditional time, and computing the SVD of CTC requires O(c3) additional time. The
matrix Ψ can be computed in the same second pass by sampling the same r rows of
C that were used to construct R from A; this requires additional space and time that
is O(cr). The matrix Φ can be explicitly computed using O(c2k) additional time,
and then the matrix U = ΦΨT can be computed using O(c2r) additional time. Thus,
since c, r, and k are assumed to be a constant, overall O(m+n) additional space and
time are required by the LinearTimeCUR algorithm, and requirements (i)–(iii) of
section 1 are satisfied. Note that the “description” of the solution that is computable
in the allotted additional space and time is the explicit matrices C, U , and R.

3.3. Analysis of the sampling step. Before stating and proving the main
theorem of this section, we will first prove two useful lemmas. Lemma 1 will establish
(17) and Lemma 2 will establish (19).

Lemma 1.

CUR = HkH̃T
k Ã.

Proof. Note that the SVD of C is C =
∑c

t=1 σt(C)htyt
T

, that the matrix Ψ =
DRSRC, and that U = ΦΨT , where Φ is given by (14). Thus, we have that

CUR = C

(
k∑

t=1

1

σ2
t (C)

ytyt
T

)
CT (DRSR)TR

=

(∑
t1

σt1(C)ht1yt1
T

)(
k∑

t2=1

1

σ2
t2(C)

yt2yt2
T

)(∑
t3

σt3(C)yt3ht3T

)
(DRSR)TR

=

(
k∑

t=1

hthtT

)
(DRSR)TR.

The lemma follows since
∑k

t=1 h
thtT = HkH

T
k , since R = DRSRA, and from the

definitions (16).
Lemma 2. ∥∥HkH

T
k A− CUR

∥∥
F

=
∥∥HT

k A− H̃T
k Ã

∥∥
F
.

Proof. From Lemma 1 we have that CUR = HkH̃T
k Ã. Let us define the matrix

Ω ∈ R
k×n as

Ω = HT
k A−HT

k (DRSR)TDRSRA = HT
k A− H̃T

k Ã.

In addition, note that∥∥HkH
T
k A−HkH̃T

k Ã
∥∥2

F
= ‖HkΩ‖2

F = Tr
(
ΩTHT

k HkΩ
)
.

The lemma follows since HT
k Hk = Ik and since Tr

(
ΩTΩ

)
= ‖Ω‖2

F .
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Here is our main theorem regarding the LinearTimeCUR algorithm described in
section 3.1. Note that in this theorem we restrict ourselves to sampling probabilities
that are optimal in the sense of section 2.3.

Theorem 4. Suppose A ∈ R
m×n, and let C, U , and R be constructed from the

LinearTimeCUR algorithm by sampling c columns of A with probabilities {qj}nj=1

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/ ‖A‖2
F and

qj = |A(j)|2/ ‖A‖2
F . Then

E [ ‖A− CUR‖F ] ≤ ‖A−Ak‖F +

((
4k

c

)1/4

+

(
k

r

)1/2
)

‖A‖F ,(20)

E [ ‖A− CUR‖2] ≤ ‖A−Ak‖2 +

((
4

c

)1/4

+

(
k

r

)1/2
)

‖A‖F .(21)

In addition, if we let ηc = 1 +
√

8 log(1/δc) and let δ = δr + δc, then with probability
at least 1 − δ,

‖A− CUR‖F ≤ ‖A−Ak‖F +

((
4kη2

c

c

)1/4

+

(
k

δ2
rr

)1/2
)

‖A‖F ,(22)

‖A− CUR‖2 ≤ ‖A−Ak‖2 +

((
4η2

c

c

)1/4

+

(
k

δ2
rr

)1/2
)

‖A‖F .(23)

Proof. By the triangle inequality we have that

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HkH
T
k A− CUR

∥∥
ξ

(24)

for both ξ = 2, F ; thus by Lemmas 1 and 2 we have that

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HT
k A−HT

k (DRSR)TDRSRA
∥∥
F

(25)

=
∥∥A−HkH

T
k A

∥∥
ξ
+
∥∥HT

k A− H̃T
k Ã

∥∥
F

(26)

for both ξ = 2, F , where (26) follows from the definitions (16). Then, note that the
column sampling satisfies the requirements for the LinearTimeSVD algorithm of
[11]. Thus, by Theorem 2 it follows from (25) that

‖A− CUR‖F ≤ ‖A−Ak‖F + (4k)
1/4 ∥∥AAT − CCT

∥∥1/2

F
+
∥∥HT

k A− H̃T
k Ã

∥∥
F
,(27)

‖A− CUR‖2 ≤ ‖A−Ak‖2 +
√

2
∥∥AAT − CCT

∥∥1/2

F
+
∥∥HT

k A− H̃T
k Ã

∥∥
F
.(28)

Note that from the LinearTimeCUR algorithm the column sampling probabilities
are of the form (3) with B = AT ; thus, they are optimal and E

[
‖AAT − CCT ‖F

]
≤

1√
c
‖A‖2

F . In addition, although the row sampling probabilities are not optimal, they

are of the form (6); thus, since ‖HT
k ‖F =

√
k we have that

E
[∥∥HT

k A− H̃T
k Ã

∥∥
F

]
≤

√
k

r
‖A‖F .(29)
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Thus, by taking expectations of (27) and (28), by using Jensen’s inequality and The-
orem 1, (20) and (21) follow.

To establish (22) and (23) first let the events Eξ, ξ = c, r be defined as follows:

Ec :
∥∥AAT − CCT

∥∥
F
≤ ηc√

c
‖A‖2

F ,

Er :
∥∥HT

k A− H̃T
k Ã

∥∥
F
≤ 1

δr

√
k

r
‖A‖F .

Thus, from Theorem 1 we have that Pr [Ec] ≥ 1−δc. By applying Markov’s inequality

to
∥∥HT

k A− H̃T
k Ã

∥∥
F

and using (29) we see that

Pr

[∥∥HT
k A− H̃T

k Ã
∥∥
F
≥ 1

δr

√
k

r
‖A‖F

]
≤ δr

and thus that Pr [Er] ≥ 1 − δr. The theorem then follows from (27) and (28) by
considering the event Ec

⋂
Er.

Note that in the proof of Theorem 4 (and similarly in that of Theorem 6 in
section 4) ‖A − CUR‖ξ is bounded by bounding each of the terms ‖A − HkH

T
k A‖ξ

and ‖HkH
T
k A−CUR‖ξ independently. In order to bound ‖A−HkH

T
k A‖ξ, the SVD

results for arbitrary probabilities from [11] are used, and then it is noted that the
column sampling probabilities used in the LinearTimeCUR algorithm are optimal
for bounding ‖AAT −CCT ‖F . Then, independently, ‖HkH

T
k A−CUR‖ξ is bounded

by using the matrix multiplication results of [10]. Since the probabilities that are used

for the row sampling are not optimal with respect to bounding ‖HT
k A− H̃T

k Ã‖F , we
do not obtain that bound with high probability. Due to the use of Markov’s inequality,
we must sample a number of rows that is O(1/δ), whereas we only need to sample a
number of columns that is O(log(1/δ)).

As a corollary of Theorem 4 we have the following theorem. In this theorem, in
addition to using sampling probabilities that are optimal in the sense of section 2.3,
we choose sufficiently many columns and rows to ensure that the additional error is
less than ε′ ‖A‖F .

Theorem 5. Suppose A ∈ R
m×n, and let C, U , and R be constructed from the

LinearTimeCUR algorithm by sampling c columns of A with probabilities {qj}nj=1

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/‖A‖2
F and

qj = |A(j)|2/‖A‖2
F and let ε, ε′ > 0 with ε = ε′/2.

If c ≥ 4k/ε4 and r ≥ k/ε2, then

E [ ‖A− CUR‖F ] ≤ ‖A−Ak‖F + ε′ ‖A‖F ,(30)

and if c ≥ 4/ε4 and r ≥ k/ε2, then

E [ ‖A− CUR‖2] ≤ ‖A−Ak‖2 + ε′ ‖A‖F .(31)

In addition, if we let ηc = 1 +
√

8 log(1/δc) and let δ = δr + δc, and if c ≥ 4kη2
c/ε

4

and r ≥ k/δ2
rε

2, then with probability at least 1 − δ,

‖A− CUR‖F ≤ ‖A−Ak‖F + ε′ ‖A‖F ,(32)

and if c ≥ 4η2
c/ε

4 and r ≥ k/δ2
rε

2, then with probability at least 1 − δ,

‖A− CUR‖2 ≤ ‖A−Ak‖2 + ε′ ‖A‖F .(33)
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The results of Theorems 4 and 5 for both the Frobenius norm and the spectral
norm hold for all k and are of particular interest when A is well approximated by a
matrix of low rank since then one may choose k = O(1) and obtain a good approxi-
mation. In addition, since ‖A−At‖2 ≤ ‖A‖F /

√
t for all t = 1, 2, . . . , r, the bounds

with respect to the spectral norm have the following interesting property: from (31)
we can see that

E [ ‖A− CUR‖2] ≤
(
1/
√
k + ε′

)
‖A‖F ,

and similarly for (33). Thus, under the assumptions of Theorem 5 if we choose

k = 1/ε′
2

and let ε′′ = 2ε′, then we have that

E [ ‖A− CUR‖2] ≤ ε′′ ‖A‖F(34)

and that

‖A− CUR‖2 ≤ ε′′ ‖A‖F(35)

holds with probability at least 1 − δ.

4. The constant time CŨR decomposition.

4.1. The algorithm. The ConstantTimeCUR algorithm is very similar in
spirit to the LinearTimeCUR algorithm; thus, we only highlight its main features
with an emphasis on similarities and differences between the two algorithms. Given
a matrix A ∈ R

m×n, we wish to compute a description of a succinctly described,
easily computed matrix A′ that is decomposable as A′ = CŨR ∈ R

m×n and that
satisfies requirements (i)–(v) of section 1, where the additional RAM space and time
to compute Ũ is O(1). The ConstantTimeCUR algorithm, which is presented in
Figure 4, accomplishes this by forming a matrix C ∈ R

m×c by rescaling a randomly
chosen subset of c columns of A, forming a matrix R ∈ R

r×n by rescaling a randomly
chosen subset of r rows of A, and forming a matrix Ψ ∈ R

r×c from C by choosing the
same randomly chosen rows used to construct R from A and rescaling appropriately.
Given C, the ConstantTimeCUR algorithm randomly chooses and rescales w rows
of C to form a matrix W ∈ R

w×c and then computes the top 
 singular values, σ2
t (W ),

t = 1, . . . , 
, and the corresponding singular vectors, zt, t = 1, . . . , 
, of WTW . Note
that these are also approximations to the (squares of the) singular values and the
corresponding right singular vectors of C. Using these quantities, a matrix Φ̃ ∈ R

c×c

may be defined as

Φ̃ =

�∑
t=1

1

σ2
t (W )

ztzt
T

,(36)

from which Ũ ∈ R
c×r is constructed as Ũ = Φ̃ΨT . Note that in the constant additional

space and time framework the actual matrices C and R are not explicitly computed;
instead the constant-sized matrix Ũ is computed and only a constant number of bits
are stored to specify which columns and rows of A are kept (along with their associated
rescaling factors) in the construction of C and R, respectively. Thus, the length of
the succinct representation of A is a constant.

Figure 2 of section 3 provides a diagram illustrating the action of LinearTime-

CUR algorithm, but the diagram and associated discussion are also relevant for the
ConstantTimeCUR algorithm. Figure 5 also provides a diagram illustrating the
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ConstantTimeCUR Algorithm.

Input: A ∈ R
m×n, r, c, k ∈ Z

+ such that 1 ≤ r ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(r, c), {pi}mi=1 such that pi ≥ 0 and

∑m
i=1 pi = 1, and {qj}nj=1 such that qj ≥ 0

and
∑n

j=1 qj = 1.

Output: Ũ ∈ R
c×r and a “description” of C ∈ R

m×c and R ∈ R
r×n.

1. For t = 1 to c,
(a) Pick jt ∈ {1, . . . , n} with Pr [jt = α] = qα, and save {(jt, qjt) : t =

1, . . . , c}.
(b) Set C(t) = A(jt)/

√
cqjt . (Note that C is not explicitly constructed in

RAM.)

2. Choose {πi}mi=1 such that πi =
∣∣C(i)

∣∣2 / ‖C‖2
F .

3. For t = 1 to w,
(a) Pick it ∈ 1, . . . ,m with Pr [it = α] = πα, α = 1, . . . ,m.
(b) Set W(t) = C(it)/

√
wπit .

4. Compute WTW and its SVD; say WTW =
∑c

t=1 σ
2
t (W )ztzt

T
.

5. If a ‖·‖F bound is desired, set γ = ε/100k,
Else if a ‖·‖2 bound is desired, set γ = ε/100.

6. Let 
 = min{k,max{t : σ2
t (W ) ≥ γ ‖W‖2

F }}.
7. Keep singular values {σt(W )}�t=1 and their corresponding singular vectors

{zt}�t=1.
8. For t = 1 to r,

(a) Pick it ∈ {1, . . . ,m} with Pr [it = α] = pα, and save {(it, pit) : t =
1, . . . , r}.

(b) Set R(t) = A(it)/
√
rpit . (Note that R is not explicitly constructed in

RAM.)
(c) Set Ψ(t) = C(it)/

√
rpit .

9. Let Φ̃ =
∑�

t=1
1

σ2
t (W )

ztzt
T

and let Ũ = Φ̃ΨT .

10. Return Ũ , c column labels {(jt, qjt) : t = 1, . . . , c}, and r row labels {(it, pit) :
t = 1, . . . , r}.

Fig. 4. The ConstantTimeCUR algorithm.

action of the ConstantTimeCUR algorithm, and is the analogue for the constant
time CŨR of Figure 3; Figure 5 also illustrates that the matrix Y (= VC) (of Figure
3) consisting of the top k right singular vectors of C is not exactly computed, but is
instead approximated by the matrix Z (= VW ), where Z is a matrix whose columns
Z(t) = zt consist of the right singular vectors of W . Thus, the matrix Hk consisting
of the left singular vectors of C is not exactly computed but is only approximated by

H̃�, where H̃
(t)
� = h̃t = Czt/σt(W ) for t = 1, . . . , 
. Since by construction it is still

the case that R = DRSRA (and also that C = ASCDC and Ψ = DRSRC), where the
sampling matrices and the diagonal rescaling matrices are defined as in section 3.1, it
follows from Lemma 3 that

CŨR = H̃�H̃
T
� (DRSR)TDRSRA.(37)

In the linear time case we had that HT
k Hk = Ik since the columns of Hk were k

of the left singular vectors of C. This allowed us to prove Lemma 2, as described
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Fig. 5. Diagram for the ConstantTimeCUR algorithm.

in section 3.1. In the constant additional time setting, the columns of H̃� are only
approximations to k of the left singular vectors of C, but we still have that H̃T

� H̃� ≈ I�.
To quantify this, define Zα,β ∈ R

c×(β−α+1) to be the matrix whose columns are the
αth through the βth singular vectors of WTW and T ∈ R

�×� to be the diagonal
matrix with elements Ttt = 1/σt(W ). If we define the matrix Δ ∈ R

�×� to be

Δ = TZT
1,�(C

TC −WTW )Z1,�T,(38)

then Lemma 5 will establish that∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖1/2

F )
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
,(39)

and Lemma 4 establishes that H̃T
� H̃� = I� + Δ. Thus, as in the linear time case, we

can split ∥∥A− CŨR
∥∥
ξ
≤

∥∥A− H̃�H̃
T
� A

∥∥
ξ
+
∥∥H̃�H̃

T
� A− CŨR

∥∥
ξ

for ξ = 2, F and then bound the two terms separately. The first term can be bounded
by the constant time SVD results of [11], the second term can be bounded by the
matrix multiplication results of [10], and bounding the overall error depends on both
results. Due to the two levels of sampling, the additional error will be larger than in
the linear additional time framework, but it can be made arbitrarily small by choosing
a constant number of rows and columns.

4.2. Analysis of the implementation and running time. In the Con-

stantTimeCUR algorithm the sampling probabilities {pi}mi=1 and {qj}nj=1 (if they

are chosen to be of the form used in Theorem 6) can be computed in one pass and
O(c + r) additional space and time using the Select algorithm of [10]. Given the
columns of A to be sampled, we do not explicitly construct the matrix C but instead
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perform a second level of sampling and select w rows of C with probabilities {πi}mi=1

in order to construct the matrix W ; this requires a second pass and O(w) additional
space and time. Then, in a third pass we explicitly construct W ; this requires addi-
tional space and time that is O(cw). Similarly, a description of the matrix R can then
be constructed in the same third pass using additional space and time that is O(r).
Then, given W , computing WTW requires O(c2w) additional time and computing
the SVD of WTW requires O(c3) additional time. The matrix Ψ can be computed
in the same third pass by sampling the same r rows of C that were used to construct
R from A; this requires additional time that is O(cr). The matrix Φ̃ can be explic-
itly computed using O(c2k) additional time and then the matrix U = Φ̃ΨT can be
computed using O(c2r) additional time. Thus, since c, r, and k are assumed to be
constants, overall O(1) additional space and time are required by the Constant-

TimeCUR algorithm, and requirements (i)–(iii) of section 1 are satisfied. Note that
the “description” of the solution that is computable in the allotted additional space
and time is the matrix Ũ , with the labels i1, . . . , ir and j1, . . . , jc indicating the rows
chosen to construct C and R as well as the corresponding probabilities {pit}

r
t=1 and

{qjt}
c
t=1; we note that we need to know pi only for the sampled rows i and qj only for

the sampled columns j.

4.3. Analysis of the sampling step. Before stating and proving the main
theorem of this section, we will first prove several useful lemmas. First, in Lemma 3
we will establish (37).

Lemma 3.

CŨR = H̃�H̃
T
� (DRSR)TDRSRA.

Proof. Since h̃t = Czt/σt(W ) for t = 1, . . . , 
, we have that C =
∑c

t=1 σt(W )h̃tzt
T
.

Thus, we have that

CŨR = C

(
�∑

t=1

1

σ2
t (W )

ztzt
T

)
CT (DRSR)TR

=

(
�∑

t=1

h̃th̃tT

)
(DRSR)TR.

The lemma follows since
∑�

t=1 h̃
th̃tT = H̃�H̃

T
� and since R = DRSRA.

Next, Lemma 4 will characterize, in terms of Δ, the degree to which the columns
of H̃� are not orthonormal. Note that it appeared in [11].

Lemma 4. When written in the basis with respect to Z,

H̃T
� H̃� = I� + Δ.

Furthermore, for ξ = 2, F ,

‖Δ‖ξ ≤ 1

γ ‖W‖2
F

∥∥CTC −WTW
∥∥
ξ
.

Proof. Recall that H̃� = CZ1,�T and that TTZT
1,�W

TWZ1,�T = I�, so that∥∥H̃T
� H̃� − I�

∥∥
ξ

=
∥∥TTZT

1,�C
TCZ1,�T − TTZT

1,�W
TWZ1,�T

∥∥
ξ

(40)

=
∥∥TTZT

1,�

(
CTC −WTW

)
Z1,�T

∥∥
ξ
.(41)
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Using the submultiplicativity properties of the 2-norm, and in particular

‖AB‖ξ ≤ ‖A‖2 ‖B‖ξ ,(42)

‖AB‖ξ ≤ ‖A‖ξ ‖B‖2 ,(43)

for both ξ = 2, F , we get∥∥H̃T
� H̃� − I�

∥∥
ξ
≤

∥∥TTZT
1,�

∥∥
2

∥∥CTC −WTW
∥∥
ξ
‖Z1,�T‖2(44)

≤ ‖T‖2
2

∥∥CTC −WTW
∥∥
ξ

(45)

≤ max
t=1,...,�

(
1/σ2

t (W )
) ∥∥CTC −WTW

∥∥
ξ
,(46)

since ‖Z1,�‖2 = 1. The lemma follows since σ2
t (W ) ≥ γ ‖W‖2

F for all t = 1, . . . , 
 by
the definition of 
.

Next, in Lemma 5 we will establish (39).
Lemma 5.∥∥H̃�H̃

T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖1/2

F )
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
.

Proof. From Lemma 3 we have that CŨR = H̃�H̃
T
� (DRSR)TDRSRA. Let us

define the matrix Ω ∈ R
�×n as

Ω = H̃T
� A− H̃T

� (DRSR)TDRSRA.

Thus, since Tr
(
XXT

)
= ‖X‖2

F for a matrix X, we have∥∥H̃�Ω
∥∥2

F
= Tr(ΩT H̃T

� H̃�Ω)

= Tr(ΩT (I� + Δ)Ω)(47)

= ‖Ω‖2
F + Tr(ΩTΔΩ)

≤ ‖Ω‖2
F + ‖Δ‖2 ‖Ω‖2

F ,(48)

where (47) follows from Lemma 4 and (48) follows since
∣∣Tr(ΩTΔΩ)

∣∣≤‖Δ‖2 Tr(ΩTΩ).
Thus, ∥∥H̃�H̃

T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖2)

1/2 ∥∥H̃T
� A− H̃T

� (DRSR)TDRSRA
∥∥
F
,

and the lemma then follows.
Finally, in Lemma 6 we show that ‖W‖F = ‖C‖F = ‖A‖F when optimal prob-

abilities are used. It also appeared in [11].
Lemma 6. Suppose A ∈ R

m×n, and run the ConstantTimeCUR algorithm by
sampling c columns of A with probabilities {qj}nj=1 (and then sampling w rows of C

with probabilities {πi}mi=1 to construct W ) and r rows of A with probabilities {pi}mi=1.

Assume that pi = |A(i)|2/ ‖A‖2
F and qj = |A(j)|2/ ‖A‖2

F . Then ‖W‖F = ‖C‖F =
‖A‖F .

Proof. If pi = |A(i)|2/ ‖A‖2
F , then we have that ‖C‖2

F =
∑c

t=1 |C(t)|2 =
∑c

t=1|A(it)|2
cpit

= ‖A‖2
F . Similarly, if qj = |C(j)|2/ ‖C‖2

F , then we have that ‖W‖2
F =∑w

t=1

∣∣W(t)

∣∣2 =
∑w

t=1

|C(it)
|2

wqit
= ‖C‖2

F . The lemma follows.
Here is our main theorem regarding the ConstantTimeCUR algorithm de-

scribed in section 4.1. It is the constant time analogue of Theorem 5. Note that
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in this theorem we restrict ourselves to sampling probabilities that are optimal in the
sense of section 2.3, and to choosing sufficiently many columns and rows to ensure
that the additional error is less than ε ‖A‖F .

Theorem 6. Suppose A ∈ R
m×n, and let C, Ũ , and R be constructed from

the ConstantTimeCUR algorithm by sampling c columns of A with probabilities
{qj}nj=1 (and then sampling w rows of C with probabilities {πi}mi=1 to construct W )

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/ ‖A‖2
F and

qj = |A(j)|2/ ‖A‖2
F . Let η = 1 +

√
8 log(3/δ) and ε > 0.

If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-
rithm is run with γ = ε/100k, then if we let c = Ω(k2η2/ε8), w = Ω(k2η2/ε8), and
r = Ω(k/δ2ε2), then with probability at least 1 − δ,∥∥A− CŨR

∥∥
F
≤ ‖A−Ak‖F + ε ‖A‖F .(49)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm
is run with γ = ε/100, then if we let c = Ω(η2/ε8), w = Ω(η2/ε8), and r = Ω(k/δ2ε2),
then with probability at least 1 − δ,∥∥A− CŨR

∥∥
2
≤ ‖A−Ak‖2 + ε ‖A‖F .(50)

Proof. Let us define the events:

Ec :
∥∥AAT − CCT

∥∥
F
≤ η√

c
‖A‖2

F ,(51)

Ew :
∥∥CTC −WTW

∥∥
F
≤ η√

w
‖A‖2

F ,(52)

Er :
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
≤ 3

δ
√
r

∥∥H̃�

∥∥
F
‖A‖F .(53)

Under the assumptions of this theorem, event Ec holds with probability greater than
1− δ/3 by Theorem 1, and similarly for event Ew. Next, we claim that Er holds with
probability greater than 1 − δ/3. To prove this it suffices to prove that

E
[∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F

]
≤ 1√

r

∥∥H̃T
�

∥∥
F
‖A‖F ,(54)

since the claim that Pr [Er] ≥ 1 − δ/3 follows immediately from (54) by Markov’s
inequality; but (54) follows from Theorem 1 since the probabilities {pi}mi=1 used to

sample the columns of H̃� and the corresponding rows of A are of the form (6). Thus,
under the assumptions of the theorem,

Pr [Eξ] ≥ 1 − δ/3 for ξ = c, w, r.

Next, from Lemma 4 and the Cauchy–Schwarz inequality, it follows that

∥∥H̃�

∥∥2

F
=

�∑
t=1

∣∣h̃tT h̃t
∣∣ =

�∑
t=1

1 + Δtt ≤ k +
√
k ‖Δ‖F .(55)
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Since
√

1 + x ≤ 1 +
√
x for x ≥ 0 it follows from (55) and (53) that under the event

Er we have∥∥H̃T
� A− H̃T

� (DRSR)TDRSRA
∥∥
F
≤ 3

δ
√
r

(√
k + k1/4 ‖Δ‖1/2

F

)
‖A‖F .(56)

By combining (56) with Lemma 5 we have that

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ 3

δ
√
r

(
1 + ‖Δ‖1/2

F

)(√
k + k1/4 ‖Δ‖1/2

F

)
‖A‖F

≤
(

9k

δ2r

)1/2 (
1 + ‖Δ‖1/2

F

)2

‖A‖F(57)

≤
(

9k

δ2r

)1/2 (
1 + 3 ‖Δ‖1/2

F

)
‖A‖F(58)

≤
(

9k

δ2r

)1/2
⎛⎝1 +

3
∥∥CTC −WTW

∥∥1/2

F√
γ ‖W‖F

⎞⎠ ‖A‖F ,(59)

where (57) follows since k1/4 ≤
√
k, (58) follows by multiplying out terms and since

‖Δ‖F ≤ 1 under the assumptions of the theorem, and (59) follows from the bound on
‖Δ‖F in Lemma 4.

Let us first consider establishing the Frobenius norm bound of (49). Recall that
in this case we have set γ = ε/100k. We will use the triangle inequality to get∥∥A− CŨR

∥∥
F
≤

∥∥A− H̃�H̃
T
� A

∥∥
F

+
∥∥H̃�H̃

T
� A− CŨR

∥∥
F

(60)

and will bound each term separately. First, using the probabilities {qj}nj=1 and the

values of c, w = Ω(k2η2/ε8), then under the event Ec
⋂
Ew we have that∥∥A− H̃�H̃

T
� A

∥∥
F
≤ ‖A−Ak‖F +

ε

2
‖A‖F(61)

by Theorem 3; see also [11]. In addition, using the sampling probabilities {pi}mi=1 and
values of r = Ω(k/δ2ε2) and w = Ω(k2η2/ε8), and noting Lemma 6, it follows from
(59) that under the event Er

⋂
Ew,∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ ε

2
‖A‖F .(62)

Thus, under the event Ec
⋂
Ew

⋂
Er, which has probability at least 1−δ, by combining

(61) and (62) we see that (49) follows.
Let us next consider establishing the spectral norm bound of (50). Recall that in

this case we have set γ = ε/100 and that∥∥A− CŨR
∥∥

2
≤

∥∥A− H̃�H̃
T
� A

∥∥
2

+
∥∥H̃�H̃

T
� A− CŨR

∥∥
F

(63)

by the submultiplicitivity of ‖·‖2 and since ‖·‖2 ≤ ‖·‖F . First, using the probabilities
{qj}nj=1 and the values of c, w = Ω(η2/ε8), under the event Ec

⋂
Ew we have that

∥∥A− H̃�H̃
T
� A

∥∥
2
≤ ‖A−Ak‖2 +

ε

2
‖A‖F(64)
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by Theorem 3; see also [11]. In addition, using the sampling probabilities {pi}mi=1 and
values of r = Ω(k/δ2ε2) and w = Ω(η2/ε8), and noting Lemma 6, it follows from (59)
that under the event Er

⋂
Ew,∥∥H̃�H̃

T
� A− CŨR

∥∥
F
≤ ε

2
‖A‖F .(65)

Thus, under the event Ec
⋂
Ew

⋂
Er, which has probability at least 1−δ, by combining

(64) and (65) we see that (50) follows.
As in the linear additional time framework, the results of Theorem 6 hold for all

k and are of particular interest when A is well approximated by a matrix of low rank
since then one may choose k = O(1) and obtain a good approximation. In addition,
it follows from (50) that ∥∥A− CŨR

∥∥
2
≤ (1/

√
k + ε′) ‖A‖F .

Thus, under the assumptions of Theorem 6 if we choose k = 1/ε′
2

and let ε′′ = 2ε′,
then we have that

‖A− CUR‖2 ≤ ε′′ ‖A‖F(66)

holds with probability at least 1 − δ.
We note the following lemma. This result is not needed in this paper, but is

included for future reference [13].
Lemma 7. ∥∥Ũ∥∥

2
≤ O(1)

γ ‖A‖F
.

Proof. First note that ‖Ũ‖2 = ‖Φ̃ΨT ‖2 ≤ ‖Φ̃‖2‖ΨT ‖2. Since Φ̃ =
∑�

t=1
1

σ2
t (W )

ztzt
T
, we see that ‖Φ̃‖2 = 1

σ2
�
(W )

≤ 1
γ‖W‖2

F

. The lemma follows since, when using the

probabilities of Theorem 6, we have that ‖ΨT ‖F ≤ O(1)‖A‖F and that 1/‖W‖2
F ≤

O(1)/‖A‖2
F .

5. Discussion and conclusion. To put the CUR decomposition into context,
it will be useful to contrast it with the SVD. The SVD of A expresses A as A =∑ρ

t=1 σt(A)utvt
T
. Keeping the first k terms of this expansion, i.e., keeping Ak =∑k

t=1 σt(A)utvt
T

= UkΣkV
T
k , gives us the “optimal” rank-k approximation to A with

respect to both the spectral norm and the Frobenius norm [19, 22]. Thus, computing
the SVD gives us a good succinct approximation, since it only takes space O(k(m+n))
to write down Uk,Σk, Vk. However, the computational problem of finding the SVD
cannot be carried out in a small constant number of passes. Our theorems say that
weaker bounds, which are similar in spirit, may be achieved by CUR. Note, however,
that although the SVD may be thought of as a rotation followed by a rescaling followed
by a rotation, the CUR decomposition is quite different; both C and R perform an
action like A and thus U must involve a pseudoinverse-like operation. Note also that
the last upper bound, i.e., (v), is much smaller than ‖A‖F when A has a good low-
rank approximation. This is indeed the case for matrices occurring in many contexts,
such as matrices for which principal component analysis is used.

Recent work has focused on developing new techniques for proving lower bounds
on the number of queries a sampling algorithm is required to perform in order to
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approximate a given function accurately with a low probability or error [3, 4]. In [4]
these methods have been applied to the low-rank matrix approximation problem and
to the matrix reconstruction problem. In the latter problem, the input is a matrix
A ∈ R

m×n and the goal is to find a matrix B that is close to A. In [4] it is shown that
finding a B such that ‖A−B‖F ≤ ε ‖A‖F requires Ω(mn) queries and that finding
a B such that ‖A−B‖2 ≤ ε ‖A‖F requires Ω(m+ n) queries. Thus, our algorithm is
optimal for constant ε.

During the time since this manuscript was submitted for journal publication we
have become aware of other low-rank matrix decompositions of the form A ≈ CUR,
where C is a matrix consisting of a small number of columns of A, R is a matrix
consisting of a small number of rows of A, and U is an appropriately defined low-
dimensional matrix. Work by Stewart [26, 27, 5] and independently work by Goreinov,
Tyrtyshnikov, and Zamarashkin [21, 20] have considered matrix decompositions with
structural (but not algorithmic) properties quite similar to the CUR decompositions
we have considered in this paper. Drineas and Mahoney have extended the CUR
decompositions of this paper to kernel-based statistical learning [15, 16] and large
tensor-based data [17]. These latter papers also contain a discussion of the relation-
ship between the work presented in this paper and the related work of Stewart and
Goreinov, Tyrtyshnikov, and Zamarashkin.
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