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Abstract. A universalization of a parameterized investment strategy is an online algorithm
whose average daily performance approaches that of the strategy operating with the optimal param-
eters determined offline in hindsight. We present a general framework for universalizing investment
strategies and discuss conditions under which investment strategies are universalizable. We present
examples of common investment strategies that fit into our framework. The examples include both
trading strategies that decide positions in individual stocks, and portfolio strategies that allocate
wealth among multiple stocks. This work extends in a natural way Cover’s universal portfolio work.
We also discuss the runtime efficiency of universalization algorithms. While a straightforward im-
plementation of our algorithms runs in time exponential in the number of parameters, we show that
the efficient universal portfolio computation technique of Kalai and Vempala [Proceedings of the
41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, CA, 2000,
pp. 486–491] involving the sampling of log-concave functions can be generalized to other classes of
investment strategies, thus yielding provably good approximation algorithms in our framework.
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1. Introduction. An age-old question in finance deals with how to manage
money on the stock market to obtain an “acceptable” return on investment. An
investment strategy is an online algorithm that attempts to address this question
by applying a given set of rules to determine how to invest capital. Typically, an
investment strategy is parameterized by a vector w ∈ R

∗ =
⋃∞

i=1 R
i that dictates how

the strategy operates. The optimal parameters that maximize the strategy’s return
are unknown when the algorithm is run, and the parameters are usually chosen quite
arbitrarily. A universalization of an investment strategy is an online algorithm based
on the strategy whose average daily performance approaches that of the strategy
operating with the optimal parameters determined offline in hindsight.

Consider the constantly rebalanced portfolio (CRP) investment strategy univer-
salized by Cover [5] and the subject of several extensions and generalizations [3, 6, 11,
14, 16, 20]. The CRP strategy maintains a constant proportion of total wealth in each
stock, where the proportions are dictated by the parameters given to the strategy. In
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a stock market with m stocks, the parameter space for the CRP strategy is

Wm =

{
w ∈ [0, 1]m

∣∣ m∑
i=1

wi = 1

}
,

the set of vectors in R
m whose components are between 0 and 1 and add up to 1.

Given a portfolio vector w = (w1, . . . , wm) ∈ Wm, wi tells us the proportion of wealth
to invest in stock i for 1 ≤ i ≤ m. At the beginning of each day, the holdings are
rebalanced ; i.e., money is taken out of some stocks and put into others, so that the
desired proportions are maintained in each stock. As an example of the robustness of
the CRP strategy, consider the following market with two stocks [11, 16]. The price
of one stock remains constant, while the other stock doubles and halves in price on
alternate days. Investing in a single stock will at most double our money. With a
CRP ( 1

2 ,
1
2 ) strategy, however, our wealth will increase exponentially, by a factor of

( 1
2 · 1 + 1

2 · 2) × ( 1
2 · 1 + 1

2 · 1
2 ) = 3

2 × 3
4 = 9

8 every two days.
Cover developed an investment strategy that effectively distributes wealth uni-

formly over all portfolio vectors w ∈ Wm on the first day and executes the CRP
strategy with daily rebalancing according to each w on the (infinitesimally small)
proportion of wealth initially allocated to each w. Cover showed that the average
daily log-performance1 of such a strategy approaches that of the CRP strategy oper-
ating with the optimal return-maximizing parameters chosen with hindsight.

This paper generalizes previous results and introduces a framework that allows
universalizations of other parameterized investment strategies. As we see in section 2,
investment strategies typically fall under two categories: trading strategies operate
on a single stock and dictate when to buy and short2 the stock; portfolio strategies,
such as CRP, operate on the stock market as a whole and dictate how to allocate
wealth among multiple stocks. We present several examples of common trading and
portfolio strategies that can be universalized in our framework. We discuss our univer-
salization framework in section 3. The proofs of our results are very general, and, as
with previous universal portfolio results, we make no assumptions on the underlying
distribution of the stock prices; our results are applicable for all sequences of stock re-
turns and market conditions. The running times of universalization algorithms are, in
general, exponential in the number of parameters used by the underlying investment
strategy. Kalai and Vempala [14] presented an efficient implementation of the CRP
algorithm that runs in time polynomial in the number of parameters. In section 4, we
present general conditions on investment strategies under which the universalization
algorithm can be efficiently implemented. We also give some investment strategies
that satisfy these conditions. Section 5 concludes with directions for further research.

2. Types of investment strategies. Suppose we would like to distribute our
wealth among m stocks.3 Investment strategies are general classes of rules that dictate
how to invest capital. At time t > 0, a strategy S takes as input an environment vector
Et and a parameter vector w, and returns an investment description St(w) specifying
how to allocate our capital at time t. The environment vector Et contains historic

1The average daily log-performance is the average of the logarithms of the factors by which our
wealth changes on a daily basis. This notion is discussed further in section 3.1.

2A short position in a stock, discussed in section 2.1, allows us to earn a profit when the stock
declines in value.

3We use the term “stocks” in order to keep our terminology consistent with previous work, but
we actually mean a broader range of investment instruments, including both long and short positions
in stocks.
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market information, including stock price history, trading volumes, etc.; the parameter
vector w is independent of Et and specifies exactly how the strategy S should operate;
the investment description St(w) = (St1(w), . . . , Stm(w)) is a vector specifying the
proportion of wealth to put in each stock, where we put a fraction Sti(w) of our
holdings in stock i, for 1 ≤ i ≤ m. For example, CRP is an investment strategy;
coupled with a portfolio vector w, it tells us to “rebalance our portfolio on a daily
basis according to w”; its investment description, CRPt(w) = w, is independent of
the market environment Et.

There are two general types of investment strategies that we focus upon in this
paper. Trading strategies tell us whether we should take a long (bet that the stock
price will rise) or a short (bet that the stock price will fall) position on a given stock.
Portfolio strategies tell us how to distribute our wealth among various stocks. We
should note here that these two classes do not exhaust all investment strategies; there
exist strategies that take both long and short positions in several stocks (as in [21]).
Trading strategies are denoted by T , and portfolio strategies are denoted by P . We
use S to denote either kind of strategy. For k ≥ 2, let

Wk =

{
w = (w1, . . . , wk) ∈ [0, 1]k

∣∣ k∑
i=1

wi = 1

}
.(2.1)

Remark 1. Wk is a (k−1)-dimensional simplex in R
k. The investment strategies

that we describe below are parameterized by vectors in W�
k = Wk ×· · ·×Wk (� times)

for some k ≥ 2 and � ≥ 1. We may write w ∈ W�
k in the form w = (w1, . . . ,w�),

where wι = (wι1, . . . , wιk) for 1 ≤ ι ≤ �.

2.1. Trading strategies. Suppose that our market contains a single stock. We
have m = 2 potential investments: either a long position or a short position in the
stock. To take a long position, we buy shares in hopes that the share price will rise.
We close a long position by selling the shares. The money we use to buy the shares
is our investment in the long position; the value of the investment is the money we
get when we close the position. If we let pt denote the stock price at the beginning of
day t, the value of our investment will change by a factor of xt = pt+1

pt
from day t to

t + 1.
To take a short position, we borrow shares from our broker and sell them on the

market in hopes that the share price will fall. We close a short position by buying the
shares back and returning them to our broker. As collateral for the borrowed shares,
our broker has a margin requirement : a fraction α of the value of the borrowed shares
must be deposited in a margin account. Should the price of the security rise sufficiently,
the collateral in our margin account will not be enough, and the broker will issue a
margin call, requiring us to deposit more collateral. The margin requirement is our
investment in the short position; the value of the investment is the money we get
when we close the position.

Lemma 2.1. Let the margin requirement for a short position be α ∈ (0, 1]. Sup-
pose that a short position is opened on day t and that the price of the underlying stock
changes by a factor of xt = pt+1

pt
< 1 + α during the day. Then the value of our

investment in the short position changes by a factor of x′
t = 1 + 1−xt

α during the day.
Proof. Suppose that we have $v to deposit in the zero-interest margin account.

Using this as our investment in the short position, we can sell $v/α worth of shares.
Combining the proceeds of the stock sale with our margin account balance, we will
have a total of v + v/α dollars. At the end of the day, it will cost xtv/α dollars to
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buy the shares back, and we will be left with v + v
α − xt

v
α dollars, which is positive

since xt < 1 + α. Thus, our investment of $v in the short position has changed by a
factor of 1 + 1−xt

α , as claimed.
Should the price of the underlying stock change by a factor greater than 1 + α,

we will lose more money than we initially put in. We will assume that the margin
requirement α is sufficiently large that the daily price change of the stock is always
less than 1 + α.

Remark 2. This assumption can be eliminated by purchasing a call option on
the stock with some strike price p < (1 + α)pt. Should the stock price get too high,
the call allows us to purchase the stock back for $p. Though its price detracts from
the performance of our short trading strategy, the call protects us from potentially
unlimited losses due to rising stock price.

If a short position is held for several days, assume that it is rebalanced at the
beginning of each day: either part of the short is closed (if xt > 1) or additional
shares are shorted (if xt < 1) so that the collateral in the margin account is exactly
an α fraction of the value of the shorted shares. This ensures that the value of a
short position changes by a factor x′

t = 1 + 1−xt

α each day. Treating short positions
in this way, they can simply be viewed as any other stock, so trading strategies are
effectively investment strategies that decide between two potential investments: a long
or a short position in a given stock. The investment description of a trading strategy
T is Tt = (Tt1, Tt2), where Tt1 and Tt2 are the fractions of wealth to put in a long and
short position, respectively.

Remark 3. Let D = Tt1 − Tt2/α be the net long position of the investment
description. In practice, if D > 0, investors should put a D fraction of their money
in the long position and a 1 − D fraction in cash; if D < 0, investors should invest
D in the short position and 1 − D in cash; if D = 0, investors should avoid the
stock completely and keep all their money in cash. From a practical standpoint, it is
desirable for the trading strategy to be decisive, i.e., |D| = 1, so that our allocation
of money to the stock is always fully invested in the stock (either as a long or a short
position). We show in section 3 that investment strategies that are continuous in
their parameter spaces are universalizable. Though decisive trading strategies T are
discontinuous, they can be approximated by continuous strategies whose investment
descriptions converge almost everywhere to Tt as t → ∞ (see, for example, (2.3)
below).

We now describe some commonly used and researched trading strategies [4, 10,
18, 22] and show how they can be parameterized.

MA[k]: Moving average cross-over with k-day memory. In traditional applica-
tions [10] of this rule, we compare the current stock price with the moving average
over, say, the previous 200 days: if the price is above the moving average, we take a
long position; otherwise we take a short position. Some generalizations of this rule
have been made, where we compare a fast moving average (over, for example, the
past 5 to 20 days) with a slow moving average (over the past 50 to 200 days). We
generalize this rule further. Given day t ≥ 0, let vt = (vt1, . . . , vtk) be the price-
history vector over the previous k days, where vtj is the stock price on day t − j.
Assume that the stock prices have been normalized such that 0 < vtj ≤ 1. Let
(wF ,wS) ∈ W2

k (where Wk is defined in (2.1)) be the weights used to compute the
fast moving and slow moving averages, so that these averages on day t are given by
wF ·vt and wS ·vt, respectively. Since the prices have been normalized to the interval
(0, 1], −1 ≤ (wF − wS) · vt ≤ 1, let g : [−1, 1] → [0, 1] be the long/short allocation
function. The idea is that g((wF −wS) ·vt) represents the proportion of wealth that
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we invest in a long position. The full investment description for the MA = MA[k]
trading strategy is

MAt(wF ,wS) =
(
g((wF − wS) · vt), 1 − g((wF − wS) · vt)

)
.

Note that the dimension of the parameter space for MA[k] is 2(k−1) since each of wF

and wS are taken from (k − 1)-dimensional spaces. Possible functions for g include

gs(x) =

{
0 if x < 0,

1 otherwise,
(step function)(2.2)

g(t)(x) =

⎧⎪⎨
⎪⎩

0 if x < − 1
t ,

t
2 (x + 1

t ) if − 1
t ≤ x ≤ 1

t ,

1 if 1
t < x,

(linear step approximation)(2.3)

and the line

g�(x) =
x + 1

2
(2.4)

that intersects gs(x) at the extreme points x = ±1 of its domain. Note that g(t)(x)
is parameterized by the day t during which it is called and that it converges to gs(x)
on [−1, 1] \ {0} as t increases.

Remark 4. The long/short allocation function used in traditional applications of
this rule is the step function gs(·). As we see in section 3, in order for an investment
strategy to be universalizable, its allocation function must be continuous, necessitating
the continuous approximation g(t)(·). The linear approximation g�(·) can be used
with the results of section 4, to allow for efficient computation of the universalization
algorithm.

SR[k]: Support and resistance breakout with k-day memory. Discussed as early
as the work of Wyckoff [22] in 1910, this strategy uses the idea that the stock price
trades in a range bounded by support and resistance levels. Should the price fall
below the support level, the idea is that it will continue to fall, and a short position
should be taken in the stock. Similarly, should the price rise above the resistance
level, the idea is that it will continue to rise, and a long position should be taken in
the stock. If the stock price remains between the support and resistance levels, the
idea is that it will continue to trade in this range in an unpredictable pattern, and the
stock should be avoided. Support and resistance levels are defined quite arbitrarily in
practice, usually as the minimum and maximum prices over the past k days, where
k is usually taken to be 50, 150, or 200 [4]. To generalize this rule, given day t ≥ 0,
let vt = (vt1, . . . , vtk) and vt = (vt1, . . . , vtk) be the minimum and maximum price
histories, where vtj and vtj are the minimum and maximum prices over the previous
j days, normalized so that they are in the range (0, 1]. Let w ∈ Wk be the weights for
computing the support and resistance levels, so that these levels on day t are given
by st = w · vt and rt = w · vt, respectively.

Lemma 2.2. The support level is bounded above by the resistance level: st ≤ rt.
Proof. This follows from the fact that for all 1 ≤ j ≤ k, vtj ≤ vtj .

The long/short allocation function will be denoted by h : {(x, y) ∈ [−1, 1]2 |x ≤
y} → [0, 1]. Let pt be the current stock price (normalized to (0, 1] along with vt and
vt). The idea is that h(pt − rt, pt − st) tells us the proportion of wealth that we



6 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

invest in a long position. The full investment description for the SR = SR[k] trading
strategy is

SRt(w) =
(
h(pt − rt, pt − st), 1 − h(pt − rt, pt − st)

)
.

The value of h need only be defined on {(x, y) ∈ [−1, 1]2 |x ≤ y} since, by Lemma 2.2,
st ≤ rt. A possible function for h is

hs(x, y) =

⎧⎪⎨
⎪⎩

0 if x ≤ y ≤ 0,
1

α+1 if x < 0 < y,

1 if y ≥ x ≥ 0,

(step function)(2.5)

where the investment allocation 1
α+1 long, 1 − 1

α+1 = α
α+1 short is equivalent to

having no position in the stock, since the return from such an allocation is xt

α+1 +(1+
1−xt

α ) α
α+1 = 1. Other possibilities include a continuous function

h(t)(x, y),(2.6)

which approximates hs(x, y) with maximum slope at most 1
t (defined similarly to

g(t)(x)), or the plane

hp(x, y) =
(x + 1)α

2(α + 1)
+

y + 1

2(α + 1)
(2.7)

that intersects hs(x, y) at the extreme points (x, y) = (−1,−1), (−1, 1), and (1, 1) of
its domain.

2.2. Portfolio strategies. Portfolio strategies are investment strategies that
distribute wealth among m stocks. The investment description of a portfolio strategy
P is Pt = (Pt1, . . . , Ptm), where 0 ≤ Pti ≤ 1 and

∑m
i=1 Pti = 1. We put a fraction Pti

of our wealth in stock i at time t.
CRP: Constantly rebalanced portfolio [5]. The parameter space for the CRP

strategy is W = Wm. The investment description is CRPt(w) = w: at the beginning
of each day, we invest a wi proportion of our wealth in stock i.

CRP-S: Constantly rebalanced portfolio with side information. Cover and Or-
dentlich [6] consider a generalization of CRP. Rather than rebalancing our hold-
ings according to a single portfolio vector w ∈ Wm every day, we have k vectors
w1, . . . ,wk ∈ Wm and a side information state yt ∈ {1, . . . , k} that classifies each
day t into one of k possible categories; on day t we rebalance our holdings accord-
ing to wyt . By partitioning the time interval into k subsequences corresponding
to each of the k side information states and running k instances of the univer-
salization algorithm (one instance for each state), Cover and Ordentlich show that
the average daily return approaches that of the underlying strategy operating with
k optimal parameters, w∗

1, . . . ,w
∗
k ∈ Wm, where w∗

j is used on days t when the
side information state is yt = j. We generalize this further by allowing portions
of our wealth to be rebalanced according to several of the wj every day. Sup-
pose that the side information is encapsulated in some vector v ∈ R

� for some �.
This vector can contain information about specific stocks, such as historic perfor-
mance and company fundamentals, or macroeconomic indicators such as inflation
and unemployment. Let f = (f1, . . . , fk) : R

� → [0, 1]k be some function satisfying
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∑k
j=1 fj(v) = 1 for all v ∈ R

�. The parameter space is Wk
m; the investment descrip-

tion is CRP-St(w1, . . . ,wk) =
∑k

j=1 fj(vt)wj , where vt is the indicator vector for
day t. Under such a scheme, we have the flexibility of splitting our wealth among
multiple sets of portfolios w1, . . . ,wk on any given day, rather than being forced to
choose a single one. For example, assume that v is a k-dimensional vector, with each
vi corresponding to portfolio wi. Define f : R

k → [0, 1]k by fi(vt) = vti∑k
ι=1 vtι

, so that

our allocation is biased towards portfolios corresponding to higher indicators while
still maintaining a position in the others.

IA[k]: k-way indicator aggregation. For each day t ≥ 0, suppose that each stock i
has a set of k indicators vti = (vti1, . . . , vtik), where each vtij ∈ (0, 1] and, for 1 ≤ j ≤
k, vt1j , . . . , vtmj have been normalized such that there is at least one i such that vtij =
1. Examples of possible indicators include historic stock performance and trading
volumes, and company fundamentals. Our goal is to aggregate the indicators for each
stock to get a measure of the stock’s attractiveness and put a greater proportion of our
wealth in stocks that are more attractive. We will aggregate the indicators by taking
their weighted average, where the weights will be determined by the parameters. The
parameter space is W = Wk, and the investment description is

IAt(w) =

(
w · vt1∑m
i=1 w · vti

, . . . ,
w · vtm∑m
i=1 w · vti

)
.

3. Universalization of investment strategies.

3.1. Universalization defined. In a typical stock market, wealth grows geo-
metrically. On day t ≥ 0, let xt be the return vector for day t, the vector of factors
by which stock prices change on day t. The return vector corresponding to a trading
strategy on a single stock is (xt, 1 + 1−xt

α ), where xt is the factor by which the price

of the stock changes and 1 + 1−xt

α is the factor by which our investment in a short
position changes, as described in Lemma 2.1; the return vector corresponding to a
portfolio strategy is (xt1, . . . , xtm), where xti is the factor by which the price of stock
i changes, where 1 ≤ i ≤ m. Henceforth, we do not make a distinction between
return vectors corresponding to trading and portfolio strategies; we assume that xt

is appropriately defined to correspond to the investment strategy in question. For an
investment strategy S with parameter vector w, the return of S(w) during the tth
day—the factor by which our wealth changes on the tth day when invested according
to S(w)—is St(w) · xt =

∑m
i=1 Sti(w) · xti. (Recall that St(w) is the investment

description of S(w) for day t, which is a vector specifying the proportion of wealth to

put in each stock.) Given time n > 0, let Rn(S(w)) =
∏n−1

t=0 St(w) · xt be the cumu-
lative return of S(w) up to time n; we may write Rn(w) in place of Rn(S(w)) if S
is obvious from context. We analyze the performance of S in terms of the normalized
log-return Ln(w) = Ln(S(w)) = 1

n logRn(w) of the wealth achieved.

For investment strategy S, let w∗
n = arg maxw∈R∗ Rn(S(w)) be the parameters

that maximize the return of S up to day n.4 An investment strategy U universalizes
(or is universal for) S if5

Ln(U) = Ln(S(w∗
n)) − o(1)

4As mentioned above, w∗
n can be computed only with hindsight.

5Unlike previously discussed investment strategies, the behavior of U is fully defined without an
additional parameter vector w.
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for all environment vectors En. That is, U is universal for S if the average daily
log-return of U approaches the optimal average daily log-return of S as the length n
of the time horizon grows, regardless of stock price sequences.

3.2. General techniques for universalization. Given an investment strat-
egy S, let W be the parameter space for S and let µ be the uniform measure over
W. Our universalization algorithm for S, U(S), is a generalization of Cover’s original
result [5]; we note that a similar algorithm appeared in [20] under the name “Aggre-
gating Algorithm.” The investment description Ut(S) for the universalization of S on
day t > 0 is a weighted average of St(w) over w ∈ W, with greater weight given to
parameters w that have performed better in the past (i.e., Rt(w) is larger). Formally,
the investment description is

Ut(S) =

∫
W
St(w)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

=

∫
W
St(w)Rt(S(w))dµ(w)∫
W
Rt(S(w))dµ(w)

,(3.1)

where we take R0(w) = 1 for all w ∈ W.6 Equivalently, the above integral might
be interpreted as “splitting our money” equally among all the different strategies and
“letting it sit.” In the following lemma, we will prove that this strategy has the same
expected gain as picking one strategy at random.

Remark 5. The definition of universalization can be expanded to include mea-
sures other than µ, but we consider only µ in our results.

Lemma 3.1 (see [3, 6]). The cumulative n-day return of U(S) is

Rn(U(S)) =

∫
W

Rn(w)dµ(w) = E
(
Rn(w)

)
,

which is the µ-weighted average of the cumulative returns of the investment strategies
{S(w) |w ∈ W}.

Proof. The return of U(S) on day t is Ut(S) ·xt, where xt is the return vector for
day t. The cumulative n-day return of U(S) is

Rn(U(S)) =

n−1∏
t=0

Ut(S) · xt =

n−1∏
t=0

∫
W
St(w)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

· xt

=

n−1∏
t=0

∫
W

(St(w) · xt)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

=
n−1∏
t=0

∫
W
Rt+1(w)dµ(w)∫

W
Rt(w)dµ(w)

.

The result follows from the fact that this product telescopes.
Rather than directly universalizing a given investment strategy S, we instead

focus on a modified version of S that puts a nonzero fraction of wealth into each of
the m stocks. Define the investment strategy S̄ by

S̄t(w) =

(
1 − ε

2(t + 1)2

)
St(w) +

ε

2m(t + 1)2

for t ≥ 0 and some fixed 0 < ε < 1. Rather than universalizing S, we instead
universalize S̄. Lemma 3.2 tells us that we do not lose much by doing this.

Lemma 3.2. For all n ≥ 0, (1) Rn(U(S̄)) ≥ (1−ε)Rn(U(S)) and (2) Ln(U(S̄)) =

Ln(U(S))− o(n)
n . (3) If U(S) is a universalization of S, then U(S̄) is a universalization

of S as well.

6Cover’s algorithm is a special case of this, replacing St(w) with w.
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Proof. Statements (2) and (3) follow directly from (1). Statement (1) follows from

the fact that for all w ∈ W, Rn(S̄(w)) =
∏n−1

t=0 S̄t(w) ·xt ≥
∏n−1

t=0 (1− ε
2(t+1)2 )St(w) ·

xt ≥ (1 −
∑n−1

t=0
ε

2(t+1)2 )Rn(S(w)) ≥ (1 − ε)Rn(S(w)).

Remark 6. Henceforth, we assume that suitable modifications have been made
to S to ensure that Sti(w) ≥ ε

2m(t+1)2 for all 1 ≤ i ≤ m and t ≥ 0.

Theorem 3.3. Given an investment strategy S, let W = W�
k (for some k ≥ 2

and � ≥ 1) be its parameter space. For 1 ≤ i ≤ m, 1 ≤ ι ≤ �, and 1 ≤ j ≤ k, assume

that there is a constant c such that
∣∣∣∂Sti(w)

∂wιj

∣∣∣ ≤ c(t+ 1) for all w ∈ W. Then U(S) is

a universalization of S.
To prove Theorem 3.3, we first prove some preliminary results; the proof follows

the same general strategy as in [5, 6].
Lemma 3.4. For nonnegative vector a and strictly positive vectors b and x,

min
i

ai
bi

≤ a · x
b · x ≤ max

i

ai
bi
.

Proof. Assume that the components of a and b are strictly positive. Otherwise,
the lemma holds trivially. Let imax = arg maxi

ai

bi
and imin = arg mini

ai

bi
, so that

ai
bi

≤ aimax

bimax

⇔ ai
aimax

≤ bi
bimax

and
ai
bi

≥ aimin

bimin

⇔ ai
aimin

≥ bi
bimin

.

Then

aimin
(ximin

+
∑

i �=imin

ai

aimin
xi)

bimin
(ximin

+
∑

i �=imin

bi
bimin

xi)
=

a · x
b · x =

aimax(ximax
+
∑

i �=imax

ai

aimax
xi)

bimax
(ximax

+
∑

i �=imax

bi
bimax

xi)
.

Therefore,

aimin

bimin

≤ a · x
b · x ≤ aimax

bimax

.

Our next two results are related to the (k−1)-dimensional volumes of some subsets
of R

k.
Lemma 3.5. The (k − 1)-dimensional volume of the simplex Wk = {w ∈

[0, 1]k |
∑k

i=1 wi = 1}, defined in (2.1), is
√
k

(k−1)! .

Proof. By induction on k, it can be shown that the k-dimensional volume of the

solid Wk(s) = {w |
∑k

i=1 wi ≤ s} is sk

k! . Written in terms of the length r of the line

segment passing between the origin and ( s
k , . . . ,

s
k ) ∈ R

k, the volume is 1
k!r

kk
k
2 since

s = r
√
k. Upon differentiation with respect to r, 1

(k−1)!r
k−1k

k
2 = 1

(k−1)!

√
ksk−1, we

arrive at the (k − 1)-dimensional volume of the simplex Wk(s) = {w |
∑k

i=1 wi = s}.
Setting s = 1 yields the desired result.

Lemma 3.6. The (k − 1)-dimensional volume of a (k − 1)-dimensional ball of

radius ρ embedded in Wk is π
k−1
2 ρk−1

Γ( k−1
2 +1)

, where

Γ(�) = (�− 1)! and Γ

(
� +

1

2

)
=

(
�− 1

2

)(
�− 3

2

)
· · ·

(
1

2

)√
π.

Proof. This result is proven in Folland [8, Corollary 2.56].
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Proof of Theorem 3.3. From Lemma 3.1, the return of U(S) is the average of
the cumulative returns of the investment strategies {S(w) |w ∈ W}. Let w∗ =
arg maxw∈W Rn(S(w)) be the parameters that maximize the return of S. We show
that there is a set B of nonzero volume around w∗ such that for w ∈ B the return
Rn(w) is close to the optimal return Rn(w∗). We then show that the contribution
of B to the average return is sufficiently large to ensure universalizability. We begin
by bounding the magnitude of the gradient vector ∇Rn(w). From Remark 6 and our
assumption in the statement of the theorem, for all w, t, i, ι, and j,∣∣∣∂Sti(w)

∂wιj

∣∣∣
Sti(w)

≤ c′m(t + 1)3,

where c′ = 2c
ε . Using this fact and Lemma 3.4, the partial derivative of the return

function Rn(w) = Rn(S(w)) =
∏n−1

t=0 rt(S(w)) with respect to parameter wιj is

∣∣∣∣∂Rn(w)

∂wιj

∣∣∣∣ ≤ Rn(w)

n−1∑
t=0

∣∣∣∂(St(w)·xt)
∂wιj

∣∣∣
St(w) · xt

≤ Rn(w)

n−1∑
t=0

∑m
i=1

∣∣∣∂Sti(w)
∂wιj

∣∣∣ · xti∑m
i=1 Sti(w) · xti

≤ Rn(w)

n−1∑
t=0

c′m(t + 1)3 ≤ c′Rn(w)mn4

and

|∇Rn(w)| ≤ c′Rn(w)mn4
√
k�.(3.2)

We would like to take our set B to be some d-dimensional ball around w∗; unfor-
tunately, if w∗ is on (or close to) an edge of W, the reasoning introduced at the
beginning of this proof is not valid. We instead perturb w∗ to a point w̃ that is at
least

ρ =
γ

c′mn4k2�

away from all edges, where 0 < γ < 1 is a constant, and such that Rn(w̃) is close
to Rn(w∗). To illustrate the perturbation, let w∗ = (w∗

1, . . . ,w
∗
� ), where w∗

ι =

(w∗
ι1, . . . , w

∗
ιk) and w∗

ιk = 1 −
∑k−1

i=1 w∗
ιi for 1 ≤ ι ≤ �. We perturb each w∗

ι in the
same way. Let w̃0

ι = w∗
ι . For 1 ≤ j ≤ k, given w̃j−1

ι , define w̃j
ι as follows. Let

jmax be the index of the maximum coordinate of w̃j−1
ι . If 0 ≤ w̃j

ιj < ρ, define

w̃j
ιj = w̃j−1

ιj + ρ, w̃j
ιjmax

= w̃j−1
ιjmax

− ρ and leave all other coordinates unchanged.

Otherwise, let w̃j
j0

= w̃j−1
j0

. The final perturbation is w̃ = (w̃1, . . . , w̃�), where

w̃ι = w̃k
ι . By construction, w̃ ∈ W, w̃ is at least ρ away from the edges of W and

|w∗
ιj − w̃ιj | ≤ kρ for all ι and j. We bound Rn(w∗)

Rn(w̃) by the multivariate mean value

theorem and the Cauchy–Schwarz inequality:

Rn(w̃) = Rn(w∗) + Rn(w̃) −Rn(w∗)

≥ Rn(w∗) − |∇Rn(w′) · (w̃ − w∗)| (for some w′ between w̃ and w∗)

≥ Rn(w∗) − |∇Rn(w′)| · |w̃ − w∗| ≥ Rn(w∗) − c′Rn(w′)mn4
√
k� · kρ

√
k�

≥ Rn(w∗) − c′Rn(w∗)mn4
√
k� · kρ

√
k� ≥ Rn(w∗)(1 − γ).
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For 0 ≤ ι ≤ � let Cι = {wι ∈ R
k | |w̃ι − wι| ≤ ρ}. From the construction of w̃,

Bι = Cι∩Wk is a (k−1)-dimensional ball of radius ρ. Let w̃∗
ι = arg maxw∈Bι Rn(w),

and let w̃∗ = (w̃∗
1, . . . , w̃

∗
� ) be the profit-maximizing parameters in B = B1×· · ·×B�.

For w ∈ B,

Rn(w) = Rn(w̃∗) + Rn(w) −Rn(w̃∗)

≥ Rn(w̃∗) − |∇Rn(w′)| · |w̃∗ − w| (for some w′ between w̃∗ and w)

≥ Rn(w̃∗) − c′Rn(w̃∗)mn4
√
k� · 2ρ

√
� ≥ Rn(w̃∗)(1 − γ)

≥ Rn(w∗)(1 − 2γ).

By Lemma 3.1,

Rn(U(S)) =

∫
W

Rn(S(w))dµ(w) ≥
∫
B

Rn(w)dµ(w) ≥ (1 − 2γ)Rn(w∗)

∫
B

dµ(w)

≥ (1 − 2γ)Rn(w∗)

∫
B
dw∫

W
dw

= (1 − 2γ)Rn(w∗)

(
π

k−1
2 ρk−1

Γ(k−1
2 + 1)

· (k − 1)!√
k

)�

(from Lemmas 3.5 and 3.6)

= Rn(w∗)Λ(γ,m, k, �)n−4k�,

where Λ is some constant depending on γ, m, k, and �. Therefore,

Ln(w∗) − Ln(U(S)) ≤ log Λ(γ,m, k, �)

n
+ 4k�

log n

n
=

o(n)

n
,(3.3)

as claimed.
Remark 7. The techniques used in the proof of Theorem 3.3 can be generalized to

other investment strategies with bounded parameter spaces W that are not necessarily
of the form W�

k.

3.3. Increasing the number of parameters with time. The reader may
notice from the proof of Theorem 3.3 that an investment strategy S may be uni-
versalizable even if the dimensions of its parameter space W grow with time. In
fact, even if the dimension of the parameter space (the coefficient of log n

n in (3.3))
is O( n

φ(n) log n ), where φ(n) is a monotone increasing function, the strategy is still

universalizable. This introduces an interesting possibility for investment strategies
whose parameter spaces grow with time as more information becomes available. As a
simple example, consider dynamic universalization, which allows us to track a higher-
return benchmark than basic universalization. Partition the time interval I = [0, n)
into ψ = O( n

φ(n) log n ) subintervals I1, . . . , Iψ, and let w∗
Ij

be the parameters that

optimize the return during Ij . In I1, we run the universalization algorithm given by
(3.1) over the basic parameter space W of S. In I2, we run the algorithm over W×W;
to compute the investment description for a day t ∈ I2 using (3.1), we compute the
return Rt(w1,w2) as the product of the returns we would have earned in I1 using w1

and what we would have earned up to day t in I2 using w2. We proceed similarly in
intervals I3 through Iψ. This will allow us to track the strategy that uses the optimal
parameters w∗

Ij
corresponding to each Ij . Such a strategy is useful in environments

where optimal investment styles (and the optimal investment strategy parameters
that go with them) change with time. Finally, we note that similar ideas appear in
the area of “tracking the best expert” in the theory of prediction with expert advice;
we refer the reader to [12, 19] for more details.



12 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

3.4. Applications to trading strategies. By proving an upper bound on∣∣∂Tti(w)
∂wj

∣∣ for our trading strategies T , we show that they are universalizable.

Corollary 3.7. The moving average cross-over trading strategy, MA[k], is
universalizable for the long/short allocation functions g(t)(x) and g�(x) defined in
(2.3) and (2.4), respectively.

Proof. The parameters for MA[k] are of the form wF = (wF1, . . . , wF (k−1), 1 −
wF1 − · · · − wF (k−1)) and wS = (wS1, . . . , wS(k−1), 1 − wS1 − · · · − wS(k−1)). Using
the long/short allocation function g(t)(x) defined in (2.3), the partial derivative of the
investment description with respect to a parameter wFj (or similarly wSj) is∣∣∣∣∂MAti(wF ,wS)

∂wFj

∣∣∣∣ =

∣∣∣∣∂g((wF − wS) · vt)

∂wFj

∣∣∣∣ ≤ t

2
· (vtj − vtk) ≤

t

2
,

where 1 ≤ j < k and i ∈ {1, 2}. Similarly, we can show that using the long/short

allocation function g�(x) defined in (2.4),
∣∣∂MAti(wF ,wS)

∂wFj

∣∣ ≤ 1
2 .

Corollary 3.8. The support and resistance breakout trading strategy, SR[k], is
universalizable for the long/short allocation functions h(t)(x, y) and hp(x, y) defined
in (2.6) and (2.7), respectively.

Proof. We arrive at the result by differentiating the long/short allocation functions
h(t)(x, y) and hp(x, y) with respect to an arbitrary parameter wj and showing that
the partial derivative is O(t), as in the proof of Corollary 3.7.

3.5. Applications to portfolio strategies.

Corollary 3.9. The constantly rebalanced portfolio, CRP, and CRP with side
information, CRP-S, portfolio strategies are universalizable.

Proof. The partial derivatives of CRPti and CRP-Sti with respect to an arbitrary
parameter wj are at most 1.

Corollary 3.10. The k-way indicator aggregation portfolio strategy, IA[k], is
universalizable.

Proof. First, we show that
∑m

�=1 w · vt� ≥ 1
k for all t. Since

∑k
j=1 wj = 1, there

exists j0 such that wj0 ≥ 1
k . Then

∑m
�=1 w ·vt� ≥

∑m
�=1 wj0 ·vt�j0 ≥ 1

k

∑m
�=1 vt�j0 ≥ 1

k ,
since the {vt�j0}1≤�≤m have been normalized such that there is at least one �0 such
that vt�0j0 = 1.

Now, let S = IA[k]. By Theorem 3.3, we need only show that ∂Sti(w)
∂wj

= O(t) for

1 ≤ j ≤ k − 1. For t ≥ 0 and 1 ≤ i ≤ m recall that Sti(w) = w·vti∑m
�=1 w·vt�

. Then, for

1 ≤ j ≤ k − 1, since w = (w1, . . . , wk−1, 1 − (w1 + · · · + wk−1)),

∂Sti(w)

∂wj
=

vtij − vtik∑m
�=1 w · vt�

− w · vti

(
∑m

�=1 w · vt�)2
·

m∑
�=1

(vt�j − vt�k)

≤ 1∑m
�=1 w · vt�

+
m

(
∑m

�=1 w · vt�)2
≤ k + mk2,

as we wanted to show.

4. Fast computation of universal investment strategies.

4.1. Approximation by sampling. The running time of the universalization
algorithm depends on the time needed to compute the integral in (3.1). A straightfor-
ward evaluation takes time exponential in the number of parameters. Following Kalai
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and Vempala [14], we propose to approximate this integral by sampling the param-
eters according to a biased distribution, giving greater weight to better performing
parameters. Define the measure ζt on W by

dζt(w) =
Rt(S(w))∫

W
Rt(S(w))dµ(w)

dµ(w).

Lemma 4.1 (see [14]). The investment description Ut(S) for universalization is
the average of St(w) with respect to the ζt measure.

Proof. The average of St(w) with respect to ζt is

Ew∈(W,ζt)(St(w)) =

∫
W

St(w)dζt(w)

=

∫
W

St(w)
Rt(S(w))∫

W
Rt(S(w))dµ(w)

dµ(w) = Ut(S),

where the final equality follows from (3.1).
We now briefly outline our approach, which follows the lines of [2, 14]. The main

technical complication is that sampling efficiently with respect to ζt is not, in general,
an easy problem. As a result, we will need some (rather generic) assumption on the
investment strategies from which we can sample efficiently.

• Investment strategies with log-concavity properties. In section 4.3, we use
straightforward manipulations to prove that any investment strategy S which
is linear in the vector of parameters w (such strategies include MA[k], SR[k],
CRP, and CRP-S) has a cumulative return function Rt(S(w)) that is log-
concave. Our efficient sampling techniques are applicable only on such strate-
gies.

• Approximating ζt by ζ̄t. In section 4.2, we show that for strategies whose
cumulative return function is log-concave, it is possible to efficiently sample
from a distribution ζ̄t that is “close” to ζt. This “distribution approximation”
incurs some small, bounded error (see Lemma 4.2).

• Approximating the integral for ζ̄t via sampling. With such sampling abilities,
it is easy to approximate the average of St(w) with respect to ζ̄t: simply pick
Nt (as defined in Lemma 4.3) sample parameter vectors w with respect to ζ̄t
and compute their average. The error incurred by this approximation of the
average can be bounded in a straightforward manner using Chernoff bounds.

• Sampling with respect to ζ̄t. The critical issue (addressed in section 4.2) is
how to pick vectors w ∈ W with respect to ζ̄t. In order to tackle this problem,
we “discretize” it by placing a grid on W, and then we perform a Metropolis
random walk. The convergence properties of this random walk are discussed
in Theorems 4.12 and 4.13.

In section 4.2, we show that for certain strategies we can efficiently sample from
a distribution ζ̄t that is “close” to ζt; i.e., given γt > 0, we generate samples from ζ̄t
such that ∫

W

∣∣ζt(w) − ζ̄t(w)
∣∣ dµ(w) ≤ γt.(4.1)

Assume for now that we can sample from ζ̄t, with γt = ε2

4m(t+1)4 , where ε is the

constant appearing in Remark 6. Let Ūt(S) =
∫

W
St(w)dζ̄t(w) be the corresponding
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approximation to U(S). Lemma 4.2 tells us that we do not lose much by sampling
from ζ̄t.

Lemma 4.2. For all n ≥ 0, (1) Rn(Ū(S)) ≥ (1− ε)Rn(U(S)) and (2) if U(S) is
a universalization of S, then Ū(S) is a universalization of S as well.

Proof. Statement (2) follows directly from (1). To see (1), we need only show
that the fraction of wealth that we put into each stock i on day t under Ū(S) is within
a 1 − ε

2(t+1)2 factor of the corresponding amount under U(S); i.e., Ūti(S) ≥ (1 −
ε

2(t+1)2 )Uti(S) for 0 ≤ t < n and 1 ≤ i ≤ m. For w ∈ W, let γt(w) = |ζ̄t(w) − ζt(w)|,
so that

∫
W
γt(w)dw = γt ≤ ε2

4m(t+1)4 . We have

Ūti(S) =

∫
W

Sti(w)ζ̄t(w)dµ(w) ≥
∫

W

Sti(w)(ζt(w) − γt(w))dµ(w)

= Uti(S) −
∫

W

Sti(w)γt(w)dµ(w) ≥ Uti(S) − γt (since Sti(w) ≤ 1)

≥
(

1 − ε

2(t + 1)2

)
Uti(S)(

since Uti(S) ≥ min
w

S(w) ≥ ε

2m(t + 1)2
and γt ≤ ε2

4m(t+1)4

)
,

as we wanted to show.

By sampling from ζ̄t, we use a generalization of the Chernoff bound to get an ap-
proximation Ũ(S) to Ū(S) such that with high probability Ũti(S) ≥ (1− ε

2(t+1)2 )Ūti(S)

for 0 ≤ t < n and 1 ≤ i ≤ m. Using an argument similar to that in the proof of
Lemma 4.2, we see that if Ū(S) is a universalization of S, then such a Ũ(S) is a univer-
salization of S as well. Choose w1, . . . ,wNt ∈ W at random according to distribution

ζ̄t, and let Ũti(S) = 1
Nt

∑Nt

i=1 Sti(wi). Lemma 4.3 discusses the number of samples Nt

required to get a sufficiently good approximation to Ūt(S).

Lemma 4.3. Given 0 < δ < 1, use Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples to

compute Ũt(S), where ε is the constant appearing in Remark 6. With probability
1 − δ, Ũti(S) ≥ (1 − ε

2(t+1)2 )Ūti(S) for all 1 ≤ i ≤ m and t ≥ 0.

Proof. Hoeffding [13] proves a general version of the Chernoff bound. For random

variables 0 ≤ Xi ≤ 1 with E(Xi) = µ and X̃ = 1
N

∑N
i=1 Xi, the bound states that

Pr(X̃ ≤ (1 − α)µ) ≤ e−2Nα2µ2

. In our case, we would like Ũti ≥ (1 − ε
2(t+1)2 )Ūti.

As this must hold for 1 ≤ i ≤ m and t ≥ 0 with total probability 1 − δ, we require
Pr(Ũti ≤ (1 − ε

2(t+1)2 )Ūti) ≤ δ
2m(t+1)2 for each i and t. From our assumption stated

in Remark 6, µ = Ūti ≥ ε
2m(t+1)2 , and the desired probability bound is achieved with

Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples.

4.2. Efficient sampling. We now discuss how to sample from W = W�
k =

Wk × · · · ×Wk according to distribution ζt(·) ∝ Rt(·) = Rt(S(·)). W is a convex set
of diameter d =

√
2�. We focus on a discretization of the sampling problem. Choose

an orthogonal coordinate system on each Wk, and partition it into hypercubes of side
length δt, where δt is a constant chosen below. Let Ω be the set of centers of cubes
that intersect W, and choose the partition such that the coordinates of w ∈ Ω are
multiples of δt. For w ∈ Ω, let C(w) be the cube with center w. We show how to
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choose w ∈ Ω with probability “close to”

πt(w) =
Rt(w)∑

w∈Ω Rt(w)
.

In particular, we sample from a distribution π̃t that satisfies

∑
w∈Ω

|πt(w) − π̃t(w)| ≤ γt =
ε2

4m(t + 1)4
.(4.2)

Note that this is a discretization of (4.1). We will also have that for each w ∈ Ω,

π̃t(w)

πt(w)
≤ 2.(4.3)

We would like to choose δt sufficiently small that Rt is “nearly constant” over C(w);
i.e., there is a small constant ν > 0 such that

(1 + ν)−1Rt(w) ≤ Rt(w
′) ≤ (1 + ν)Rt(w)(4.4)

for all w′ ∈ C(w). Such a δt can be chosen for investment strategies S that have
bounded derivative, as we see in Lemma 4.4.

Lemma 4.4. Suppose that investment strategy S satisfies the condition for uni-

versalizability given in Theorem 3.3; i.e.,
∣∣∂Sti(w)

∂wj

∣∣ ≤ c(t + 1). Given ν > 0, let

δt = δt(ν) = ν
3c′mt4k� , where c′ is defined in the proof of Theorem 3.3. For w,w′ ∈ W

such that |wij − w′
ij | ≤ δt(ν) for all 1 ≤ i ≤ � and 1 ≤ j ≤ k, (1 + ν)−1Rt(w) ≤

Rt(w
′) ≤ (1 + ν)Rt(w).

Proof. Note that |w−w′| ≤ δt
√
k�. Let w∗ be the parameters that maximize the

return on the line between w and w′. By the multivariate mean value theorem and
the bound for |∇Rt| given in (3.2),

Rt(w
∗) = Rt(w) + Rt(w

∗) −Rt(w)

≤ Rt(w) + |∇Rt(wm)| · |w − w∗| (for some wm between w∗ and w)

≤ Rt(w) + c′Rt(wm)mn4
√
k� · δt

√
k� ≤ Rt(w) + Rt(w

∗)
ν

3

⇒ Rt(w) ≥ Rt(w
∗)

(
1 − ν

3

)
≥ Rt(w

′)
(
1 − ν

3

)
so that Rt(w

′) ≤ (1 + ν)Rt(w). By similar reasoning,

Rt(w
′) = Rt(w

∗) + Rt(w
′) −Rt(w

∗)

≥ Rt(w
∗) − |∇Rt(wm)| · |w′ − w∗| (for some wm between w∗ and w′)

≥ Rt(w
∗)

(
1 − ν

3

)
≥ Rt(w)

(
1 − ν

3

)
≥ Rt(w)(1 + ν)−1,

completing the proof.
We use a Metropolis algorithm [15] to sample from π̃t. We generate a random

walk on Ω according to a Markov chain whose stationary distribution is πt. Begin by
selecting a point w0 ∈ Ω according to either π̃t−1 or π̃t−2;

7 Remark 8 explains how
to do this.

7Ideally, we would like to begin with a point selected according to π̃t−1, but, as discussed in
Remark 8, this is not always possible.
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Remark 8. We can select a point according to π̃t−1 by “saving” our sam-
ples that were generated at time t − 1. By Lemma 4.3, we would have generated

Nt−1 ≥ 8m2t8

ε4 log 2mt2

δ samples at time t − 1, which is not enough to generate the

Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples necessary at time t. Instead, we can “save”
samples that were generated at times t − 1 and t − 2. For sufficiently large t, Nt ≤
Nt−1 + Nt−2 and our initial point w0 would be picked according to either π̃t−1 or
π̃t−2. As we see in the proof of Lemma 4.10, this distinction is not important.

If wτ is the position of our random walk at time τ ≥ 0, we pick its position at
time τ + 1 as follows. Note that wτ has 2(k − 1)� neighbors, two along each axis in
the Cartesian product of � (k − 1)-dimensional spaces. Let w be a neighbor of wτ ,
selected uniformly at random. If w ∈ Ω, set

wτ+1 =

{
w with probability p = min(1, Rt(w)

Rt(wτ ) ),

wτ with probability 1 − p.

If w �∈ Ω, let wτ+1 = wτ . It is well known that the stationary distribution of this
random walk is πt. We must determine how many steps of the walk are necessary
before the distribution has gotten sufficiently close to stationary. Let pτ be the dis-
tribution attained after τ steps of the random walk. That is, pτ (w) is the probability
of being at w after τ steps.

Remark 9. A distinction should be made between t and τ . We use t to refer
to the time step in our universalization algorithm. We use τ to refer to “sub-” time
steps used in the Markov chain to sample from πt. When t is clear from context, we
may drop it from the subscripts in our notation.

Applegate and Kannan [2] show that if the desired distribution πt is proportional
to a log-concave function F (i.e., logF is concave), then the Markov chain is rapidly
mixing and reaches its steady state in polynomial time. Frieze and Kannan [9] give an
improved upper bound on the mixing time using logarithmic Sobolev inequalities [7].

Theorem 4.5 (Theorem 1 of [9]). Assume the diameter d of W satisfies d ≥
δt
√
k� and that the target distribution π is proportional to a log-concave function.

There is an absolute constant κ > 0 such that

2

(∑
w∈Ω

|π(w) − pτ (w)|
)2

≤ e−
κτδ2t
k�d2 log

1

π∗
+

Mπek�d
2

κδ2
t

,(4.5)

where π∗ = minw∈Ω π(w), M = maxw∈Ω
p0(w)
π(w) log p0(w)

π(w) , p0(·) is the initial distribu-

tion on Ω, πe =
∑

w∈Ωe
π(w), and Ωe = {w ∈ Ω |Vol(C(w) ∩ W) < Vol(C(w))}.

(The “e” in the subscripts of πe and Ωe stands for “edge.”)
In the random walk described above, if wτ is on an edge of Ω, so that it has many

neighbors outside Ω, the walk may get “stuck” at wτ for a long time, as seen in the
“πe” term of Theorem 4.5. We must ensure that the random walk has a low probability
of reaching such edge points. We do this by applying a “damping function” to Rt,
which becomes exponentially small near the edges of W. For 1 ≤ i ≤ �, 1 ≤ j ≤ k,
and w = (w1, . . . ,w�) = ((w11, . . . , w1k), . . . , (w�1, . . . , w�k)) ∈ W let

fij(w) = eΓ min(−σ+wij ,0),(4.6)

where σ > 0 and Γ > 2 are constants that we choose below, and let

Ft(w) = Rt(w)

�∏
i=1

k∏
j=1

fij(w).
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Lemma 4.6. Ft is log-concave if and only if Rt is log-concave.8

Proof. This follows from the fact that log-concave functions are closed under mul-
tiplication and the fact that log fij(w) = Γ min(−σ + wij , 0), which is concave.

Choose σ = 1
k δt(

γt

2 ), where δt(·) is defined in Lemma 4.4 and γt is defined in
(4.2). Let ζF ∝ Ft be the probability measure proportional to Ft. We need to show
that, for our purposes, sampling from ζF is not much different than sampling from ζt.
By Lemma 4.2, we can do this by showing that

∫
W
|ζt(w)− ζF (w)|dw ≤ γt, which we

do in Lemma 4.7.

Remark 10. Before continuing, we show how W can be scaled, which will be
useful in future proofs. Take p = ( 1

k , . . . ,
1
k ) ∈ Wk; given χ ∈ (−1, 1), let

w(χ) = (1 + χ)(w − p) + p,

and let

W(χ)
k = {w(χ) |w ∈ Wk}

be a scaled version of Wk about p, where the scaling factor is 1 + χ. To extend this

scaling to W = W�
k, given w = (w1, . . . ,w�) ∈ W, let w(χ) = (w

(χ)
1 , . . . ,w

(χ)
� ) and

W
(χ) = {w(χ) |w ∈ W}.

A fact we use is that for 1 ≤ i ≤ �, 1 ≤ j ≤ k, and w = (w1, . . . ,w�) ∈ W,

|w(χ)
ij − wij | =

∣∣∣∣(1 + χ)

(
wij −

1

k

)
+

1

k
− wij

∣∣∣∣ ≤ |χ|.

Lemma 4.7.

∫
W
|ζt(w) − ζF (w)|dw ≤ γt.

Proof. Let W
′ = W

(−kσ) be the “scaled-in” version of W, as defined in Remark 10.
By Lemma 4.4, since |wij − w′

ij | ≤ kσ = δt(
γt

2 ) for all i and j, Rt(w
′) ≥ 1

1+
γt
2
Rt(w)

and ∫
W′

Rt(w)dw ≥ 1

1 + γt

2

∫
W

Rt(w)dw.(4.7)

Let Weq = {w ∈ W |Ft(w) = Rt(w)} be the subset of W where Ft(·) and Rt(·)
are equal; W

′ ⊂ Weq since, by construction of w′, w′
ij ≥ σ for all i and j. Let

W+ = {w ∈ W | ζF (w) ≥ ζt(w)} be the subset of W where ζF (·) is at least ζt(·) and
let W− = W − W+. We bound∫

W

|ζF (w) − ζt(w)|dw =

∫
W+

(ζF (w) − ζt(w))dw +

∫
W−

(ζt(w) − ζF (w))dw

by bounding
∫

W−
(ζt − ζF ), which also gives a bound for

∫
W+

(ζF − ζt), since

∫
W+

(ζF − ζt) =

(
1 −

∫
W−

ζF

)
−
(

1 −
∫

W−

ζt

)
=

∫
W−

(ζt − ζF ).

8We characterize investment strategies for which Rt is log-concave in Theorem 4.14.
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Since Ft ≤ Rt,
∫

W
Ft ≤

∫
W
Rt and ζF (w) = Ft(w)∫

W
Ft

≥ Rt(w)∫
W
Rt

= ζt(w) for w ∈ Weq;

thus W
′ ⊂ Weq ⊂ W+ and W− ⊂ W − W

′. We have

∫
W−

(ζt(w) − ζF (w))dw ≤
∫

W−W′
ζt(w)dw =

∫
W−W′ Rt(w)dw∫

W
Rt(w)dw

= 1 −
∫

W′ Rt(w)dw∫
W
Rt(w)dw

≤ 1 − 1

1 + γt

2

≤ γt
2
,

where the second-to-last inequality follows from (4.7). This completes the proof.

Henceforth, we are concerned with sampling from W with probability proportional
to Ft(·). We use the Metropolis algorithm described above, replacing Rt(·) with Ft(·);
we must refine our grid spacing δt so that (4.4) is satisfied by Ft; let δ′t be the new
grid spacing.

Lemma 4.8. Suppose that the conditions of Lemma 4.4 are satisfied. Given
ν > 0, let δ′t(ν) = δ′t = ν

3Γc′mt4k� = δt(
ν
Γ ), where Γ appears in (4.6). For w,w′ ∈ W

such that |wij − w′
ij | ≤ δ′t(ν) for all 1 ≤ i ≤ � and 1 ≤ j ≤ k, (1 + ν)−1Ft(w) ≤

Ft(w
′) ≤ (1 + ν)Ft(w).

Proof. By Lemma 4.4, Rt(w) and Rt(w
′) differ by at most a factor of 1 + ν

Γ .

For each i and j, fij(w) and fij(w
′) differ by at most a factor of eΓδ′t(ν), and hence∏�

i=1

∏k
j=1 fij(w) and

∏�
i=1

∏k
j=1 fij(w

′) differ by at most a factor of ek�Γδ
′
t(ν) =

e
ν

3c′mt4 . Hence, for Γ ≥ 2 and sufficiently large t, Ft(w) and Ft(w
′) differ by at most

a factor of 1 + ν.

We are now ready to use Theorem 4.5 to select τ so that the resulting distribution
pτ satisfies (4.2) (Theorem 4.12) and (4.3) (Theorem 4.13), with pτ in place of π̃t and
Ft in place of Rt. We begin with some preliminary lemmas.

Lemma 4.9. There is a constant β > 0 such that log 1
π∗

≤ k�Γσ + k� log β
δ′t

+
t log 2mt2

ε , where ε is defined in Remark 6.

Proof. Take β such that the number of points in Ω is at most ( β
δ′t

)(k−1)·�. For

w1,w2 ∈ Ω, the ratio of single-day returns on day t′ using w1 and w2 is

St′(w1) · xt′

St′(w2) · xt′
≥ ε

2m(t′ + 1)2
,

by Remark 6 and Lemma 3.4. The ratio of the cumulative returns up to day t is

Rt(w1)

Rt(w2)
≥

( ε

2mt2

)t

,

and thus Rt(w)∑
w∈Ω Rt(w) ≥ (

δ′t
β )(k−1)�

(
ε

2mt2

)t
. Factoring in the maximum dampening

effect of the fij , π∗ ≥ e−k�Γσ(
δ′t
β )(k−1)�

(
ε

2mt2

)t
and log 1

π∗
≤ k�Γσ + k� log β

δ′t
+

t log 2mt2

ε .

Lemma 4.10. M ≤ 4
( 2m(t+1)2

ε

)2
log 2m(t+1)2

ε .

Proof. As stated in Remark 8, the initial distribution is either p0 = π̃t−1 or π̃t−2.

It turns out that the worst case happens when p0 = π̃t−2. For all w ∈ Ω, π̃t−2(w)
πt−2(w) ≤ 2

by (4.3) and the following:
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πt−2(w)

πt(w)
=

Ft−2(w)∑
w∈Ω Ft−2(w)

·
∑

w∈Ω Ft(w)

Ft(w)

≤ Ft−2(w)

Ft(w)
· Ft(w

′)

Ft−2(w′)

(
by Lemma 3.4, where w′ = arg max

w∈Ω

Ft(w)

Ft−2(w)

)

=
Rt−2(w)

Rt(w)
· Rt(w

′)

Rt−2(w′)
(since the {fij(·)}i,j remain constant with time)

=
(St(w

′) · xt)(St−1(w
′) · xt−1)

(St(w) · xt)(St−1(w) · xt−1)
≤

(
2m(t + 1)2

ε

)2

,

where the final inequality follows from the discussion in the proof of Lemma 4.9. This

proves the result since π̃t−2(w)
πt(w) = π̃t−2(w)

πt−2(w)

πt−2(w)

πt(w) .

Lemma 4.11. πe ≤ (1 + ν)4(1 + γt

2 )e−Γσ, where ν appears in the definition of δ′t
in Lemma 4.8, γt appears in (4.2), and Γ and σ appear in (4.6).

Proof. Extend our δ′t-hypercube partition of W to the hyperplane containing W,
and let Ψ be the set of centers of the hypercubes in this extended partition. For
K ⊂ R

k�, let ΨK be the set of grid points w ∈ Ψ such that C(w) ∩K �= ∅, so that
Ω = ΨW. By Lemma 4.8, for K ⊂ W,

1

1 + ν

∑
w∈ΨK

Ft(w)Vol(C(w) ∩K) ≤
∫
K

Ft(w)dw ≤ (1 + ν)
∑

w∈ΨK

Ft(w)Vol(C(w) ∩K).

(4.8)

Using the notation of Lemma 4.7, let W
′ = W

(−kσ) be a “scaled-in” version of W; we
showed in Lemma 4.7 that for w ∈ W

′, Ft(w) = Rt(w), and that∫
W′

Ft(w)dw =

∫
W′

Rt(w)dw ≥ 1

1 + γt

2

∫
W

Rt(w)dw.(4.9)

Let W
′′ = W

(δ′t(ν)) be a “scaled-out” version of W, and extend the domains of Ft(·) and
Rt(·) to W

′′ by defining Ft(w
′′) = Ft(w̄

′′) and Rt(w
′′) = Rt(w̄

′′) for w′′ ∈ W
′′ − W,

where w̄′′ is the point where the line between w′′ and p� = (p, . . . ,p) ∈ W intersects
the boundary of W. By Lemma 4.8 and the construction of the extension of Rt,
Rt(w

′′) ≤ (1 + ν)Rt(w) and∫
W′′

Rt(w)dw ≤ (1 + ν)

∫
W

Rt(w)dw.(4.10)

By construction of W
′′, C(w) ⊂ W

′′ for w ∈ Ωe; from the definition of Ft and the
choice of δ′t, Ft(w) ≤ (1 + ν)e−ΓσRt(w) for w ∈ Ωe. Using these facts,

πe =

∑
w∈Ωe

Ft(w)∑
w∈Ω Ft(w)

≤ δ
(k−1)�
t

δ
(k−1)�
t

·
(1 + ν)e−Γσ

∑
w∈Ωe

Rt(w)∑
w∈Ω Ft(w)

≤ (1 + ν)e−Γσ

∑
w∈Ψ

W′′ Vol(C(w) ∩ W
′′)Rt(w)∑

w∈ΨW
Vol(C(w) ∩ W)Ft(w)

(
since Vol(C(w)) = δ

(k−1)�
t

)

≤ (1 + ν)e−Γσ (1 + ν)
∫

W′′ Rt(w)dw
1

(1+ν)

∫
W
Ft(w)dw

(by (4.8))

≤ (1 + ν)3e−Γσ

∫
W′′ Rt(w)dw∫
W′ Ft(w)dw

≤ (1 + ν)4
(
1 +

γt
2

)
e−Γσ

(by (4.9) and (4.10)).
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Remark 11. We simplify notation below by using O∗(·) notation, which ignores
logarithmic and constant terms. For our purposes, f(·) = O∗(g(·)) if there exists a
constant C ≥ 0 such that f(·) = O(g(·) logC(k�mt/ε)). The values derived above in

this notation are γt = O∗( ε2

mt4 ), δt = O∗( ν
mt4k� ), σ = O∗( ε2

m2t8k2� ), δ
′
t = O∗( ν

Γmt4k� ),

log 1
π∗

= O∗(k�Γσ + t), M = O∗(m
2t4

ε2 ), and πe = O∗(e−Γσ).

Theorem 4.12. Letting Γ = O∗( 1
σ ) = O∗(m

2t8k2�
ε2 ), the random walk reaches a

distribution π̃ that satisfies (4.2) after τ = O∗(k
7�6m6t24

κν2ε4 ) steps.
Proof. We show how to bound the right-hand side of (4.5), where the grid spacing

δt has been replaced by δ′t. The second term, Mπek�d
2

κδ′t
2 , can be made exponentially

small in Γ by choosing Γ = O∗( 1
σ ). The value of τ stated in the theorem is large

enough to make the first term, e−
κτδ′t

2

k�d2 log 1
π∗

, exponentially small in τ .
Theorem 4.13. Suppose that the distribution pτ0 obtained after τ0 steps satisfies

∑
w∈Ω

|π(w) − pτ0(w)| ≤ γt.

After τ ′0 ≥ τ0
τ0−log 1

π∗ −log 1
γt

log 1
π∗

= O∗(τ0(k�+ t)) steps, the resulting distribution pτ ′
0

satisfies

max
w∈Ω

pτ ′
0
(w)

π(w)
− 1 ≤ 1,

which implies (4.3).

Proof. Let d(τ) = 1
2

∑
w∈Ω |π(w) − pτ (w)| and d̂(τ) = maxw∈Ω

pτ (w)
π(w) − 1 so that

d(τ0) ≤ 1
2γt. Aldous and Fill [1, (5) and (6)] prove that if τ ≥ 1

λ log 1
π∗

, then d̂(τ) ≤ 1,
where π∗ = minw∈Ω πt(w) is as defined in the statement of Theorem 4.5 and λ is the
second-largest eigenvalue of the steady-state transition matrix P of πt.

To prove the bound on τ ′0, we show that λ ≥ τ0−log 1
π∗ −log 1

γt

τ0
= 1 − log 1

π∗ +log 1
γt

τ0
.

We do this by appealing to a result from Sinclair [17, Proposition 1(i)], which states
that

τ0 ≤
log 1

π∗
+ log 1

γt

1 − λ
.9

Solving for λ yields the bound for τ ′0. The O∗(·) bound comes from the fact that
Γσ = O∗(1) and that log 1

γt
and log 1

π∗
are low-order terms relative to the τ0 obtained

in Theorem 4.12.

4.3. Application to investment strategies. The efficient sampling techniques
of this section are applicable to investment strategies S whose return functions Rn(S(·))
are log-concave. Theorem 4.14 and Corollary 4.15 characterize such functions.

Theorem 4.14. Given investment strategy S, suppose that S is linear on w,

or, more formally, that for all parameters wi and wj,
∂2S

∂wi∂wj
= 0. Then Rt(w) =

Rt(S(w)) is log-concave.

9Strictly speaking, this result pertains to λmax, the second-largest absolute value of the eigenval-
ues of P , but as Sinclair discusses [17, p. 355], the smallest eigenvalue is unimportant, as P can be
modified so that all eigenvalues are positive without affecting mixing times beyond a constant factor.
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Proof. Let rt(w) = St(w) · xt, so that Rn(w) =
∏n−1

t=0 rt(w). Since log-concave
functions are closed under multiplication, we need only show that rt(w) is log-concave.

The gradient vector of log rt(w) has ith element ∂ log rt(w)
∂wi

= 1
rt(w)

∂rt(w)
∂wi

, and the

matrix of second derivatives has (i, j)th element

− 1

rt(w)2
∂rt(w)

∂wi

∂rt(w)

∂wj
+

1

rt(w)

∂2rt(w)

∂wi∂wj
= − 1

rt(w)2
∂rt(w)

∂wi

∂rt(w)

∂wj
,

since ∂2rt(w)
∂wi∂wj

=
∑m

ι=1
∂2Stι(w)
∂wi∂wj

· xtι = 0 by assumption. The matrix of second deriva-

tives is negative semidefinite, implying that log rt(w) is a concave function.
Corollary 4.15. Universalizations of the following investment strategies can be

computed using the sampling techniques of this section:
1. the trading strategies MA[k] and SR[k] with long/short allocation functions

g�(x) and hp(x, y), respectively, and
2. the portfolio strategies CRP and CRP-S.

Proof. The result follows from a straightforward differentiation of the investment
descriptions of these strategies.

5. Further research. We have introduced in this paper a general framework
for universalizing parameterized investment strategies. It would be interesting to
relax the condition of Theorem 3.3 and generalize the theorem. Likewise, it would be
interesting to see whether the proof of Theorem 3.3 can be optimized so that existing
universal portfolio proofs for CRP [3, 5, 6] are a special case of Theorem 3.3. These
proofs not only prove that Ln(U(CRP)) converges to Ln(CRP(w∗

n)), but also prove
a bound on the rate of convergence,

Rn(CRP(w∗
n))

Rn(U(CRP))
≤

(
n + m− 1

m− 1

)
≤ (n + 1)m−1.

It would also be interesting to study other trading and portfolio strategies that fit
into our universalization framework and to see how our universalization algorithms
perform in empirical tests.
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