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Bridging the Gap Between Numerical
Linear Algebra, Theoretical Computer
Science, and Data Applications
By Gene H. Golub, Michael W. Mahoney, Petros Drineas, and Lek-Heng Lim

The Workshop on Algorithms for Modern Massive Data Sets (MMDS 2006), sponsored by the National Science Foundation, Yahoo!
Research, and Ask.com, was held at Stanford University, June 21–24. The objectives were to explore novel techniques for modeling and ana-
lyzing massive, high-dimensional, and nonlinearly structured data sets, and to bring together computer scientists, computational and applied
mathematicians, statisticians, and practitioners to promote cross-fertilization of ideas. The program, with 45 talks and 24 poster presentations,
drew 232 participants—far exceeding the anticipated 75!

MMDS 2006 grew out of discussions among the four organizers (who are also the authors of this article) about the complementary perspec-
tives brought by the numerical linear algebra (NLA) and the theoretical computer science (TCS) communities to linear algebra and matrix com-
putations. These discussions were motivated by data applications, and, in particular, by technological developments over the last two decades
(in both scientific and Internet domains) that permit the automatic generation of very large data sets. Such data are often modeled as matrices:
An m × n real-valued matrix A provides a natural structure for encoding information about m objects, each of which is described by n features.
In genetics, for example, microarray expression data can be represented in such a framework, with Aij representing the expression level of the
ith gene in the jth experimental condition. Similarly, term–document matrices can be constructed in many Internet applications, with Aij indicat-
ing the frequency of the jth term in the ith document. Such data matrices often have structural properties that present challenges and opportuni-
ties for researchers in both NLA and TCS.

The workshop was loosely organized around six hour-long tutorials that introduced participants to the major themes of the workshop.

Linear Algebra and Matrix Computations: Complementary Perspectives

Representing the NLA perspective, Di-anne O’Leary of the University of Mary-land gave a tutorial titled “Matrix Factor-izations for
Information Retrieval.” Historically, matrix factorizations have been of central interest in NLA because they can be used to express a problem
in such a way that it can be solved more easily. They have been of interest in statistical data analysis because they can be used to represent struc-
ture that may be present in a matrix obtained from object–feature observations. O’Leary began by describing the eigendecomposition of a
matrix, which has been used for both purposes. She also described the rank-revealing QR decomposition, the rank-revealing URV decomposi-
tion, the semidiscrete decomposition, and nonnegative matrix factorizations, all of which have found application in redundancy reduction, in
latent semantic indexing, and elsewhere.

Of course, O’Leary didn’t fail to discuss the
singular value decomposition, describing it as
both the “Swiss Army Knife” and the “Rolls
Royce” of matrix decompositions. The SVD
decomposes any matrix A as A = UΣV T, where
U and V are orthogonal matrices and Σ is a diag-
onal matrix with nonnegative and nonincreasing
elements along the diagonal. The SVD can be
substantially more expensive to compute than
other commonly used decompositions, but it
provides a great deal of useful information about
the matrix. It is commonly used in data analysis,
for example, via the related method of principal
components analysis, because truncating the
SVD by keeping just the k largest terms on the
diagonal of Σ provides the “best” rank-k
approximation to A. Thus, the SVD, its compu-
tation, its approximation, its application, and its
interpretation were recurrent themes throughout
the workshop.

Ravi Kannan of Yale University represented
the very different TCS perspective on linear
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algebra and matrix computations in the tutorial “Sampling in Large Matrices.” Kannan began with a question: How does one pick a good ran-
dom sample of rows of a matrix A quickly? Traditionally, good might mean that the rows of R are independent and span the row space of A, or
that the row span of R satisfies an interpolative approximation condition with respect to the rows of A; similarly, quickly might mean in poly-
nomial time in the worst case.

In light of large data applications, Kannan argued that if one chooses (and rescales appropriately) r rows from an m × n matrix A to construct
an r × n matrix R, then a simple and reasonable notion of good is that ATA ≈ RTR. He further argued that, for extremely large matrices, a rea-
sonable notion of quickly is that one can perform the computations in only one or two “passes” over the data (assumed to be stored externally),
with only O(m + n) additional space and time. Within this framework, Kannan showed that nontrivial results can be obtained by randomly sam-
pling rows according to a probability distribution proportional to the square of the Euclidean norm of that row. For example, the entire matrix
can be approximated quickly with a CUR matrix decomposition: R is chosen first, followed by the construction (in an analogous manner) of an
m × c matrix C consisting of c columns of A and, finally, construction of a c × r matrix U such that A ≈ CUR.

In their tutorials, Kannan and O’Leary highlighted complementary perspectives. For example, in computing matrix decompositions like the
SVD or QR decomposition, NLA researchers place an emphasis on optimal conditioning, backward error analysis issues, and whether the algo-
rithm takes time that is a large or small constant multiplied by min{mn2, m2n}. In contrast, a precise statement of the manner in which
A ≈ CUR involves no reference to conditioning or numerical stability. In addition, this CUR decomposition is constructed by exploiting over-
sampling and randomness as computational resources. These resources are common in TCS, but they are typically not exploited in NLA.

In another pair of tutorials, S. Muthukrishnan of Rutgers University and Google (“An Algorithmicist’s Look at Compressed Sensing
Problems”) and Dimitris Achlioptas of the University of California at Santa Cruz (“Applications of Random Matrices in Spectral Computations
and Machine Learning”) examined the relation between vector space operations that people want to perform and what can be computed effi-
ciently.

Muthukrishnan began by describing the sparse approximation problem: Given a dictionary A, i.e., a set of n-dimensional vectors that span
R

n, and an n-dimensional signal vector S, a b-sparse representation for S is a vector of the form Rb = ∑´Si A(i), where Si is the ith element of the
signal, A(i) is the ith element of the dictionary, and where the prime on the sum indicates that it contains no more than b terms. A statistician or
applied mathematician might ask: Given a signal S that is assumed to be compressible, can I construct an algorithm that computes a vector R
such that ||S – R|| is bounded by some function of b? By contrast, an “algorithmicist” might ask: Given an arbitrary signal S, can I design an
algorithm that finds a b-term vector Rb such that ||S – Rb|| approximates ||S – Rb

OPT||?
At one extreme, the dictionary A is an orthonormal basis for R

n, in which case the algorithmic problem is typically computationally
easy—simply a question of keeping the vectors with the b largest coefficients—but finding a dictionary suitable for a particular application is
an art. At the other extreme are arbitrary dictionaries A, in which case exact solution of the problem is NP-hard, and hardness results are known
for even the approximation problem. Modern versions of these problems that were the main focus of Muthukrishnan’s talk interpolate between
these two extremes.

Achlioptas began by reviewing the celebrated Johnson–Lindenstrauss lemma: Given an m × n matrix A, i.e., given m points in an n-dimen-
sional Euclidean space, there exists a function mapping those points into a k-dimensional space, where k = O(log(m)/ε2), such that all pairwise
distances between the points are approximately preserved with high probability. Moreover, this function is just a data-independent random pro-
jection.

Achlioptas also described an algorithm for computing low-rank matrix approximations that involves randomly sampling and/or quantizing
elements of the input matrix. Both of those procedures reduce the description length of the input matrix and can thus be used to accelerate iter-
ative computations based on orthogonal iteration and Lanczos iteration. The algorithm involves constructing a data-dependent random projec-
tion. The analysis makes clear that noise is not always a problem in data analysis. Instead, the computational properties of some algorithms,
such as computing low-rank matrix approximations, can be improved by the addition of carefully constructed “data-dependent or computation-
friendly noise” to the data.

Internet and Tensor-based Applications

Internet applications, a major motivation for the workshop, were the subject of “The Changing Face of Web Search,” the tutorial given by
Prabhakar Raghavan of Yahoo! Research. Raghavan began by pointing out that Web search, because it provides access to distributed informa-
tion that is heterogeneous in its creation, accuracy, and motivation, has not only created multi-billion-dollar businesses, but has also provided a
rich source of mathematical and algorithmic challenges.

Raghavan described Flickr, a Web site where users share and tag each others’ photographs, as a new example of how collective knowledge
can be used for search. He also discussed auctions for keyword searches on the Internet, focusing mainly on Yahoo! and Google auctions and
on the microeconomic, mechanism design, and algorithmic challenges they pose. More generally, Raghavan presented extensive areas for
research in the domain of Internet search, services, and software.

Tensor-based data applications were the theme of the final day of the workshop, which began with a tutorial titled “Tensors, Symmetric
Tensors, and Nonnegative Tensors in Data Analysis,” by Lek-Heng Lim of Stanford University. In applied data analysis, the Tucker model and
the related “canonical decomposition” or “parallel factors” model have a long history; these models are based on the extension of linear alge-
braic ideas from data matrices to multimode data tensors.

As with matrices, an element of a tensor product of vector spaces can be identified with an array subscripted by multiple indices if a basis for
each vector space is specified. Unlike the case for matrices, however, Lim reminded the audience that the tensor rank (defined as the minimum
number of rank-one tensors into which the original tensor can be decomposed) is base-field dependent and that computing the rank for a gen-
eral three-mode tensor is an NP-hard problem.

At least as discouraging for those contemplating the use of tensor methods in data analysis is that the problem of computing the “best” rank-



k approximation to a tensor may have no solution. Such hardness and nonexistence results should not be surprising to readers: After all, there
are important connections between such concepts as tensor rank and concepts from algebraic complexity theory, such as the number of multi-
plications required to compute the product of two matrices. Instead, what should be surprising is that interesting computations can be performed
efficiently when consideration is restricted from general tensors to matrices. Lim also described connections between an �1 generalization of the
SVD, nonnegative tensor decompositions, and naive Bayes modeling in statistics.

In addition to other talks on the theory of data algorithms, kernel methods, machine learning, other matrix and tensor decomposition tech-
niques, and the topology of data, participants heard about a wide variety of data applications: applications of recently developed matrix decom-
positions in genetics, hyperspectral imaging, term–document analysis, information retrieval, and recommendation systems; applications of other
methods to ranking for Web search and advertising, text mining, learning retrieval functions, and neuroscience; as well as applications of ten-
sor methods to petascale data, link and semantic data, computer vision data, and cellular and bioinformatic data. Interested readers are encour-
aged to visit the conference Web site (http://mmds.stanford.edu/), where the presentations from nearly every speaker and every poster abstract
can be found.

The feedback received, both from established researchers working in focus areas of the workshop and from many students just starting their
research careers, was overwhelmingly positive. Clearly, there is a lot of interest in MMDS as a developing research area at the interface between
NLA, TCS, and scientific and Internet data applications. Keep an eye out for the next MMDS!
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